
Online balanced truncation for linear time-varying systems using
continuously differentiable interpolation on Grassmann manifold*

Nguyen Thanh Son1,2 and Pierre-Yves Gousenbourger1 and Estelle Massart1 and P.-A. Absil1

Abstract— We consider model order reduction of linear time-
varying systems on a finite time interval using balanced trun-
cation. A standard way to perform MOR is to first numerically
integrate the associated pair of differential Lyapunov equations
for the two gramians, then compute projection matrices using
the square root method, and finally formulate the reduced
systems at each time instant of a chosen grid. This approach is
well-known for delivering good approximation, but rather costly
in computation and storage requirement. Furthermore, if one
needs to compute the reduced system for any new time instant
that is not included in the chosen grid, the mentioned procedure
must be performed again without explicitly making use of the
already computed data. For dealing with such a situation,
we propose to store the projection matrices corresponding
to a simplified sparse time grid and to use them to recover
the projection subspaces at any other time instant via curve
interpolation on the Grassmann manifold. By doing this, we
can avoid the repetition of solving the differential Lyapunov
equations which is the most expensive step in the procedure
and therefore, as shown in a numerical example, accelerate the
online reduction process.

I. INTRODUCTION

Let us consider a linear time-varying (LTV) control system
of the form

E(t)ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = 0,

y(t) = C(t)x(t),
(1)

where E(t), A(t) ∈ Rn×n, B(t) ∈ Rn×m and C(t) ∈ Rp×n

depend continuously on time t ∈ [0, T ], x(t) ∈ Rn is
the state vector, u(t) ∈ Rm is the input and y(t) ∈ Rp

is the output. System (1) arises as a spatially discretized
model for simulation of, e.g., heat distribution with moving
sources, mechanical structure with moving loads, or as the
linearization of nonlinear systems, see, e.g., [1], [2]. Due to
the demand for precision, the size of the state vector, also
called the order of the model, is very large and therefore
needs to be reduced in order to enable the simulation in
reasonable time. In model order reduction (MOR), it is
required to approximate (1) by a reduced order model (ROM)

Ê(t) ˙̂x(t) = Â(t)x̂(t) + B̂(t)u(t), x̂(0) = 0,

ŷ(t) = Ĉ(t)x̂(t),
(2)

*This work was supported by (i) the Fonds de la Recherche Scientifique
– FNRS and the Fonds Wetenschappelijk Onderzoek – Vlaanderen under
EOS Project no 30468160 and (ii) “Communauté française de Belgique -
Actions de Recherche Concertées” (contract ARC 14/19-060)

1ICTEAM Institute, Université catholique de Louvain,
1348 Louvain-la-Neuve, Belgium {thanh.son.nguyen,
pierre-yves.gousenbourger, estelle.massart,
pa.absil}@uclouvain.be

2Department of Mathematics and Informatics, Thai Nguyen University
of Sciences, 25000 Thai Nguyen, Vietnam

in which Ê(t), Â(t) ∈ Rr×r, B̂(t) ∈ Rr×m and Ĉ(t) ∈
Rp×r, x̂(t) ∈ Rr, and ŷ(t) ∈ Rp with r � n. This model
is chosen such that the output error of the approximation
‖ŷ−y‖ is small for all inputs belonging to a given admissible
set.

Approaches to MOR of LTV systems can be roughly
divided into two trends. The first one is based on the Krylov
subspace method and the assumption that the considered
system is periodic, see, e.g., [2]–[4] and references therein.
The second one, which is the concern of the present paper,
is based on the balanced truncation method that was mainly
proposed and developed in [5]–[8]. As many other MOR
methods, it projects the full-order model (FOM) on low-
dimensional subspaces of the state space. To track the
dynamics of the model, these subspaces should also depend
on time. Let us denote by W (t), Z(t) ∈ Rn×r the full-rank
matrices that span the left and the right projection subspaces,
respectively. This means that the full order state x(t) is
approximated by Z(t)x̂(t) and the corresponding residual
of the state equation in (1) is constrained to be orthogonal
to the subspace spanned by W (t):

W (t)>E(t)
d(Z(t)x̂(t))

dt
= W (t)>A(t)Z(t)x̂(t)

+W (t)>B(t)u(t),

which is equivalent to

W (t)>E(t)Z(t) ˙̂x(t) = W (t)>(A(t)Z(t)− E(t)Ż(t))x̂(t)

+W (t)>B(t)u(t). (3)

It follows that the coefficient matrices in ROM (2) are
constructed as

Ê(t) = W (t)>E(t)Z(t), B̂(t) = W (t)>B(t), (4)

Â(t) = W (t)>(A(t)Z(t)− E(t)Ż(t)), Ĉ(t) = C(t)Z(t).

