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Abstract. This paper explores the well-known identification of the manifold of rank p positive-
semidefinite matrices of size n with the quotient of the set of full-rank n-by-p matrices by the
orthogonal group in dimension p. The induced metric corresponds to the Wasserstein metric between
centered degenerate Gaussian distributions and is a generalization of the Bures--Wasserstein metric
on the manifold of positive-definite matrices. We compute the Riemannian logarithm and show that
the local injectivity radius at any matrix C is the square root of the pth largest eigenvalue of C.
As a result, the global injectivity radius on this manifold is zero. Finally, this paper also contains
a detailed description of this geometry, recovering previously known expressions by applying the
standard machinery of Riemannian submersions.
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1. Introduction. Positive-semidefinite (PSD) matrices appear in many domains,
ranging from optimization (and more particularly semidefinite programming [18, 33])
to machine learning and statistics, where they arise, respectively, as kernels and co-
variance matrices [32, 38]. They also appear as diffusion tensors in brain imaging [12],
as covariance descriptors in image set classification [24], and as Gram matrices in to-
mography [48].

We consider here situations where the rank of the matrices is assumed to be fixed.
This is, for example, the case when the data points are low-rank representatives of
large PSD matrices. The data belong then to the set \scrS +(p, n) of fixed-rank PSD
matrices of size n and rank p. For example, optimization algorithms on \scrS +(p, n)
were proposed for distance learning [13, 45], distance matrix completion [46], and
role model extraction [42]. Other works face the problem of fitting a curve to a
set of points on \scrS +(p, n). Geodesic interpolation of Gram matrices is used in [41] to
generate intermediary protein conformations. In [30], the authors fit a curve to a set of
covariance matrices representing a wind field, while [34] proposes to use interpolation
of Gram matrices for facial expression recognition in videos. Interpolation on \scrS +(p, n)
was also used in [8] in the framework of dynamical community detection, and in [43]
for parametric model order reduction.

The set \scrS +(p, n) does not have a vector space structure: the sum of two PSD
matrices of rank p usually has a rank larger than p. However, this set can be turned
into a Riemannian manifold; see, e.g., [54]. Many algorithms working on a Riemannian
manifold perform part of the computations in a tangent space (a local first-order
approximation of the manifold) and map the result back onto the manifold. This is,
for example, the case of the steepest descent algorithm, whose iterations are made of
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two steps: the next iterate is first computed in the tangent space of the current iterate
and then mapped on the manifold. Two tools are therefore useful to implement such
algorithms: the exponential and logarithm maps. The exponential map sends a point
from a given tangent space to the manifold. The logarithm is its reciprocal operator:
it maps a point from the manifold to a given tangent space.

The definition of the exponential and logarithm maps depends on the geometry of
the manifold. Different geometries were proposed for the manifold \scrS +(p, n), none of
them having the desirable property of turning \scrS +(p, n) into a geodesically complete
manifold with closed-form expressions for both the exponential and the logarithm
maps. Completeness implies that the exponential map is defined on the whole tan-
gent bundle (the collection of all tangent spaces to the manifold). For the steepest
descent algorithm, this means that any new iterate computed in the tangent space
can be mapped back to the manifold. The authors of [54] consider the set \scrS +(p, n)
as an embedded submanifold of \BbbR n\times n. A closed-form expression is provided for the
exponential map of some tangent vectors, while numerical solvers have to be used for
the others. In [14], the set is seen as a quotient manifold \scrS +(p, n) \simeq (St(n, p)\times \scrP p)/\scrO p

with St(n, p) the (orthogonal) Stiefel manifold, \scrP p the manifold of positive-definite
matrices, and \scrO p the orthogonal group. With this geometry, the manifold is com-
plete, and the authors obtain expressions for horizontal geodesics in the structure
space St(n, p) \times \scrP p. These horizontal geodesics define a curve in \scrS +(p, n), but this
curve is not necessarily a geodesic. The work [55] manages to turn the set \scrS +(p, n)
into a complete Riemannian manifold, by endowing it with a homogeneous space ge-
ometry. Expressions are provided for the exponential map, but not for the logarithm.

In this paper, we follow the route of [33] by identifying \scrS +(p, n) with the quotient
manifold \BbbR n\times p

\ast /\scrO p, where \BbbR n\times p
\ast is the set of full-rank n \times p matrices and \scrO p is the

orthogonal group of order p. The total space \BbbR n\times p
\ast is equipped with the Euclidean

metric.
There are two main reasons to consider this geometry. The first one is the fact

that the computation cost of the resulting exponential and logarithm maps is low
in comparison with the other above-mentioned geometries. (The expression for the
exponential map is already given in [55, sec. 7.2], and we compute in this paper
the Riemannian logarithm.) As a result, this geometry is particularly suitable for
numerical computations.

The second motivation to consider this geometry is the fact that the associated
distance coincides with the Wasserstein distance between degenerate centered Gauss-
ian distributions. Indeed, any degenerate centered Gaussian distribution is parame-
terized by a positive-semidefinite covariance matrix. The Wasserstein metric between
degenerate centered Gaussian distributions induces then a distance between positive-
semidefinite matrices that coincides with the distance on \BbbR n\times p

\ast /\scrO p computed in this
paper. The latter is also a direct generalization of the Bures--Wasserstein distance
between positive-definite matrices, presented in, e.g., [9, 52].

The main drawback of this geometry is that it does not turn the manifold into
a complete metric space. This drawback is mitigated by two observations. First,
this situation is not isolated; see, e.g., [6], which proposes several retractions (first-
order approximations of the exponential map) on the low-rank manifold that are not
defined everywhere. Second, several recent works take into account situations where
the exponential map (or more generally the retraction) is not defined everywhere (see,
e.g., [16, 35]).

Optimization on the manifold \scrS +(p, n), endowed with the quotient geometry con-
sidered here, has already been used in several papers (see [13, 33, 45, 46]). The authors
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of [33] develop optimization algorithms on (constrained subsets of) \scrS +(p, n) and ap-
ply them to the computation of the maximal cut of a graph and to sparse principal
component analysis. The works [13] and [45] use first-order optimization algorithms
on \scrS +(p, n), for several geometries including the quotient representation considered
here, for learning a regression model parameterized by a PSD matrix. The work [46]
proposes a gradient descent and a trust region algorithm on \scrS +(p, n) for low-rank
distance matrix completion.

Less related to the present work, we also mention that the quotient \BbbR n\times p
\ast /\scrO p

was used in [3] to build a Newton method for computing the zeroes of the Oja's
vector field, while its complex variant \BbbC n\times p

\ast /\scrO p was used in [31] to solve the phase
retrieval problem. However, in these last two examples, the total space is endowed
with another metric. We finally indicate that related manifolds, defined as quotients
(by the orthogonal group) of subsets of \BbbR n\times p

\ast , were investigated in [22].
All these works use the (already known) expressions for, e.g., the Riemannian

exponential, projectors on the horizontal and vertical spaces, and the gradient of a
cost function. The main contribution of the present paper is the computation of
the Riemannian logarithm and injectivity radius on this manifold. This last concept
is required to guarantee convergence of several optimization [7, 11] and consensus
algorithms [53]. It also allows us to ensure continuity of the results of some data
fitting algorithms [2, 29]. Moreover, we also obtain expressions for the resulting
distance on the manifold, Lie derivatives, and summarize some recent results on the
curvature of the manifold.

During the writing of the present paper, we made our implementation of the
Riemannian logarithm available in the Manopt toolbox [17]. This implementation
has been used in [30] for wind field modeling, in [43] for parametric model order
reduction, in [49] for MEG/EEG signal processing, and in [51] for action recognition
in video frames.

The structure of the paper is as follows. Section 2 briefly presents the required
geometric concepts on \BbbR n\times p

\ast /\scrO p. In section 3, we study the domain of the exponential
map. Section 4 is devoted to the logarithm map, while we consider, respectively, in
sections 5, 6, and 7, the Riemannian distance, the injectivity radius, and the Lie
derivative. Finally, section 8 provides a numerical application.

In the appendix (section A), for reference purposes, we give an overview of known
or easy-to-obtain facts about \BbbR n\times p

\ast /\scrO p.

2. Quotient geometry of \bfscrS +(\bfitp , \bfitn ): Preliminaries. This section provides
the required background regarding the identification of the manifold \scrS +(p, n) with
the quotient manifold \BbbR n\times p

\ast /\scrO p, where

\BbbR n\times p
\ast := \{ Y \in \BbbR n\times p : det

\bigl( 
Y \top Y

\bigr) 
\not = 0\} 

is the set of full-rank n\times p matrices, and

\scrO p := \{ Q \in \BbbR p\times p : Q\top Q = I\} 

is the orthogonal group in dimension p. More detail (with the corresponding proofs)
is given in section A.

2.1. The quotient manifold \BbbR \bfitn \times \bfitp 
\ast /\bfscrO \bfitp . The identification of the manifold

\scrS +(p, n) with the quotient manifold \BbbR n\times p
\ast /\scrO p is motivated by the following result

(see section A for the proof).
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\BbbR n\times p
\ast 

\BbbR n\times p
\ast /\scrO p \scrS +(p, n)
��
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$$
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//\mathrm{b}\mathrm{i}\mathrm{j}
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Y\scrO p Y Y \top 
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Fig. 1. Commutative diagram for \phi , \pi , and \Phi .

Proposition 2.1. Let Y1, Y2 \in \BbbR n\times p
\ast . Then Y1Y

\top 
1 = Y2Y

\top 
2 if and only if Y2 =

Y1Q for some Q \in \scrO p, and

\scrS +(p, n) = \{ Y Y \top : Y \in \BbbR n\times p
\ast \} .