The construction of the projection matrices W (t) and
Z(t) using balanced truncation relies on the time-dependent
reachability and observability gramians determined as the
solutions of the associated differential Lyapunov matrix
equations (DLEs) and the square root method which is
rather computationally expensive, see, e.g., [8] and refer-
ences therein. This means that W (t) and Z(t) must be
obtained on a discrete time grid, say, Tgrid = {0 = t0 <
t1 < · · · < tl = T}. They are also used to compute the
reduced matrices Â(t), Ê(t), B̂(t), Ĉ(t) for later simulation
of the ROM, which is usually required. However, if for some
reason, simulation at another time grid with a different input
is required, all the available data at Tgrid can not be used



anymore. This happens also in the case, termed as online
or many-query context, in which the reduced state and/or
the reduced output have to be computed at many other
different time instants from those contained in the given
grid. So, the question is: how can we exploit the computed
data so that we can avoid solving the DLEs again? An
apparently feasible solution is to store the reduced matrices
Â(t), Ê(t), B̂(t), Ĉ(t) for all instants in Tgrid and interpolate
them to get the ROM at any other time t. In this case, treating
t as an ordinary parameter, direct interpolation of reduced
system matrices loses the physical meaning of the states
of the derived systems as pointed out in [9]. It is therefore
advisable to adjust the reduced matrices by an adequate state
transformation before interpolating. However, formulating
a state transformation based on either the singular value
decomposition (SVD) of the collections of {W (t)}t∈Tgrid
(and {Z(t)}t∈Tgrid) as in [9] or minimization of the distances
with respect to the Frobenius norm between a reference
projection matrix among {W (t)}t∈Tgrid (and {Z(t)}t∈Tgrid
for the right subspaces) and the others in the corresponding
set as in [10] depend on the clustering of those bases.
They only work effectively if the time-dependent bases
approximately span the same subspace for the method in
[9], or, in the case of the method in [10], if the time-
dependent bases are closely transferable to a reference basis
for which the selection strategy is still unclear. Note also that
the approach of storing the precomputed data on a dense grid
is in general unfeasible as pointed out in Section IV.

For these reasons, we propose making use of the computed
projection matrices W (t) and Z(t) by first storing them
on a simplified sparse time grid, say, Ttrain = {τ0 =
0 < τ1 < · · · < τk = T} where k is much smaller
than l. This sparse grid can be chosen as a subset of
Tgrid if {W (t), Z(t)}t∈Tgrid have already been computed.
Otherwise, we can compute {W (t), Z(t)}t∈Ttrain

in advance
as a preparation step, so-called the offline step. In the online
step, given any time instant t, we first recover the projection
matrices W (t) and Z(t) by interpolation, and then compute
the reduced matrices as in (4). By manipulating projection
matrices, we conceptually work with the underlying Grass-
mann manifold Grass(r, n): the set of all r-dimensional
subspaces of Rn [11]. Moreover, in the case of LTV systems
and especially the continuous differentiability (C1) require-
ment (3), span(W (t)) and span(Z(t)) can be represented as
C1 curves on the Grassmann manifold. These facts motivate
us to make use of the curve interpolation technique on
general Riemannian manifolds recently proposed in [12].
Admitting some additional error, our proposed method avoids
the most expensive step of solving DLEs. It helps to save
time compared to the standard MOR process and is therefore
advantageous to online balanced truncation.

We organize the rest of the paper as follows. In Sec-
tion II, we first briefly review the notion of Grassmann
manifold with necessary formulas and then explain the curve
interpolation technique on general Riemannian manifolds.
In Section III, after summarizing the steps for balanced
truncation of LTV systems, we present the application of

the presented technique to online balanced truncation, i.e.,
constructing the ROM at any new time instant. We consider
in Section IV the order reduction of a model for the heat
distribution of a beam with moving heat source.