Proposition 2.1 gives us a convenient way of representing a matrix S \in \scrS +(p, n):
pick Y \in \BbbR n\times p

\ast such that S = Y Y \top . Observe that the matrix S contains n2 elements,
whereas Y only contains np elements, which is an appreciable improvement in the fre-
quently encountered case where p is much smaller than n. However, this representation
comes with a redundancy which is gracefully tackled by a quotient set approach. This
approach consists of considering as a single point the set Y\scrO p := \{ Y Q : Q \in \scrO p\} of all
Y 's that yield the same S. The set of all those points (also referred to as equivalence
classes) is the quotient set \BbbR n\times p

\ast /\scrO p.
Let us now introduce the mapping \phi : \BbbR n\times p

\ast \rightarrow \scrS +(p, n) : Y \mapsto \rightarrow Y Y \top , the mapping
\Phi : \BbbR n\times p

\ast /\scrO p \rightarrow \scrS +(p, n) : Y\scrO p \mapsto \rightarrow Y Y \top , and the quotient map \pi : \BbbR n\times p
\ast \rightarrow \BbbR n\times p

\ast /\scrO p.
As illustrated by Figure 1, the mapping \Phi is a bijection, and thus provides an identi-
fication of \scrS +(p, n) with the quotient set \BbbR n\times p

\ast /\scrO p.

It is well known that \BbbR n\times p
\ast /\scrO p is a quotient manifold of dimension pn  - p(p - 1)

2 .

The mapping \Phi is a diffeomorphism between the quotient manifold \BbbR n\times p
\ast /\scrO p and the

submanifold \scrS +(p, n) of \BbbR n\times n.

2.2. Horizontal and vertical spaces. Let the manifold \BbbR n\times p
\ast be endowed with

the Euclidean metric \langle Z1, Z2\rangle Y := tr(Z\top 
1 Z2) for all Z1, Z2 \in \scrT Y \BbbR n\times p

\ast , where the
notation tr(A) stands for the trace of the matrix A. The tangent space \scrT Y \BbbR n\times p

\ast ,
which can be identified with \BbbR n\times p, is the direct sum of the vertical and horizontal
spaces at Y , defined as

(1) \scrV Y := \{ Y \Omega : \Omega =  - \Omega \top \} and \scrH Y := \{ Z \in \BbbR n\times p : Y \top Z  - Z\top Y = 0\} .

The vertical space \scrV Y is the tangent space at Y to the equivalence class \pi (Y ), while
the horizontal space \scrH Y is its orthogonal complement. The latter can also be written
as

\scrH Y = \{ Y (Y \top Y ) - 1H + Y\bot K : H = H\top \in \BbbR p\times p,K \in \BbbR (n - p)\times p\} ,

where Y\bot \in \BbbR n\times (n - p) is orthonormal and satisfies Y \top Y\bot = 0.
Any tangent vector \xi \pi (Y ) \in \scrT \pi (Y )\BbbR n\times p

\ast /\scrO p is represented by a unique horizontal

vector \=\xi Y \in \scrH Y , satisfying D\pi (Y )[\xi Y ] = \xi \pi (Y ). Throughout this paper, we use the

notation \=\xi to denote the unique horizontal lift of the vector field \xi on \BbbR n\times p
\ast /\scrO p, in

the sense of [36, Chap. II, Prop. 1.2].
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The projections of any Z \in \BbbR n\times p on the horizontal and vertical spaces, denoted
by P\mathrm{v}

Y (Z) and P\mathrm{h}
Y (Z), are given by

P\mathrm{v}
Y (Z) = Y T - 1

Y \top Y
(Y \top Z  - Z\top Y ),(2)

P\mathrm{h}
Y (Z) = Z  - P\mathrm{v}

Y (Z),(3)

where T - 1
E (Z) is the solution X to the Sylvester equation EX +XE = Z, which is

unique if E is symmetric positive-definite.
Observe that T - 1

E (Z) can be easily computed by diagonalization of the positive-
definite matrix E := Y \top Y . Indeed, let E := U\Lambda U\top be an eigenvalue decomposition.
The Sylvester equation EX +XE = Z becomes

U\Lambda U\top X +XU\Lambda U\top = Z.

Left- and right-multiplying this equation by, respectively, U\top and U yields

\Lambda U\top XU + U\top XU\Lambda = U\top ZU,

which can be easily solved for \~X := U\top XU . This methodology comes from [10, sec.
10].

2.3. Riemannian metric. The Euclidean metric on \BbbR n\times p
\ast induces a Riemann-

ian metric on \BbbR n\times p
\ast /\scrO p. For all \xi \pi (Y ), \eta \pi (Y ) \in \scrT \pi (Y )\BbbR n\times p

\ast /\scrO p, with horizontal lifts
\=\xi Y , \=\eta Y \in \scrH Y , let us define

(4) g\pi (Y )(\xi \pi (Y ), \zeta \pi (Y )) := tr
\bigl( 
\xi Y

\top \zeta Y
\bigr) 
.

This metric turns the quotient map \pi into a Riemannian submersion.

2.4. Retraction and exponential map. The authors of [33] also provide a
retraction on \BbbR n\times p

\ast /\scrO p:

(5) R\pi (Y )\xi \pi (Y ) := \pi (Y + \xi Y ).

In view of [55, sec. 7.2], (5) is actually the exponential map on \BbbR n\times p
\ast /\scrO p.

Theorem 2.2. Let us define the set

\scrD Y := \{ \=\xi Y \in \scrH Y | rank(Y + t\=\xi Y ) = p \forall t \in [0, 1]\} .

For all \xi \pi (Y ) \in D\pi (Y )[\scrD Y ], the exponential map on \BbbR n\times p
\ast /\scrO p is given by

(6) Exp\pi (Y )\xi \pi (Y ) = \pi (Y + \=\xi Y ),

i.e., geodesics in \BbbR n\times p
\ast /\scrO p are images, through the quotient map \pi , of straight lines

t \mapsto \rightarrow Y + t\=\xi Y in \BbbR n\times p
\ast , restricted to the time interval around t = 0 where Y + t\=\xi Y

remains full rank.

3. Domain of the exponential map. As mentioned in the previous section,
geodesics in the quotient are projections of horizontal geodesics in \BbbR n\times p

\ast , i.e., straight
lines that remain in \BbbR n\times p

\ast . This last condition introduces some restrictions on the
initial velocity of the curve, as for an arbitrary \=\xi Y \in \scrH Y , the curve t \mapsto \rightarrow Y + t\=\xi Y does
not necessarily remain full-rank. This section is aimed at describing the set of allowed
horizontal vectors, i.e., the set \scrD Y in Theorem 2.2. We first need to introduce some
notation.
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Definition 3.1. We define the mapping

EXPY : \scrH Y \rightarrow \BbbR n\times p : \=\xi Y \mapsto \rightarrow Y + \=\xi Y .

The set that is mapped through EXPY on the set of full-rank matrices is

\scrF Y := EXP
 - 1

Y (\BbbR n\times p
\ast ) = \{ \=\xi Y \in \scrH Y : rank(EXPY

\=\xi Y ) = p\} .

The domain \scrD Y of the exponential map on \BbbR n\times p
\ast /\scrO p is the largest star-shaped domain

emanating from Y that is contained in \scrF Y :

\scrD Y := \{ \=\xi Y \in \scrF Y | t\=\xi Y \in \scrF Y \forall t \in [0, 1]\} = \{ \=\xi Y \in \scrH Y | rank(Y + t\=\xi Y ) = p \forall t \in [0, 1]\} .

We define ExpY as the restriction of EXPY to the set \scrD Y ,

ExpY := EXPY | \scrD Y
,

and we have Exp\pi (Y )(\xi ) = \pi \circ ExpY (\=\xi Y ) for all \xi \in D\pi (Y )[\scrD Y ]. We also define

EXP\pi (Y )(\xi ) := \pi \circ EXPY (\=\xi Y )

with \xi \in D\pi (Y )[\scrF Y ]. Finally, we let \scrF c
Y := \scrH Y \setminus \scrF Y and \scrD c

Y := \scrH Y \setminus \scrD Y .

The goal of the following results is to study the set \scrD Y , i.e., the domain of ExpY .
We first describe the larger set \scrF Y .

Proposition 3.2. Let \=\xi Y \in \scrH Y , decomposed as \=\xi Y = Y (Y \top Y ) - 1H + Y\bot K. The
condition \=\xi Y \in \scrF c

Y , i.e., rank(EXPY
\=\xi Y ) < p, is equivalent to the condition

(7) ker(I + (Y \top Y ) - 1H)
\bigcap 

ker(K) \not = \{ 0\} ,

where the notation ker(A) stands for the null space of the matrix A, i.e., the set of
vectors v satisfying Av = 0.

Proof. The inequality rank(EXPY
\=\xi Y ) < p is equivalent to the existence of a

nonzero vector v \in \BbbR p such that (EXPY
\=\xi Y )v = 0. This can be written as (Y + \=\xi Y )v =

Y (I + (Y \top Y ) - 1H)v + Y\bot Kv = 0. Since the ranges of Y (I + (Y \top Y ) - 1H) and Y\bot K
are disjoint, and since Y and Y\bot have full column-rank, the last equality is true if and
only if v \in ker(I + (Y \top Y ) - 1H)

\bigcap 
ker(K).

We say that t is a singular time of \=\xi Y \in \scrH Y if t\=\xi Y \in \scrF c
Y . We also introduce the

notation A \succ 0 and A \succeq 0 to say that A is positive-definite or positive-semidefinite,
respectively. The next results readily follow.

Corollary 3.3. Let \=\xi Y \in \scrH Y , decomposed as \=\xi Y = Y (Y \top Y ) - 1H + Y\bot K.
1. If t is a singular time of \=\xi Y , then t \not = 0 and  - 1/t is an eigenvalue of

(Y \top Y ) - 1H. (The eigenvalues of (Y \top Y ) - 1H are real since it is similar to
(Y \top Y ) - 1/2H(Y \top Y ) - 1/2.)