II. INTERPOLATION ON THE GRASSMANN MANIFOLD

This section introduces the necessary tools for interpo-
lation on the Grassmann manifold. We first recall basic
concepts on general Riemannian manifolds and then focus
on the Grassmann manifold. The theory is taken from [13]
and [14]. Finally, we present the C1-interpolation methods
that we apply in this paper. These methods were recently
presented in [12].

A. Riemannian manifolds

Manifolds are nonlinear spaces that can be locally ap-
proximated by a Euclidean space (named tangent space).
A Riemannian manifold M is a manifold on which the
tangent spaces are endowed with a smoothly varying inner
product. We denote by TxM the tangent space to M at x,
and 〈., .〉x the inner product defined on TxM. This inner
product induces a norm ‖v‖x (and so a notion of length)
for any vector v ∈ TxM. The shortest path between two
points x and y ∈ M is called the geodesic t 7→ g(t;x, y),
with g(0;x, y) = x and g(1;x, y) = y. The initial velocity
ġ(t;x, y)|t=0 = ξx ∈ TxM of the geodesic can be computed
via the logarithmic map logx (·) : M → TxM : y 7→
logx (y) = ξx. The logarithm actually maps a point y ∈ M
to the tangent space TxM. The reverse operation is called the
exponential map expx (·) : TxM→M : ξx 7→ expx (ξx) =
y. It maps a tangent vector ξx from TxM to M.

The exponential and logarithm maps are two useful tools
for interpolation and optimization on manifolds. Note that
the geodesic g(·;x, y) can be computed as g(t;x, y) =
expx (tlogx (y)). We furthermore introduce the notation
avw(x, y) = g(w;x, y) for the weighted geodesic averaging,
with respect to a weight w ∈ [0, 1].

B. The Grassmann manifold Grass(r, n)

Let r, n ∈ N with r < n. The Grassmann manifold
Grass(r, n) is the set of all r-dimensional subspaces of Rn.
Each subspace can be represented by an orthogonal basis,
i.e., a rectangular matrix X ∈ Rn×r, such that X>X = Ir.
The set of all orthogonal bases in Rn of r elements is called
the Stiefel manifold St(r, n) = {X ∈ Rn×r|X>X = Ir}.
Observe now that the choice of the basis is not unique: any
pair of matrices X,Y ∈ St(r, n) such that X = Y Q, where
Q ∈ Or, the set of r× r orthogonal matrices, span the same
subspace. We say that those matrices are equivalent, and that
Grass(r, n) is a quotient manifold of the Stiefel manifold:
Grass(r, n) ' St(r, n)/Or. Other matrix representations
were suggested for Grass(r, n) (see, e.g., [15]–[17]).

Assuming that St(r, n) is endowed with the metric in-
herited as a Riemannian submanifold of Rn×r, the quotient
structure induces some expressions for the Riemannian log-
arithm and exponential. Let X,Y ∈ Grass(r, n), and let



H ∈ TXGrass(r, n), with H = UΣV > a compact SVD.
The Riemannian exponential is computed in [15]:

expX (H) = (XV cos (Σ) + U sin (Σ))V >,

while the Riemannian logarithm is obtained in [18], [19]:

logX (Y ) = V2ΘV >1 ,

where V1, V2 and Θ come from the Cosine Sine (CS)
decomposition:[

X>Y
(In −XX>)Y

]
=

[
V1 cos(Θ)S>

V2 sin(Θ)S>

]
.

C. Interpolation on manifolds

As mentioned in Section I, the continuous differentiability
of the curve is needed. A piecewise-geodesic interpolation
is not acceptable because the resulting curve γ will not be
differentiable at the interpolation points. We summarize here
two methods to compute a C1 curve B(t) on a Riemannian
manifold M. The curve interpolates a set of data points
d0, . . . , dk ∈ M associated with parameters t0 < · · · < tk,
such that B(ti) = di, i = 0, . . . , k. These two methods
only rely on the exponential and logarithm maps: they can
be applied to the Grassmann manifold using the expressions
given in Section II-B.

The first method computes a curve BTS(t) with a three-
step procedure: (i) map all the data points to the tangent
space at a point x ∈ M via the logarithm, i.e., obtain d̃i =
logx (di), i = 0, . . . , k; (ii) on this Euclidean space, compute
the cubic spline γ̃(t) interpolating the tangent vectors; (iii)
map the curve back to the manifold thanks to the exponential
map, such that BTS(t) = expx (γ̃(t)). We will refer to this
method as the TS method. As shown in [12], this method has
the advantage to be extremely fast, but leads to poor results
when the curvature of the manifold is high.

The second method, introduced in [12], compensates the
problems linked to the curvature of the manifold by blending
together solutions obtained on different tangent spaces. The

M

di di+1
BL

TS(t) BR
TS(t)

Bblend(t)

Tdi
M

Tdi+1M

Fig. 1. The blended cubic spline Bblend(t) at t ∈ [i, i + 1] is made of
two curves BL

TS(t) and BR
TS(t) computed on the tangent spaces to di and

di+1, respectively, and mapped back toM. They are then blended together
with a geodesic averaging of weight w(s) = 3s2 − 2s3, s = t− i.

blended cubic spline Bblend(t) is a piecewise curve defined
as

Bblend : [0, k]→M : t 7→ Bblend(t) = Bi(t−i), i = btc,

where the pieces Bi(s) : [0, 1]→M, s = t−i, are weighted
geodesic averages of the restriction on the interval [i, i+1] of
two curves BL

TS : [0, k] → Tdi
M : t 7→ BL

TS(t) and BR
TS :

[0, k] → Tdi+1
M : t 7→ BR

TS(t) computed respectively on
the tangent space at di and di+1. Note that these curves are
obtained using the first method defined above. Choosing the
weight w(s) = 3s2− 2s3, the ith piece of the blended cubic
spline is thus given by

Bi(s) = avw(s)

(
BR

TS(s+ i),BL
TS(s+ i)

)
.

This method is illustrated on Fig. 1 and will be referred to
as the blend method.

III. INTERPOLATION FOR ONLINE BALANCED
TRUNCATION OF LTV SYSTEMS

A. Balanced truncation of LTV systems

We first briefly review the method presented in [8]. The
construction of the projection matrices W (t) and Z(t) re-
quires to solve two (DLEs):

E(t)Ṗ (t)E(t)> = A(t)P (t)E(t)> + E(t)P (t)A(t)>

+B(t)B(t)>, P (0) = 0, (5)

−E(t)>Q̇(t)E(t) = A(t)>Q(t)E(t) + E(t)>Q(t)A(t)

+ C(t)>C(t), Q(T ) = 0. (6)

for the reachability and observability gramians P (t) and
Q(t). As DLEs are a special case of differential Riccati equa-
tions, available methods are [20]–[23], just to name a few.
Once the gramians are computed, the projection matrices are
constructed using the square root method [24]. That is, at
each time instant t where the two gramians are precomputed,
one has to compute the SVD of the product R(t)>E(t)>L(t)
in which R(t) and L(t) are respectively low rank factors ap-
proximations of P (t) and Q(t), and then construct the ROM
based on removing the (low valuable) states corresponding
to smallest singular values. We summarize the above steps in
Alg. 1. By checking the computational costs, one can see that
solving the DLEs is the most expensive step in this approach.

B. Interpolation of projection matrices for online BT

Suppose that the projection matrices W (τ0), . . . ,W (τk),
Z(τ0), . . . , Z(τk), have been computed in the offline step,
with τi ∈ Tgrid, i = 0, . . . , k. Given any time instant t ∈
[0, T ], we construct W (t) and Z(t) using one of the two
interpolation methods presented in Section II-C. This action
can be considered as a replacement for the first three steps
in Alg. 1. After that, we just have to perform the last step
to formulate the ROM. Our proposed approach for online
balanced truncation is briefly described in Alg. 2. Note that
if the goal is to simulate the ROM, which is often the case,
the ROM must be constructed also at earlier instants than t
that are needed for numerical integration.