2. The number of singular times of \=\xi Y is at most p.
3. \=\xi Y has p singular times if and only if (Y \top Y ) - 1H has p distinct nonzero

eigenvalues and K = 0.
4. \=\xi Y \in \scrD Y if and only if for all \lambda \in \Lambda ((Y \top Y ) - 1H)

\bigcap 
( - \infty , - 1], there holds

(8) ker

\biggl( 
I  - 1

\lambda 
(Y \top Y ) - 1H

\biggr) \bigcap 
ker(K) = \{ 0\} ,

with \Lambda (A) the spectrum of A.
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5. If H \succeq 0, then t\=\xi Y := t(Y (Y \top Y ) - 1H + Y\bot K) \in \scrD Y \subset \scrF Y for all t \geq 0.
6. There exist vectors \=\xi Y without singular times. This is, e.g., the case when

H = 0 and also when ker(K) = \{ 0\} . Hence there exist complete geodesics in
\BbbR n\times p

\ast /\scrO p.
7. \scrD Y \subset \scrF Y .
8. \scrD Y ,\scrF Y ,\scrD c

Y ,\scrF c
Y are nonempty and unbounded.

9. Since \scrD c
Y is nonempty, \BbbR n\times p

\ast /\scrO p is not complete.

We show that if | | \=\xi Y | | \mathrm{F} is small enough (where | | A| | \mathrm{F} is the Frobenius norm of
the matrix A), then \=\xi Y \in \scrD Y \subset \scrF Y . We compute the maximum value of | | \=\xi Y | | \mathrm{F} that
guarantees that \=\xi Y \in \scrD Y \subset \scrF Y .

Proposition 3.4. Let Y = U\Sigma V \top be a singular value decomposition, with sin-
gular values \sigma 1 \geq \cdot \cdot \cdot \geq \sigma p. Then

(9) min
\=\xi Y \in \scrF c

Y

| | \=\xi Y | | \mathrm{F} = min
\=\xi Y \in \scrD c

Y

| | \=\xi Y | | \mathrm{F} = \sigma p,

and the vector \=\xi \ast Y :=  - \sigma 2
pY (Y \top Y ) - 1vpv

\top 
p is a minimizer, with vp a right singular

vector associated to \sigma p.

Proof. The first equality in (9) is obtained using the fact that \scrF c
Y \subset \scrD c

Y and that
for any \=\xi Y \in \scrD c

Y \setminus \scrF c
Y , there exists t\=\xi Y \in \scrF c

Y with t \in [0, 1]. Since \=\xi Y \in \scrF c
Y implies

\~Y := Y + \=\xi Y /\in \BbbR n\times p
\ast , we have

min
\=\xi Y \in \scrF c

Y

| | \=\xi Y | | \mathrm{F} \geq min
\~Y /\in \BbbR n\times p

\ast 

| | \~Y  - Y | | \mathrm{F} = \sigma p,

where the second equality comes from the Schmidt--Mirsky theorem [50, Chap 1, Thm.
4.32]. Next, we have that \=\xi \ast Y \in \scrH Y , and

Y + \=\xi \ast Y = Y (Y \top Y ) - 1
\bigl( 
Y \top Y  - \sigma 2

pvpv
\top 
p

\bigr) 
= Y (Y \top Y ) - 1

\Biggl( 
p - 1\sum 
i=1

\sigma 2
i viv

\top 
i

\Biggr) 
,

and hence Y + \=\xi \ast Y /\in \BbbR n\times p
\ast . Thus \=\xi \ast Y \in \scrF c

Y . Observe now that (Y \top Y ) - 1 = V \Sigma  - 2V \top ,
and hence the norm of \=\xi \ast Y can be written as

| | \=\xi \ast Y | | \mathrm{F} = \sigma 2
p| | Y (Y \top Y ) - 1vpv

\top 
p | | \mathrm{F} = \sigma 2

p| | U\Sigma  - 1V \top vpv
\top 
p | | \mathrm{F} = \sigma 2

p| | up\sigma 
 - 1
p v\top p | | \mathrm{F},

which is equal to

\sigma 2
p| | up\sigma 

 - 1
p v\top p | | \mathrm{F} = \sigma p

\sqrt{} 
tr
\bigl( 
vpu\top 

pupv\top p
\bigr) 
= \sigma p.

We have thus obtained

\sigma p = | | \=\xi \ast Y | | \mathrm{F} \geq min
\=\xi Y \in \scrF c

Y

| | \=\xi Y | | \mathrm{F} = min
\=\xi Y \in \scrD c

Y

| | \=\xi Y | | \mathrm{F} \geq \sigma p,

and the conclusion follows.

Corollary 3.5. If | | \=\xi Y | | \mathrm{F} < \sigma p(Y ) (with \sigma p(Y ) the smallest singular value of
Y ), then \=\xi Y \in \scrD Y \subset \scrF Y .

Corollary 3.6. The largest open ball in \scrD Y centered at 0Y , the null element of
the horizontal space \scrH Y , has radius \sigma p(Y ).
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The next result shows that \scrD Y is generic in \scrH Y in the sense of measure theory.

Proposition 3.7. Let \=\xi Y be drawn from a nonsingular probability distribution
on \scrH Y (i.e., a probability distribution that is not concentrated on a set of Lebesgue
measure zero). If p < n, then \=\xi Y \in \scrD Y (and thus \scrF Y ) with probability one.

Proof. Due to Corollary 3.3, the vector \=\xi Y belongs to \scrD Y (and thus \scrF Y ) with
probability one if and only if

P

\biggl( 
ker

\biggl( 
I  - 1

\lambda 
(Y \top Y ) - 1H

\biggr) \bigcap 
ker(K) = \{ 0\} \forall \lambda \in \Lambda ((Y \top Y ) - 1H)

\bigcap 
( - \infty , - 1]

\biggr) 
= 1

\leftrightarrow 
\sum 

\lambda \in \Lambda ((Y \top Y ) - 1H)
\bigcap 
( - \infty , - 1]

P

\biggl( 
\exists v \not = 0| v \in ker

\biggl( 
I  - 1

\lambda 
(Y \top Y ) - 1H

\biggr) 
and Kv = 0

\biggr) 
= 0.

The matrix (Y \top Y ) - 1H has distinct eigenvalues with probability one. As a result, with
probability one, the eigenspaces associated to each eigenvalue are one-dimensional.
In other words, there exists a unique vector \~v\lambda \in ker(I  - 1

\lambda (Y
\top Y ) - 1H) such that

| | \~v\lambda | | = 1 and ker(I  - 1
\lambda (Y

\top Y ) - 1H) = \{ t\~v\lambda | t \in \BbbR \} . The above-mentioned condition
becomes \sum 
\lambda \in \Lambda ((Y \top Y ) - 1H)

\bigcap 
( - \infty , - 1]

P

\biggl( 
\exists v \not = 0| v \in ker

\biggl( 
I  - 1

\lambda 
(Y \top Y ) - 1H

\biggr) 
and Kv = 0

\biggr) 
= 0

\leftrightarrow 
\sum 

\lambda \in \Lambda ((Y \top Y ) - 1H)\mathrm{a}\mathrm{n}\mathrm{d}( - \infty , - 1]

P (\langle K1,:, \~v\lambda \rangle = 0 and . . . and \langle Kn - p,:, \~v\lambda \rangle = 0) = 0.

The last equality is valid as the probability of an arbitrary vector to be orthogonal to
a set of n - p arbitrary vectors is zero.

The next result shows that \scrD Y is also generic in \scrH Y in the sense of the topology.

Proposition 3.8. The set \scrD Y is open relative to \scrH Y . Moreover, the closure of
\scrD Y is \scrH Y when p < n.

Proof. We prove the first claim, namely, that \scrD Y is open relative to \scrH Y . Due to
Corollary 3.3, \=\xi Y := Y (Y \top Y ) - 1H + Y\bot K \in \scrD Y if and only if, for all \lambda \in ( - \infty , - 1],
ker (M\lambda ,H,K) = \{ 0\} with M\lambda ,H,K defined as

(10) M\lambda ,H,K :=

\biggl[ 
I  - 1

\lambda (Y
\top Y ) - 1H
K

\biggr] 
.

Let us define the function

f : (\lambda ,H,K) \mapsto \rightarrow det
\bigl( 
M\top 

\lambda ,H,KM\lambda ,H,K

\bigr) 
.

Then, \=\xi Y = Y (Y \top Y ) - 1H + Y\bot K \in \scrD Y if and only if f(\lambda ,H,K) \not = 0 for all \lambda \in 
( - \infty , - 1]. To complete the proof of the first claim, it remains to show that for all \delta H
and \delta K sufficiently small, it holds that f(\lambda ,H+\delta H,K+\delta K) \not = 0 for all \lambda \in ( - \infty , - 1],
i.e., \=\xi Y + \delta \=\xi Y := Y (Y \top Y ) - 1(H + \delta H) + Y\bot (K + \delta K) \in \scrD Y . There holds

f(\lambda ,H,K) = det

\biggl( 
I  - 1

\lambda 
H(Y \top Y ) - 1  - 1

\lambda 
(Y \top Y ) - 1H +

1

\lambda 2
H(Y \top Y ) - 2H +K\top K

\biggr) 
.

Let \rho H,K := inf\lambda \in ( - \infty , - 1] f(\lambda ,H,K). Since ( - \infty , - 1] \ni \lambda \mapsto \rightarrow f(\lambda ,H,K) is continuous

and has no zero and lim\lambda \rightarrow  - \infty f(\lambda ,H,K) = det
\bigl( 
I +K\top K

\bigr) 
\geq 1, it follows that
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\rho H,K > 0. Since Ddet (A) [ \.A] = tr
\Bigl( 
adj(A) \.A

\Bigr) 
, there exists LH,K such that for all \delta H

and \delta K sufficiently small and for all \lambda \in ( - \infty , - 1],

| f(\lambda ,H + \delta H,K + \delta K) - f(\lambda ,H,K)| \leq LH,K (\| \delta H\| +\| \delta K\| ) .