Algorithm 1 Balanced truncation for LTV systems
Require: FOM E(t), A(t), B(t), C(t)
Ensure: ROM Ê(t), Â(t), B̂(t), Ĉ(t)

1: Solve DLEs (5) and (6) for solutions in low rank form
P (t) = R(t)R(t)> and Q(t) = L(t)L(t)>.

2: Compute the singular value decomposition (SVD)

R(t)>E(t)>L(t) =[U1(t) U2(t)]

[
Σ1(t)

Σ2(t)

]
× [V1(t) V2(t)]>

with Σ1(t) = diag(σ1(t), . . . , σr(t)) and Σ2(t) =
diag(σr+1(t), . . . , σn(t)).

3: Compute the projection matrices as W (t) =

L(t)V1(t)Σ
−1/2
1 (t) and Z(t) = R(t)U1(t)Σ

−1/2
1 (t).

4: Compute the reduced matrices as in (4).

Algorithm 2 Online balanced truncation for LTV systems
Require: FOM E(t), A(t), B(t), C(t), and span(W (t)),

span(Z(t)) ⊂ Grass(r, n) for t ∈ Ttrain
Ensure: ROM Ê(t), Â(t), B̂(t), Ĉ(t)

1: For any t /∈ Ttrain, interpolate on Grass(r, n) to get
W (t), Z(t)

2: Compute the reduced matrices as in (4).

The derivative Ż(t) in (3) is conceptually a vector on
the tangent space TZ(t)Grass(r, n). However, computing it
relates to Jacobi field, i.e., the derivative of a geodesic with
respect to its end points [25], which is quite involved and
therefore is not performed here. Instead, we approximate it
as d(Z(t)x̂(t))/dt ≈ (Z(t)x̂(t) − Z(t−)x̂(t−))/(t − t−).
Another way is the manifold version of finite differences,
which means Ż(t) ≈ −logZ(t) (Z(t−)) /(t − t−) where t−
is the left neighbor of t at which the data are available. In
the numerical example later, we use the earlier.

IV. NUMERICAL EXAMPLE

As a preliminary result, we consider one of the models
from [8]. It is a beam of length l with a heat source that
moves along. The heat distribution is modeled by a 1-D
equation

cρ
∂θ(t, z)

∂t
= κ

∂2θ(t, z)

∂z2
+ δ(z − ξ(t))u(t),

(t, z) ∈ (0, T ]× (0, l),

θ(t, 0) = 0, θ(t, l) = 0, t ∈ (0, T ),

θ(0, z) = 0, z ∈ (0, l).

(7)

In (7), θ(t, z) is the temperature, c, ρ and κ stand for
the specific heat capacity, the mass density and the heat
conductivity, respectively. The movement of the heat source
is modeled by the Dirac delta function δ(z − ξ(t)), where
ξ(t) = (lt)/T is the time-dependent location.

For computation, we spatially discretize (7) using the finite
element method to derive a system of the form (1) with
E = E>, A = A> of order n = 1000. By considering

the temperature at exactly the location of the heat source as
the information of interest, we have that C(t)> = B(t). The
final time is set to T = 50 and the grid of times Tgrid is
made of 101 equispaced points in the interval [0, 50]. For
simulation, the heat flux density is chosen to be constant:
u(t) = 50 for all t. All computations are performed with
MATLAB R2018a on a standard desktop using 64-bit OS
Windows 10, equipped with 3.20 GHz 16 GB Intel Core
i7-8700U CPU.

In Alg. 1, solving the DLEs using the backward differenti-
ation formula (BDF) of order 2 takes 70.25 seconds. In online
balanced truncation, instead of having to solve the DLEs and
perform step 2 and step 3 in Alg. 1, we compute a curve on
Grass(40; 1000) interpolating 18 training points (step 1 of
Alg. 2) to recover the projection subspaces at the same time
grid mentioned above. This step costs 2.17 seconds by the
TS method and 5.01 seconds by the blend method. The other
steps are performed as in the standard procedure presented
in Alg. 1.