Then for all \delta H, \delta K such that \| \delta H\| <
\rho H,K

2LH,K
and \| \delta K\| <

\rho H,K

2LH,K
, one has f(\lambda ,H +

\delta H,K + \delta K) > 0 for all \lambda \in ( - \infty , - 1], and the proof of the first claim is complete.
We now prove the second claim, namely, cl(\scrD Y ) = \scrH Y if p < n. Let \=\xi Y =

Y (Y \top Y ) - 1H + Y\bot K \in \scrD c
Y , and let \epsilon > 0. There exists \delta H symmetric with \| \delta H\| < \epsilon 

such that all the eigenvalues of (Y \top Y ) - 1(H + \delta H) are distinct. Let V be a matrix
whose columns are the eigenvectors of (Y \top Y ) - 1(H + \delta H). Observe that V is in-
vertible since (Y \top Y ) - 1(H + \delta H) is similar to the symmetric matrix (Y \top Y ) - 1/2(H +
\delta H)(Y \top Y ) - 1/2. Let \delta K := EV  - 1, where E is the matrix of all ones of size (n - p)\times p;
this is a valid choice since it is assumed that p < n. Observe that \delta KV ei \not = 0 for all i,
and thus \^\rho := min\{ \rho > 0 : \exists i : (K + \rho \delta K)V ei = 0\} > 0 since the min is over a finite
(possibly empty) subset of [0,\infty ). We have that, for all \rho \in (0, \^\rho ),

\=\xi Y + \delta \=\xi Y := \=\xi Y + Y (Y \top Y ) - 1\delta H + \rho Y\bot \delta K = Y (Y \top Y ) - 1(H + \delta H) + Y\bot (K + \rho \delta K)

is in \scrD Y . Indeed, for all \lambda \in ( - \infty , - 1], either \lambda is not an eigenvalue of (Y \top Y ) - 1(H +
\delta H) and thus ker

\bigl( 
I  - 1

\lambda (Y
\top Y ) - 1(H + \delta H)

\bigr) 
= \{ 0\} = ker (M\lambda ,H+\delta H,K+\rho \delta K), or \lambda is

an eigenvalue of (Y \top Y ) - 1(H + \delta H) with eigenvector v\lambda (which is one of the col-
umns of V ), thus ker

\bigl( 
I  - 1

\lambda (Y
\top Y ) - 1H

\bigr) 
= \BbbR v\lambda but (K + \rho \delta K)v\lambda \not = 0, and thus

ker (M\lambda ,H+\delta H,K+\rho \delta K) = \{ 0\} again. In conclusion, there is \delta \=\xi Y arbitrarily small such
that \=\xi Y + \delta \=\xi Y \in \scrD Y .

This last result addresses the existence of closed geodesics on \BbbR n\times p
\ast /\scrO p.

Proposition 3.9. There is no closed geodesic, i.e., Exp\pi (Y )\xi = \pi (Y ) if and only
if \xi = 0\pi (Y ).

Proof. Assume that there exists \=\xi Y \in \scrH Y , i.e., \=\xi Y = Y (Y \top Y ) - 1H + Y\bot K, such
that Y + \=\xi Y = Y Q for some matrix Q \in \scrO p. This can be written as

Y + Y (Y \top Y ) - 1H + Y\bot K = Y Q,

which implies that K = 0. So, there remains

Y + Y (Y \top Y ) - 1H = Y Q.

Left-multiplying both sides of the equation by Y \top yields

Y \top Y +H = Y \top Y Q.

If Y \top Y +H \succeq 0, then the only solution is Q = I and H = 0 (due to the uniqueness of
the polar decomposition; see [37, sec. 5.7]). Otherwise, if Y \top Y +H \nsucceq 0, (Y \top Y ) - 1H
must have an eigenvalue \lambda \leq  - 1, with associate eigenvector v \not = 0. As Kv = 0 (since
K = 0), this implies by Corollary 3.3 that \=\xi Y /\in \scrD Y .

4. Logarithm map. In this section, we compute the inverse exponential map,
i.e., the logarithm map. We show that, for Y1, Y2 \in \BbbR n\times p

\ast such that Y \top 
1 Y2 is nonsin-

gular, there is only one minimizing geodesic in \BbbR n\times p
\ast /\scrO p from \pi (Y1) to \pi (Y2), and

hence the logarithm map is well defined. Its horizontal lift at Y1 is obtained from the
polar decomposition of Y \top 

1 Y2.
The next lemma will be useful to characterize all the solutions to the equation

EXP\pi (Y1)\xi = \pi (Y2).
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Lemma 4.1. Given a matrix A \in \BbbR p\times p of rank r, a pair of matrices H,Q with
H \in \BbbR p\times p symmetric and Q \in \scrO p, satisfies A = HQ if and only if H and Q can be
written as
(11)

H = [UU\bot ]

\left(     
\pm D11

. . .

\pm Drr

0p - r

\right)     [UU\bot ]
\top =: [UU\bot ]

\biggl( 
D\scrI 

0p - r

\biggr) 
[UU\bot ]

\top ,

(12) Q = [UU\bot ]

\biggl( 
\scrI 

\~Q

\biggr) 
[V V\bot ]

\top , \~Q \in \scrO p - r,

with A = [UU\bot ]Diag (D, 0p - r) [V V\bot ]
\top a singular value decomposition. In the right-

hand side of (11), \scrI is a diagonal matrix whose diagonal element \scrI ii is equal to 1 if
the positive sign is chosen for Dii and  - 1 otherwise. As a result, there are at least
(in view of the lack of essential uniqueness of the singular value decomposition in the
case of repeated singular values) 2p possible factorizations A = HQ if r \in \{ p  - 1, p\} 
and an infinite number of factorizations if r \leq p - 2.

Proof. If H and Q satisfy, respectively, (11) and (12), then there holds HQ =
[UU\bot ]Diag (D, 0p - r) [V V\bot ]

\top = A. Conversely, let H = H\top and Q \in \scrO p be such that
A = HQ. This implies that H2 = AA\top = UDU\top . By the spectral theorem, there ex-
ists P and \Lambda such that H = [PP\bot ]Diag (\Lambda , 0p - r) [PP\bot ]

\top . Hence, H2 = P\Lambda 2P\top . The
equality H2 = AA\top implies that the eigenvalues of H2 are the same as the eigenvalues
of AA\top . Moreover, the eigenspaces must coincide as well. So, the columns of P form a
basis for the eigenspaces of AA\top and, as a result, the product (11) generates all possi-
ble solutions. Observe now that (11) implies that A = H[UU\bot ]Diag (\scrI ,M) [V V\bot ]

\top for
any M \in \BbbR (p - r)\times (p - r). Requiring Q := [UU\bot ]Diag (\scrI ,M) [V V\bot ]

\top to be orthogonal
leads to (12).

Observe that if \scrI is the identity matrix, then H is positive semidefinite and H
and Q are, respectively, the factors H\mathrm{p}\mathrm{o}\mathrm{l} and Q\mathrm{p}\mathrm{o}\mathrm{l} of a polar decomposition of A:

A =: H\mathrm{p}\mathrm{o}\mathrm{l}Q\mathrm{p}\mathrm{o}\mathrm{l}.

If r = p (i.e., A is invertible), H\mathrm{p}\mathrm{o}\mathrm{l} is then positive definite and this decomposition is
unique [37, sec. 5.7]. We refer then to H\mathrm{p}\mathrm{o}\mathrm{l} and Q\mathrm{p}\mathrm{o}\mathrm{l} as, respectively, the symmetric
and orthogonal polar factors of A.

To compute the inverse of the exponential map (i.e., the logarithm), we have to
solve for \xi the equation EXP\pi (Y1)\xi = \pi (Y2). We first discuss the possible solutions in

the case Y \top 
1 Y2 is nonsingular, and we exhibit the one with the smallest norm. Before

that, we introduce the following definition, which will be useful for the rest of the
paper.

Definition 4.2. The set \scrM Y is defined as

\scrM Y := \{ \=\xi Y \in \scrH Y : Y \top EXPY (t\=\xi Y ) \in \BbbR p\times p
\ast \forall t \in [0, 1]\} .

Proposition 4.3. The following inclusions hold:

\scrM Y \subseteq \scrD Y \subseteq \scrF Y .
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Proof. Suppose that \=\xi Y \in \scrM Y , but \=\xi Y /\in \scrD Y . Then, there exists t \in [0, 1] such
that EXPY (t\=\xi Y ) /\in \BbbR n\times p

\ast . This implies that Y \top EXPY (t\=\xi Y ) /\in \BbbR p\times p
\ast , which contradicts

the fact that \=\xi Y \in \scrM Y . The second inclusion comes from Corollary 3.3.

Proposition 4.4. Let Y1, Y2 \in \BbbR n\times p
\ast such that Y \top 

1 Y2 is nonsingular. Then, the
equation EXP\pi (Y1)\xi = \pi (Y2) (i.e., \pi (Y1 + \=\xi Y1

) = \pi (Y2)) has at least 2p solutions,
given by

\=\xi Y1
= Y2Q - Y1 with Q = V \scrI U\top ,

with U and V the matrices containing the left and right singular vectors of the product
Y \top 
1 Y2, and \scrI any diagonal matrix whose elements belong to the set \{  - 1, 1\} . Equiva-

lently,

(13) \=\xi Y1
= Y1(Y

\top 
1 Y1)

 - 1( \~H  - Y \top 
1 Y1) + Y1\bot Y

\top 
1\bot Y2

\~Q\top ,

where \~H = \~H\top (not necessarily positive definite) and \~Q \in \scrO p satisfy Y \top 
1 Y2 = \~H \~Q.

The shortest of those vectors is unique and given by

(14) \=\xi \ast Y1
= Y2Q

\ast  - Y1 = Y1(Y
\top 
1 Y1)

 - 1(H\mathrm{p}\mathrm{o}\mathrm{l}  - Y \top 
1 Y1) + Y1\bot Y

\top 
1\bot Y2Q

\top 
\mathrm{p}\mathrm{o}\mathrm{l},

where Y \top 
1 Y2 = H\mathrm{p}\mathrm{o}\mathrm{l}Q\mathrm{p}\mathrm{o}\mathrm{l} is the polar decomposition and Q\ast := Q\top 

\mathrm{p}\mathrm{o}\mathrm{l} = V U\top . Moreover,
\=\xi \ast Y1

\in \scrM Y1
\subset \scrD Y1

, and it is the unique solution in \scrM Y1
.

Proof. The condition \pi 
\bigl( 
Y1 + \=\xi Y1

\bigr) 
= \pi (Y2) is equivalent to Y1 + \=\xi Y1

= Y2Q for
some matrix Q \in \scrO p. The condition \=\xi Y1

\in \scrH Y1
is then equivalent to

H = H\top with H := Y \top 
1
\=\xi Y1

= Y \top 
1 (Y2Q - Y1).

Therefore, Y \top 
1 Y2 =

\bigl( 
Y \top 
1 Y1 +H

\bigr) 
Q\top =: \~H \~Q. The solutions to this equation were

obtained in Lemma 4.1. The equivalent expression (13) comes from the fact that
Y \top 
1
\=\xi Y1

= H = \~H  - Y \top 
1 Y1 and Y \top 

1\bot 
\=\xi Y1

= Y \top 
1\bot (Y2

\~Q\top  - Y1) = Y \top 
1\bot Y2

\~Q\top (and the fact
that Y1\bot is orthonormal).

The minimization of the norm | | Y2Q  - Y1| | \mathrm{F} is a particular instance of the or-
thogonal Procrustes problem (see [28, sec. 12.4.1]). The solution is Q\ast = Q\top 

\mathrm{P}\mathrm{o}\mathrm{l}, with
Q\mathrm{P}\mathrm{o}\mathrm{l} the orthogonal polar factor of Y \top 

1 Y2. This corresponds to the choice \scrI = I in
Lemma 4.1.

We now show that \=\xi \ast Y1
\in \scrM Y1 , i.e., that Y (t) := Y1 + t\=\xi \ast Y1

is such that Y \top 
1 Y (t)

remains in \BbbR p\times p
\ast (i.e., is full-rank) for t \in [0, 1]. Observe that Y \top 

1 Y (t) = Y \top 
1 Y1 +

t(H\mathrm{p}\mathrm{o}\mathrm{l}  - Y \top 
1 Y1) = (1  - t)Y \top 

1 Y1 + tH\mathrm{P}\mathrm{o}\mathrm{l} \succ 0 since Y \top 
1 Y1 \succ 0 and H\mathrm{P}\mathrm{o}\mathrm{l} \succ 0. Hence

Y \top 
1 Y (t) \in \BbbR p\times p

\ast .
It remains to prove that \=\xi \ast Y1

is the unique solution in \scrM Y1
. Any horizontal vector

\=\zeta Y1
\not = \=\xi Y1

satisfying \pi (Y1 + \=\zeta Y1
) = \pi (Y2) can be written as \=\zeta Y1

:= Y2
\~Q  - Y1 for

some orthogonal matrix \~Q \not = I. Due to the uniqueness of the polar decomposition of
nonsingular matrices, the product

Y \top 
1 Y2

\~Q = Y \top 
1 (Y1 + \=\zeta Y1

),

which is symmetric according to (1), is not positive semidefinite. Since Y \top 
1 Y1 \succ 0,

there must exist t\ast \in [0, 1] such that det
\bigl( 
Y \top 
1 (Y1 + t\ast \=\zeta Y1)

\bigr) 
= 0. This implies that

\=\zeta Y1 /\in \scrM Y1 .

Before being able to define the logarithm entirely, we discuss the possible solutions
to the equation EXP\pi (Y1)\xi = \pi (Y2) in the case Y \top 

1 Y2 is singular. We show that the
shortest vector satisfying this equation is not unique. As a result, there are several
shortest paths going from \pi (Y1) to \pi (Y2), and the logarithm is not uniquely defined.
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Proposition 4.5. Let Y1, Y2 \in \BbbR n\times p
\ast with Y \top 

1 Y2 = [UU\bot ]Diag (D, 0p - r) [V V\bot ]
\top 

a singular value decomposition (i.e., Y \top 
1 Y2 has rank r < p). Then, if r = p  - 1, the

equation EXP\pi (Y1)\xi = \pi (Y2) (i.e., \pi (Y1 + \=\xi Y1
) = \pi (Y2)) has at least 2p solutions,

given by
\=\xi Y1 = Y2Q - Y1 with Q = \~V \scrI \~U\top ,

where \~U := [UU\bot ], \~V := [V V\bot ], and \scrI is any diagonal matrix whose elements belong
to the set \{  - 1, 1\} . Otherwise, there is an infinity of solutions that can be expressed
as

\=\xi Y1
= Y2Q - Y1 with Q = \~VDiag

\Bigl( 
\scrI , \~Q

\Bigr) 
\~U\top ,

with \~Q \in \scrO p - r. In any case, the shortest vectors are of the form

\=\xi \ast Y1
= Y2Q

\ast  - Y1,

where Q\ast is the transposed of the orthogonal factor of any polar decomposition Y \top 
1 Y2 =

H\mathrm{p}\mathrm{o}\mathrm{l}Q\mathrm{p}\mathrm{o}\mathrm{l}. For example, one of the minimizers is obtained for Q\ast := \~V \~U\top .

Proof. The proof is similar to the one of the previous proposition. Let \=\xi Y1
\in \scrH Y1

.
The equality EXP\pi (Y1)\xi = \pi (Y2) is equivalent to

Y \top 
1 Y2 =

\bigl( 
Y \top 
1 Y1 +H

\bigr) 
Q\top 

for some matrices H = H\top and Q \in \scrO p, and the possible solutions are provided in
Lemma 4.1. The fact that, among those solutions, \=\xi \ast Y1

is a minimizer of | | \=\xi Y1
| | \mathrm{F} is

again a consequence of [28, sec. 12.4.1].

We now move to the definition of the logarithm map.

Definition 4.6. For Y1, Y2 \in \BbbR n\times p
\ast such that Y \top 

1 Y2 is nonsingular, we introduce
the mapping

LogY1
Y2 := \=\xi \ast Y1

,

where \=\xi \ast Y1
is defined as in (14). Let also Log\pi (Y1)\pi (Y2) denote the Riemannian log-

arithm on \BbbR n\times p
\ast /\scrO p, namely, the shortest vector \xi \pi (Y1) such that Exp\pi (Y1)\xi \pi (Y1) =

\pi (Y2), i.e., \pi (Y1 + \=\xi Y1
) = \pi (Y2) and rank(Y1 + t\=\xi Y1

) = p for all t \in [0, 1].

A consequence of Propositions 4.4 and 4.5 is that the shortest path between \pi (Y1)
and \pi (Y2) is unique if and only if Y \top 

1 Y2 is nonsingular. As a result, the Riemannian
logarithm is only uniquely defined for points satisfying this condition. The horizontal
lift of the Riemannian logarithm can then be computed as follows.

Theorem 4.7. Let Y1, Y2 \in \BbbR n\times p
\ast such that Y \top 

1 Y2 is nonsingular. Then the Rie-
mannian logarithm Log\pi (Y1)\pi (Y2) is uniquely defined and its horizontal lift at Y1 is
given by

Log\pi (Y1)\pi (Y2)Y1
= LogY1

Y2 = Y2Q
\ast  - Y1, Q\ast := V U\top ,

with Y \top 
1 Y2 =: U\Sigma V \top a singular value decomposition.

Proof. This is direct from Proposition 4.4.

An immediate consequence is the following corollary, describing minimizing curves
on \BbbR n\times p

\ast /\scrO p.

Corollary 4.8. Let \=\xi Y \in \scrH Y and t\ast := min
\bigl\{ 
t > 0 : t\=\xi Y /\in \scrM Y

\bigr\} 
. Then the

curve t \mapsto \rightarrow Y (t) := \pi (EXPY t\=\xi Y ) = \pi (Y + t\=\xi Y ) is minimizing on t \in [0, t\ast ). As-
suming that t\ast \=\xi Y \in \scrF Y , there exist several minimizing curves between \pi (Y ) and
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\pi (EXPY t
\ast \=\xi Y ), the curve t \mapsto \rightarrow Y (t) being one of them. Finally, t \mapsto \rightarrow Y (t) is not

minimizing beyond t\ast .

Corollary 4.9. Let t\ast := min
\bigl\{ 
t > 0 : t\=\xi Y /\in \scrM Y

\bigr\} 
and

t\ast := max
\bigl\{ 
t < 0 : t\=\xi Y /\in \scrM Y

\bigr\} 
.

Then LogY
\bigl( 
EXPY t\=\xi Y

\bigr) 
= t\=\xi Y if and only if t \in (t\ast , t

\ast ).

The choice to define, in these two corollaries, the variable t\ast as a minimum or
maximum of the set considered (and not the infimum or supremum) relies on the
following observation. Based on the definition of \scrM Y , it is obvious that t

\ast := min\{ t >
0 : t\=\xi Y /\in \scrM Y \} = min\{ t > 0 : Y \top (Y + t\=\xi Y ) /\in \BbbR p\times p

\ast \} . The set \{ t > 0 : Y \top (Y + t\=\xi Y ) \in 
\BbbR p\times p

\ast \} is open as it is the preimage of the open set \BbbR p\times p
\ast by the continuous function

t \mapsto \rightarrow Y \top (Y + t\=\xi Y ). Therefore, its complement is closed and the minimum exists
with the convention that min(\emptyset ) = +\infty . The same argument applies to the case
t\ast := max\{ t < 0 : t\=\xi Y /\in \scrM Y \} = max\{ t < 0 : Y \top (Y + t\=\xi Y ) /\in \BbbR p\times p

\ast \} .

5. Riemannian distance. The following result provides the distance between
\pi (Y1) and \pi (Y2) with respect to the metric (4). Observe that, when p = n, the result
reduces to the Bures--Wasserstein distance explored in [9].

Proposition 5.1. Let Y1, Y2 \in \BbbR n\times p
\ast with the singular value decomposition Y \top 

1 Y2 =
U\Sigma V \top . The distance between \pi (Y1) and \pi (Y2) is

d(\pi (Y1), \pi (Y2)) = | | Y2Q
\ast  - Y1| | \mathrm{F}, Q\ast = V U\top .

Equivalently, on S+(p, n) endowed with the Riemannian metric g,

(15) d(S1, S2) =

\biggl[ 
tr (S1) + tr (S2) - 2tr

\biggl( \Bigl( 
S
1/2
1 S2S

1/2
1

\Bigr) 1/2\biggr) \biggr] 1/2
.