Fig. 2 and Fig. 3 compare the outputs of the FOM, of
the standard ROM (computed using the 4 steps in Alg. 1)
and of the ROM formulated by our procedure using the TS
and the blend interpolation methods. We can see that the TS
method is only accurate in a neighborhood of t = 25. This
behavior is understandable as the tangent space chosen is
based at that point. The manifold is well approximated by
the tangent space in the neighborhood of the basis point of
the tangent space, but not far away from it. This is due to the
curvature of the manifold and was observed, for instance, in
[12]. Conversely, the deviations caused by the blend method
can be neglected. Fig. 4 compares the error on the states
‖x(t) − Z(t)x̂(t)‖ and on the outputs ‖y(t) − ŷ(t)‖ of the
standard ROM and of the ROM constructed by the proposed
blend method.

Before ending this section, we would like to discuss
the possibility of storing precomputed data W (t), Z(t) on
an extremely fine grid of time and then, in the online
stage, to extract and directly use the information from it
without interpolation. This approach comes at a price. Firstly,
solving the DLEs on an extremely fine grid is very time
consuming. Secondly, the feasibility of this suggestion must
be considered in context. For the size of the presented
example, it is possible. For larger systems, it is hard to
achieve. This is because W (t) and Z(t) are dense matrices
with entries in the double format. Therefore, they require
2 × 8 × n × r bytes for storing. If there are L time steps,
the memory needed is 16 × L × n × r bytes. For example,
if n = 10000, r = 100, L = 2000, the memory required is
almost 30 GB which is far beyond the RAM of most personal
computers. Storing data in hard disk will result in slowing
down the online stage.

V. CONCLUSIONS

In this paper, we have proposed to use the blended curve
interpolation technique on the Grassmann manifold to inter-
polate precomputed time-dependent projection subspaces for



0 5 10 15 20 25 30 35 40 45 50

time (seconds)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

o
u

tp
u

ts

FOM

ROM

ROM
TS

Fig. 2. Outputs of the FOM (FOM), standard ROM (ROM) and the ROM
formulated by our procedure using the first interpolation method (ROMTS)

0 5 10 15 20 25 30 35 40 45 50

time (seconds)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

o
u

tp
u

ts

FOM

ROM

ROM
blend

Fig. 3. Outputs of the FOM (FOM), standard ROM (ROM) and the
ROM formulated by our procedure using the second interpolation method
(ROMblend)

model reduction of linear time-varying control systems. Pro-
vided that the offline data are available, our method allows
not only time and memory savings but also the flexibility in
choosing time instants for simulation of the reduced system
in the online stage. Improving the method technically, e.g.,
using the Jacobi fields mentioned in Sec. III, and testing the
method with more practical and/or larger examples are our
future consideration.

ACKNOWLEDGMENT

We would like to thank the authors of [8] for sharing
the MATLAB codes. Implementations of the Riemannian
logarithm and exponential maps on the Grassmann manifold
come from the Manopt toolbox [26].

REFERENCES

[1] S. Hein, MPC-LQG-based Optimal Control of Nonlinear Parabolic
PDEs, Ph.D. thesis, TU Chemnitz, 2009.

[2] J.R. Philips, “Projection-based approaches for model reduction of
weakly nonlinear, time-varying systems,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 22, no. 2, pp. 171–187, 2003.

[3] J. Roychowdhury, “Reduced-order modeling of time-varying systems,”
IEEE Trans. Circuits Syst. II, vol. 46, no. 10, pp. 1273–1288, 1999.

0 5 10 15 20 25 30 35 40 45 50

time (seconds)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

e
rr

o
rs

MOR output error

MOR state error

MOR
blend

 output error

MOR
blend

 state error

Fig. 4. Errors of the states and outputs of the standard ROM and the
ROM constructed by our procedure using the second interpolation method
(ROMblend)

[4] M.-S. Hossain, P. Benner, “Projection-based model reduction for
time-varying descriptor systems using recycled Krylov subspaces”, in
Proceedings in Applied Mathematics and Mechanics, vol. 8, no. 1, pp.
10081–10084, 2008.

[5] S. Shokoohi, L. Silverman, and P. Van Dooren, “Linear time-variable
systems: balancing and model reduction,” IEEE Trans. Autom. Control,
vol. 28, no. 8, pp. 810–822, 1983.

[6] E.I. Verriest and T. Kailath, “On generalized balanced realizations,”
IEEE Trans. Autom. Control, vol. 28, no. 8, pp. 833–844, 1983.