Proof. This is a direct consequence of Propositions 4.4 and 4.5. If Y \top 
1 Y2 is invert-

ible, the distance is the norm of the logarithm map. Otherwise, there exists several
shortest paths between the two equivalence classes, and Q\ast corresponds to one of
those paths. (It corresponds to the choice Diag(\scrI , \~Q) = I in Proposition 4.5.)

According to [27], the distance (15) coincides with the Wasserstein distance be-
tween the degenerate centered Gaussian distributions parameterized by covariance
matrices S1 and S2.

6. Injectivity radius. For \xi small enough, the exponential map is a diffeomor-
phism: it is smooth and has a smooth inverse [47, Chap. 3, Prop. 30]. In this section,
we show that the exponential map \xi \pi (Y ) \mapsto \rightarrow Exp\pi (Y )\xi \pi (Y ) is a diffeomorphism on

D\pi (Y )[\scrM Y ]. Hence, the injectivity radius of \BbbR n\times p
\ast /\scrO p at a point \pi (Y ) is the radius

of the largest ball contained in \scrM Y and centered at 0Y . We first derive two results
about \scrM Y .

Proposition 6.1. If p = n, then \scrM Y = \scrD Y . If p < n, then \scrM Y is a proper
subset of \scrD Y .
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Proof. If p = n, every \=\xi Y \in \scrH Y can be decomposed as \=\xi Y = Y (Y \top Y ) - 1H. Then,

\=\xi Y \in \scrD Y \leftrightarrow rank
\bigl( 
EXPY t\=\xi Y

\bigr) 
= p \forall t \in [0, 1]

\leftrightarrow rank
\bigl( 
Y (Y \top Y ) - 1(Y \top Y + tH)

\bigr) 
= p \forall t \in [0, 1]

\leftrightarrow Y \top EXPt\=\xi Y = Y \top Y + tH \in \BbbR n\times p
\ast \forall t \in [0, 1]

\leftrightarrow \=\xi Y \in \scrM Y .

If p < n, let Y = U\Sigma V \top be a singular value decomposition, and let us define \=\xi Y :=
 - \sigma 2

pY (Y \top Y ) - 1vpv
\top 
p + Y\bot K with Kvp \not = 0. Then, \=\xi Y \in \scrD Y but \=\xi Y /\in \scrM Y .

Proposition 6.2. The largest ball in \scrM Y centered at 0Y has radius \sigma p(Y ).

Proof. By Corollary 3.6 and Proposition 4.3, the radius of the largest ball con-
tained in \scrM Y is upper bounded by \sigma p(Y ). We show that it is actually equal to
\sigma p(Y ). Assume that \=\xi Y := Y (Y \top Y ) - 1H+Y\bot K /\in \scrM Y , and define Y (t) := EXPY t\=\xi Y .
Since \=\xi Y /\in \scrM Y , the product Y \top Y (t) is singular for some t\ast \in [0, 1]. We show that
| | t\ast \=\xi Y | | \mathrm{F} \geq \sigma p(Y ), which implies that | | \=\xi Y | | \mathrm{F} \geq \sigma p(Y ). Since Y \top Y (t\ast ) is singular,
there holds

(16) 0 = det
\bigl( 
Y \top (Y + t\ast Y (Y \top Y ) - 1H)

\bigr) 
= det

\bigl( 
Y \top Y + t\ast H

\bigr) 
.

This equation implies that t\ast Y (Y \top Y ) - 1H /\in \scrF Y , since the matrix Y+t\ast Y (Y \top Y ) - 1H =
Y (Y \top Y ) - 1(Y \top Y + t\ast H) is rank deficient. According to Corollary 3.5,

| | t\ast \=\xi Y | | 2\mathrm{F} = | | t\ast Y (Y \top Y ) - 1H| | 2\mathrm{F} + | | t\ast Y\bot K| | 2\mathrm{F} \geq \sigma 2
p(Y ) + | | t\ast Y\bot K| | 2\mathrm{F} \geq \sigma 2

p(Y ).

We show that the exponential map is a diffeomorphism on \scrM Y . Proposition 6.2
implies then that the injectivity radius of \BbbR n\times p

\ast /\scrO p at \pi (Y ) is equal to \sigma p(Y ), the
radius of the largest ball contained in \scrM Y .

Theorem 6.3. The exponential map is a diffeomorphism on \scrM Y . As a result,
the injectivity radius of \BbbR n\times p

\ast /\scrO p at \pi (Y ) is \sigma p(Y ).

Proof. Due to Propositions 4.3 and 4.4, Exp\pi (Y ) is a bijection on \scrM Y . We
conclude the proof by observing that the exponential and logarithm maps are both
smooth, by smoothness of the polar decomposition [21, sec. 2.3(c)].

The next result characterizes the global injectivity radius of the manifold \BbbR n\times p
\ast /\scrO p,

defined as the infimum over \pi (Y ) \in \BbbR n\times p
\ast /\scrO p of the injectivity radius at \pi (Y ).

Corollary 6.4. The (global) injectivity radius of the manifold \BbbR n\times p
\ast /\scrO p is equal

to 0.

7. Lie derivative. If there would be a submanifold \scrS of \BbbR n\times p
\ast such that \scrS \cap Y\scrO p

is a singleton for all Y \in \BbbR n\times p
\ast and \scrT Y \scrS = \scrH Y for all Y \in \scrS , then (\pi | \scrS )

 - 1 would be

an isometric embedding of \BbbR n\times p
\ast /\scrO p into the Euclidean space \BbbR n\times p, and we might be

able to resort to submanifold theory instead of quotient manifold theory to study the
Riemannian manifold \BbbR n\times p

\ast /\scrO p. We show in this section that such a submanifold \scrS 
does not exist when p > 1: the condition \scrT Y \scrS = \scrH Y cannot be satisfied, even locally.

The Riemannian submersion theory (see, e.g., [47]) enables us to write the Lie
bracket in the quotient \BbbR n\times p

\ast /\scrO p as the horizontal projection of the Lie bracket in
\BbbR n\times p

\ast .
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Proposition 7.1. Let \xi , \eta be two vector fields on \BbbR n\times p
\ast /\scrO p, and let \=\xi Y , \=\eta Y be

their horizontal lifts at Y . The lift at Y of the Lie bracket [\xi , \eta ] is

[\xi , \eta ]Y = P\mathrm{h}[\=\xi , \=\eta ]Y = [\=\xi , \=\eta ]Y  - YT - 1
Y \top Y

\bigl( 
2(\=\eta \top Y

\=\xi Y  - \=\xi \top Y \=\eta Y )
\bigr) 
,

where [\=\xi , \=\eta ]Y is the Lie bracket in \BbbR n\times p
\ast , evaluated at Y .

Proof. Lemma [47, Chap. 7, Lem. 45] states that [\xi , \eta ]Y = P\mathrm{h}[\=\xi , \=\eta ]Y . We write

\=\xi Y = Y (Y \top Y ) - 1H\xi + (I  - Y (Y \top Y ) - 1Y \top )A\xi 

and \=\eta Y = Y (Y \top Y ) - 1H\eta + (I  - Y (Y \top Y ) - 1Y \top )A\eta , where H\xi , H\eta are symmetric p\times p
matrices and A\xi , A\eta are arbitrary n \times p matrices. The Lie bracket [\=\xi , \=\eta ] is defined
as [\=\xi , \=\eta ]Y = D\=\eta Y [\=\xi Y ]  - D\=\xi Y [\=\eta Y ], where D\=\eta Y [\=\xi Y ] is the directional derivative in the
Euclidean space of the vector \=\eta Y in the direction \=\xi Y , which is given by

D\=\eta Y [\=\xi Y ] = \=\xi Y (Y
\top Y ) - 1[H\eta  - Y \top A\eta ]

 - Y (Y \top Y ) - 1(\=\xi \top Y Y + Y \top \=\xi Y )(Y
\top Y ) - 1[H\eta  - Y \top A\eta ]

+ Y (Y \top Y ) - 1[DH\eta [H\xi ] - \=\xi \top Y A\eta ] + (I  - Y (Y \top Y ) - 1Y \top )DA\eta [A\xi ],

and similarly for D\=\xi Y [\=\eta Y ]. According to (3) and (2), the vertical projection of the
Lie bracket is P\mathrm{v}[\=\xi , \=\eta ]Y = YT - 1

Y \top Y
(2skew(Y \top [\=\xi , \=\eta ]Y )), while the horizontal projection

is P\mathrm{h}[\=\xi , \=\eta ]Y = [\=\xi , \=\eta ]Y  - P\mathrm{v}[\=\xi , \=\eta ]Y . Let us compute Y \top D\=\eta Y [\=\xi Y ]. We obtain

Y \top D\=\eta Y [\=\xi Y ] = H\xi (Y
\top Y ) - 1[H\eta  - Y \top A\eta ]

 - 2H\xi (Y
\top Y ) - 1[H\eta  - Y \top A\eta ] +DH\eta [H\xi ] - \=\xi \top Y A\eta .

Replacing \=\xi Y by its definition in the last term of the previous equation yields

Y \top D\=\eta Y [\=\xi Y ] =  - H\xi (Y
\top Y ) - 1H\eta +DH\eta [H\xi ] - A\top 

\xi (I  - Y (Y \top Y ) - 1Y \top )A\eta .

Again, the expression for Y \top D\=\xi Y [\=\eta Y ] is obtained by just switching \=\xi Y and \=\eta Y in the
previous equation. Putting everything together, we obtain, for the product Y \top [\=\xi , \=\eta ]Y ,

Y \top [\=\xi , \=\eta ]Y = \=\eta \top Y
\=\xi Y  - \=\xi \top Y \=\eta Y +DH\eta [H\xi ] - DH\xi [H\eta ],

So, the projection of [\=\xi , \=\eta ]Y on the vertical space is

P\mathrm{v}[\=\xi , \=\eta ]Y = YT - 1
Y \top Y

\bigl( 
2(\=\eta \top Y

\=\xi Y  - \=\xi \top Y \=\eta Y )
\bigr) 
,

and P\mathrm{h}[\=\xi , \=\eta ]Y = [\=\xi , \=\eta ]Y  - P\mathrm{v}[\=\xi , \=\eta ]Y .

Proposition 7.2. If p > 1, the horizontal distribution (i.e., the set of all hori-
zontal vectors to \BbbR n\times p

\ast ) is not involutive.

Proof. This is a direct consequence of the previous result, in which the vertical
projection of the Lie bracket [\=\xi , \=\eta ]Y is seen to be generally nonzero provided that
p > 1.

By the Frobenius theorem [1, sec. 4.4.3], there exists no integral manifold for the
horizontal distribution if p > 1.

8. Numerical illustrations. Section 6 provides an expression for the injectivity
radius of the manifold. It is equal to the smallest singular value of the matrix Y : it
is close to zero when the matrix Y is close to the boundary of \BbbR n\times p

\ast . This can have
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Fig. 2. Interpolation error between the curve \scrB (\theta ) and the data points C(\theta 1), C(\theta 3),
C(\theta 5), . . . , C(\theta 33). The figure on the left was already presented in [29, Fig. 4]. We observe that
the error made on the data point C\theta 13 is several orders of magnitude higher than the error made on
the others. This is no longer the case when the parameter p, corresponding to the rank, is reduced,
as indicated by the figure on the right.

adverse effects in some practical applications. We provide in this section an example
that we have obtained from an application in wind field estimation, and already
presented in [29, 30].

In [29, sec. 4.3], the authors apply piecewise B\'ezier interpolation to the covariance
matrices characterizing the wind field. The wind field is represented by a Gaussian
stochastic process, characterized by a mean field and a covariance matrix. Those two
parameters depend on some external conditions, such as the prevailing wind in the
region of interest. They were computed for several prevailing wind magnitudes, by
running computationally expensive computational fluid dynamics (CFD) models. To
avoid running too many CFD models, the authors fit a curve to the known covariance
matrices to recover matrices associated with other (intermediary) wind magnitudes.

The authors considered a set of covariance matrices C(\theta 1), C(\theta 3), C(\theta 5), . . . , C(\theta 33).
The matrices are of size 3024 \times 3024, and the rank was estimated to be 20. They
observed that the algorithm fails to interpolate one of the data points, as illustrated
in Figure 2(a). The lack in interpolation is a consequence of the fact that the points
are too far away with respect to the injectivity radius, resulting in a discontinuity
in the logarithm during one of the steps of the algorithm. Adapting the rank of the
data (i.e., keeping a reduced number of columns) solves this problem, as illustrated
in Figure 2(b). The interested reader is referred to [29] for more information.

9. Conclusion. It is well known that the set \scrS +(p, n) of n \times n symmetric
positive-semidefinite matrices of rank p is an embedded submanifold of \BbbR n\times n. We
have shown that this manifold is diffeomorphic (i.e., equivalent) to the quotient man-
ifold \BbbR n\times p

\ast /\scrO p, the diffeomorphism being \Phi : \BbbR n\times p
\ast /\scrO p \rightarrow \scrS +(p, n) : Y\scrO p \mapsto \rightarrow Y Y \top .

The Riemannian submersion theory yields a natural Riemannian metric g on
\BbbR n\times p

\ast /\scrO p. It turns out that this Riemannian metric g is not equivalent to the
Riemannian submanifold metric of \scrS +(p, n). In particular, whereas the geodesics
of \scrS +(p, n) \subset \BbbR n\times n do not generally have a known analytical expression [54], the
geodesics of \BbbR n\times p

\ast /\scrO p admit a particularly simple expression: mapped on \scrS +(p, n)
through \Phi , they read

t \mapsto \rightarrow (Y + t\=\xi Y )(Y + t\=\xi Y )
\top ,

where Y \in \BbbR n\times p
\ast and \=\xi Y \in \BbbR n\times p with Y \top \=\xi Y symmetric.
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As a consequence, the steepest descent along geodesics for an optimization prob-
lem of the form minS\in \scrS +(p,n) f(S) in this quotient geometry boils down to the Euclid-

ean steepest descent for the optimization problem minY \=f(Y ), where \=f(Y ) := f(Y Y \top )
(assuming that we are never unlucky enough to go through a rank-deficient Y ). This
makes this geometry very simple for optimization purposes, while it is considerably
harder to do steepest descent along geodesics for minS\in \scrS +(p,n) f(S) in the above-
mentioned submanifold geometry.

However, observe that things become a bit less straightforward when using the
Hessian, or if the objective function involves distances, or in computational problems
where the logarithm is needed.

We have given in Theorem 4.7 a formula for the endpoint geodesic problem (i.e.,
the Riemannian logarithm), and we have characterized the minimizing geodesics in
Corollary 4.8.

Moreover, we have shown that the injectivity radius of \BbbR n\times p
\ast /\scrO p at Y\scrO p is

\sigma p(Y ), the smallest singular value of Y . A numerical example has illustrated that
certain curve-fitting methods on \scrS +(p, n) may produce unsatisfactory results when
data points have a small \sigma p(Y ). We suspect that resorting to other geometries---such
as the submanifold geometry [54] or the geometry with complete geodesics proposed
in [55]---would not remedy the issue, and moreover those other geometries are imprac-
tical for this curve-fitting task because no formula is available for their Riemannian
logarithm.

To conclude, expressions for the main geometric tools on \scrS +(p, n) \simeq \BbbR n\times p
\ast /\scrO p

are summarized in Table 1.

Appendix A. Review of the geometry of \BbbR \bfitn \times \bfitp 
\ast /\bfscrO \bfitp . The results in this

section either come from the literature (mainly [33]) or can be quite easily deduced
from it. We provide them in detail for reference purposes.

A.1. The quotient set \BbbR \bfitn \times \bfitp 
\ast /\bfscrO \bfitp . We first prove the following result, referred

to as Proposition 2.1 in section 2.

Proposition A.1. Let Y1, Y2 \in \BbbR n\times p
\ast . Then Y1Y

\top 
1 = Y2Y

\top 
2 if and only if Y2 =

Y1Q for some Q \in \scrO p, and

\scrS +(p, n) = \{ Y Y \top : Y \in \BbbR n\times p
\ast \} .

Proof. The first claim is a particularization of [20, Lem. 2.1]. We sketch the
proof for the reader's convenience. The ``if"" part is straightforward. For the ``only
if"" part, observe that Y1Y

\top 
1 = Y2Y

\top 
2 , Y1, Y2 \in \BbbR n\times p

\ast implies ker(Y \top 
1 ) = ker(Y \top 

2 ) and
thus range(Y1) = range(Y2), and hence there is Q \in \BbbR p\times p such that Y2 = Y1Q. Since
Y1Y

\top 
1 = Y1QQ\top Y \top 

1 and Y1 has full column rank, it follows that QQ\top = I, i.e., Q \in \scrO p.
For the second part of the proposition, see [55, Prop. 3.1].

Proposition 2.1 yields an identification of \scrS +(p, n) with a quotient set. It consists
of considering as a single point the set of all Y 's that yield the same S. The set of all
those points is the quotient set.

To make this identification precise, let \phi denote the mapping

\phi : \BbbR n\times p
\ast \rightarrow \scrS +(p, n) : Y \mapsto \rightarrow Y Y \top .

Let \sim denote the equivalence relation on \BbbR n\times p
\ast defined by

(17) Y1 \sim Y2 if and only if Y2 = Y1Q for some Q \in \scrO p,
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Table 1
Summary of the expressions for the main geometric tools on \BbbR n\times p

\ast /\scrO p.

Equivalence classes Y\scrO p := \{ Y Q : Q \in \scrO p\} 

Dimension pn - p(p - 1)
2

Vertical space \scrV Y = \{ Y \Omega : \Omega =  - \Omega \top \in \BbbR p\times p\} 

Horizontal space \scrH Y = \{ Z \in \BbbR n\times p : Y \top Z  - Z\top Y = 0\} 

Metric on
\scrT \pi (Y )\BbbR 

n\times p
\ast /\scrO p

g\pi (Y )(\xi \pi (Y ), \eta \pi (Y )) = tr
\bigl( 
\=\xi \top Y \=\eta Y

\bigr) 
Projection on \scrV Y Pv

Y (Z) = YT - 1
Y \top Y

(Y \top Z  - Z\top Y )

Projection on \scrH Y Ph
Y (Z) = Z  - Pv

Y (Z)

Gradient gradfY = gradf(Y ) with f := f \circ \pi 

Connection \nabla \eta \xi Y = Ph
Y (D\=\xi (Y )[\=\eta Y ])

Exponential Exp\pi (Y )\xi \pi (Y ) = \pi (Y + \=\xi Y ) for all \=\xi Y \in \scrD Y

Logarithm If det
\bigl( 
Y \top 
1 Y2

\bigr) 
\not = 0, Log\pi (Y1)

\pi (Y2)Y1
= Y2Q\ast  - Y1 with Y \top 

1 Y2 = HQ\ast \top 

the polar decomposition of Y \top 
1 Y2.

Riemannian distance
on \BbbR n\times p

\ast /\scrO p

\delta (\pi (Y1), \pi (Y2)) = | | Y2Q\ast  - Y1| | F, Q\ast defined as above

Riemannian distance
on \scrS +(p, n)

\delta (S1, S2) =

\biggl[ 
tr (S1) + tr (S2) - 2tr

\biggl( \Bigl( 
S
1/2
1 S2S

1/2
1

\Bigr) 1/2
\biggr) \biggr] 1/2

Injectivity radius rInj(\pi (Y )) = \sigma p(Y )

Lie derivative [\xi , \eta ]Y = [\=\xi , \=\eta ]Y  - YT - 1
Y \top Y

\bigl( 
2(\=\eta \top Y

\=\xi Y  - \=\xi \top Y \=\eta Y )
\bigr) 

Vector transport T\eta \pi (Y )
\xi \pi (Y )Y +\=\eta Y

= Ph
Y +\=\eta Y

\=\xi Y

Hessian Hessf(\pi (Y ))[\xi \pi (Y )]Y = Ph
Y

\bigl( 
Dgrad \=f(Y )[\=\xi Y ]

\bigr) 
, \=f := f \circ \pi 

Riemannan curvature
tensor

See (36)

Sectional curvature K\BbbR n\times p
\ast /\scrO p

(\xi \pi (Y ), \eta \pi (Y )) =
3| | Y \bfT  - 1

Y \top Y

\Bigl( 
\=\eta \top 
Y

\=\xi Y  - \=\xi \top Y \=\eta Y

\Bigr) 
| | 2\mathrm{F}

\langle \=\xi Y ,\=\xi Y \rangle \langle \=\eta Y ,\=\eta Y \rangle  - \langle \=\xi Y ,\=\eta Y \rangle 2 .