[7] H. Sandberg and A. Rantzer, “Balanced truncation of linear time-
varying systems,” IEEE Trans. Autom. Control, vol. 49, no. 2, pp.
217–229, 2004.

[8] N. Lang, J. Saak, and T. Stykel, “Balanced truncation model reduction
for linear time-varying systems,” Mathematical and Computer Mod-
elling of Dynamical Systems, vol. 22, no. 4, pp. 267–281, 2016.

[9] H. Panzer, J. Mohring, R. Eid, and B. Lohmann, “Parametric model
order reduction by matrix interpolation,” at–Automatisierungstechnik,
vol. 58 no. 4, pp. 475–484, 2010.

[10] D. Amsallem and C. Farhat. “An online method for interpolating linear
parametric reducedorder models,” SIAM J. Sci. Comput., vol. 33, no.
5, pp. 2169–2198, 2011.

[11] D. Amsallem and C. Farhat. “Interpolation method for adapting
reduced-order models and application to aeroelasticity,” AIAA Journal,
vol. 46, no. 7, pp. 1803–1813, 2008.

[12] P.-Y. Gousenbourger, E. Massart, and P.-A. Absil, “Data fitting
on manifolds with composite Bézier-like curves and blended cubic
splines,” J. Math. Imaging Vis., (2018). DOI:10.1007/s10851-018-
0865-2

[13] B. O’Neill, Elementary Differential Geometry, Academic Press INC,
London, 1966.

[14] P.-A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on
Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.

[15] A. Edelman, T.A. Arias and S.T. Smith, “The geometry of algorithms
with orthogonality constraints,” SIAM J. Matrix Anal. Appl., vol. 20,
no. 2, pp. 303–353, 1998.

[16] P.-A. Absil, R. Mahony, and R. Sepulchre, “Riemannian geometry of
Grassmann manifolds with a view on algorithmic computation,” Acta
Appl. Math., vol. 80, no. 2, pp. 199–220, 2004.

[17] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa, “Sta-
tistical computations on Grassmann and Stiefel manifolds for image
and video-based recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 11, 2273–2286, 2011.

[18] Q. Rentmeesters, “A gradient method for geodesic data fitting on some
symmetric Riemannian manifolds,” in 2011 50th IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC),
12-15 Dec. 2011, Orlando, FL, USA, pp. 7141–7146, 2012.

[19] K.A. Gallivan, A. Srivastava, X. Liu and P. Van Dooren, “Efficient
algorithms for inferences on Grassmann manifolds,” in IEEE Workshop
on Statistical Signal Processing, 28 Sept.-1 Oct. 2003, St. Louis, MO,
USA, pp. 315–318, 2004.



[20] C. Choi and A.J. Laub, “Efficient matrix-valued algorithms for solving
stiff Riccati differential equations,” IEEE Trans. Autom. Control, vol.
35, no. 7, pp. 770–776, 1990.

[21] P. Benner and H. Mena, “Rosenbrock methods for solving Riccati
differential equations,” IEEE Trans. Autom. Control, vol. 58, no. 11,
pp. 2950–2957, 2013.

[22] H. Mena, A. Ostermann, L.-M. Pfurtscheller, and C. Piazzola, “Numer-
ical low-rank approximation of matrix differential equations,” Journal
of Computational and Applied Mathematics, vol. 340, no. 1 , pp. 602–
614, 2018.

[23] T. Stillfjord, “Adaptive high-order splitting schemes for large-scale
differential Riccati equations,” Numerical Algorithms, vol. 78, no. 4,
pp. 1129–1151, 2018.

[24] M.S. Tombs and I. Postlethwaite, “Truncated balanced realization of
a stable nonminimal state-space system,” Int. J. Control., vol. 46, no.
4, pp. 1319–1330, 1987

[25] J.M. Lee, Riemannian Manifolds: An Introduction to Curvature, Grad-
uate Texts in Mathematics, Springer Verlag, New-York, 1997.

[26] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a
Matlab Toolbox for Optimization on Manifolds”, Journal of Machine
Learning Research, vol. 15, pp. 1455-1459, 2014. http://www.
manopt.org.