Bounds on the sec-
tional curvature

For any tangent plane (spanned by \xi \pi (Y ), \eta \pi (Y )) based at Y , there

holds K\BbbR n\times p
\ast /\scrO p

(\xi \pi (Y ), \eta \pi (Y )) \in [0, 3
\sigma 2
p - 1(Y )+\sigma 2

p(Y )
]

for which the equivalence class of Y \in \BbbR n\times p
\ast is

Y\scrO p := \{ Y Q : Q \in \scrO p\} .

Let

(18) \BbbR n\times p
\ast /\scrO p := \BbbR n\times p

\ast / \sim := \{ Y\scrO p : Y \in \BbbR n\times p
\ast \} 

denote the quotient of \BbbR n\times p
\ast by the equivalence relation \sim , and let

\pi : \BbbR n\times p
\ast \rightarrow \BbbR n\times p

\ast /\scrO p

denote the quotient map. The next result, illustrated in Figure 1, shows that there is
a natural bijection between the quotient set \BbbR n\times p

\ast /\scrO p and \scrS +(p, n).

Corollary A.2. The map \phi : \BbbR n\times p
\ast \rightarrow \scrS +(p, n) : Y \mapsto \rightarrow Y Y \top is surjective (i.e.,

onto). Its fiber through Y \in \BbbR n\times p
\ast is given by

\phi  - 1(Y Y \top ) = Y\scrO p := \{ Y Q : Q \in \scrO p\} .
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Proof. This follows from Proposition A.1.

The function

\Phi : \BbbR n\times p
\ast /\scrO p \rightarrow \scrS +(p, n) : Y\scrO p \mapsto \rightarrow Y Y \top 

defined by \phi = \Phi \circ \pi is then a bijection.

A.2. The quotient space \BbbR \bfitn \times \bfitp 
\ast /\bfscrO \bfitp . The quotient set \BbbR n\times p

\ast /\scrO p can be en-
dowed with a quotient set topology, which turns it into a quotient space. In this
topology, the open sets in \BbbR n\times p

\ast /\scrO p are the sets whose inverse image by \pi are open
sets in \BbbR n\times p

\ast (endowed here with the metric topology); see [19]. It is then clear that
\pi is a continuous function with respect to this topology.

We will show that the quotient space \BbbR n\times p
\ast /\scrO p is Hausdorff and second-countable.

To prove these two properties, we consider the action of the orthogonal group \scrO p on
\BbbR n\times p

\ast . Given a point Y \in \BbbR n\times p
\ast , let

Y\scrO p := \{ Y Q : Q \in \scrO p\} 

be the orbit of Y under the (right) action of the orthogonal group. The set of orbits
can be identified, by (18), to the quotient set \BbbR n\times p

\ast /\scrO p. The action of the orthogonal
group on \BbbR n\times p

\ast has the following properties.

Proposition A.3. The action of the orthogonal group on \BbbR n\times p
\ast is continuous,

smooth, free, and proper.

Proof. Continuity and smoothness are a direct consequence of continuity and
smoothness of the matrix product. The action is free since, for any Y \in \BbbR n\times p

\ast , the
equality Y Q1 = Y Q2 implies Q1 = Q2. Finally, the action is proper, as the orthogonal
group is a compact Lie group (see [23, sec. 1.2.A]), and any continuous action by a
compact Lie group on a manifold is proper (see [40, Cor. 21.6]). Note that the set
\BbbR n\times p

\ast is a manifold since it is an open subset of the linear space \BbbR n\times p. As such, it
admits a natural structure of open submanifold of \BbbR n\times p. We refer, e.g., to [5] for
details.

We then deduce the following results.

Corollary A.4. The orbit space \BbbR n\times p
\ast /\scrO p is Hausdorff.

Proof. This is a consequence of the fact that the Lie group \scrO p acts continuously
and properly on the manifold \BbbR n\times p

\ast (see [40, Prop. 21.4]).

The proof that \BbbR n\times p
\ast /\scrO p is second-countable is delayed to the next section.

A.3. The quotient manifold \BbbR \bfitn \times \bfitp 
\ast /\bfscrO \bfitp . Since \BbbR n\times p

\ast is a manifold, it makes

sense to ask if the quotient \BbbR n\times p
\ast /\scrO p is a manifold. (In other words, we wonder if

there is a differentiable structure on the set \BbbR n\times p
\ast /\scrO p such that the differential of \pi 

at every Y \in \BbbR n\times p
\ast is onto.) The next result answers the question positively. (This

result was already obtained in [3].)

Proposition A.5. The equivalence relation \sim (17) is regular. In other words,
the quotient space \BbbR n\times p

\ast /\scrO p is a quotient manifold. The dimension of \BbbR n\times p
\ast /\scrO p is

pn - p(p - 1)
2 .

Proof. The result follows from the quotient manifold theorem (see [40, Thm.
21.10)]). This theorem states that, given a Lie group G acting smoothly, freely, and
properly on a smooth manifold \scrM , the orbit space \scrM /G is a topological manifold of
dimension equal to dim(\scrM )  - dim(G) and has a unique smooth structure with the
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property that the quotient map \pi : \scrM \rightarrow \scrM /G is a smooth submersion. The proof
follows then from Proposition A.3.

As a consequence, the equivalence classes Y\scrO p are embedded submanifolds of
\BbbR n\times p

\ast . The tangent space to Y\scrO p at Y is the vertical space:

(19) \scrV Y = Y \scrS \mathrm{s}\mathrm{k}\mathrm{e}\mathrm{w}(p) = \{ Y \Omega : \Omega =  - \Omega \top \in \BbbR p\times p\} .

We also deduce the following results.

Corollary A.6. The quotient space \BbbR n\times p
\ast /\scrO p is second-countable.

Proof. It is a quotient manifold of a second-countable manifold \BbbR n\times p
\ast , which,

by [19, Prop. 6.3.2], implies that it is itself second-countable. The manifold \BbbR n\times p
\ast 

is second-countable as it is an open subset of the Euclidean space \BbbR n\times p, which is
second-countable (see [39, pp. 37--38]).

Proposition A.7. The mapping \Phi is a diffeomorphism between the quotient man-
ifold \BbbR n\times p

\ast /\scrO p and \scrS +(p, n).

Proof. This is a consequence of the fact that both \pi and \phi are submersions. Given
a submersion f of a manifold \scrM to a manifold \scrM \prime , Proposition 6.1.2 of [19] states
that any function g, such that g\circ f is differentiable, is also differentiable (with respect
to the differentiable structure inherited from its embedding in the Euclidean space
\BbbR n\times n). Using the differentiability of \phi = \Phi \circ \pi and of \pi = \Phi  - 1 \circ \phi , we deduce,
respectively, that \Phi and \Phi  - 1 are differentiable. The fact that \pi is a submersion is
stated in the proof of Proposition A.5, so we just have to prove that \phi : Y \mapsto \rightarrow Y Y \top is
a submersion. The tangent space of \scrS +(p, n) was shown in [54] to be
(20)
\scrT \phi (Y )\scrS +(p, n) := \{ (Y H+Y\bot K)Y \top +Y (Y H+Y\bot K)\top : H = H\top \in \BbbR p\times p,K \in \BbbR (n - p)\times p\} ,

where Y\bot \in \BbbR n\times (n - p) is orthonormal and satisfies Y \top Y\bot = 0. For any \xi \in \scrT \phi (Y )\scrS +(p, n)

there exists \.Y \in \scrT Y \BbbR n\times p
\ast \simeq \BbbR n\times p such that D\phi (Y )[ \.Y ] = \.Y Y \top +Y \.Y \top = \xi (just choose

\.Y := (Y H + Y\bot K) above), which implies that \phi is a submersion.

The tangent space can also be written more compactly as
(21)

\scrT \phi (Y )\scrS +(p, n) :=

\left\{   \Bigl[ Y Y\bot 

\Bigr] \left[  H K\top 

K 0

\right]  \Bigl[ Y Y\bot 

\Bigr] \top 
: H = H\top \in \BbbR p\times p,K \in \BbbR (n - p)\times p

\right\}   
with Y\bot \in \BbbR n\times (n - p) an orthonormal matrix satisfying Y \top Y\bot = 0.

Proposition A.7 shows that the manifolds \BbbR n\times p
\ast /\scrO p and \scrS +(p, n) are equivalent :

\BbbR n\times p
\ast /\scrO p \simeq \scrS +(p, n).

Through this equivalence, a point \pi (Y ) = Y\scrO p \in \BbbR n\times p
\ast /\scrO p corresponds to the point

\phi (Y ) = Y Y \top \in \scrS +(p, n). In the rest of this paper, most results are written in terms
of \BbbR n\times p

\ast /\scrO p, but they can readily be translated into results for \scrS +(p, n); to this end,
replace \pi by \phi .

A.4. Riemannian metric and horizontal space. A Riemannian metric is an
inner product on the tangent spaces that varies smoothly with the foot of the tangent
space. We refer, e.g., to [5, 15] for more information.

Consider on \BbbR n\times p
\ast the canonical Riemannian metric defined by

(22) \langle Z1, Z2\rangle Y = tr
\bigl( 
Z\top 
1 Z2

\bigr) 
, Z1, Z2 \in TY \BbbR n\times p

\ast ,
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where tr () denotes the sum of the diagonal elements of its argument and TY \BbbR n\times p
\ast is

the tangent space of \BbbR n\times p
\ast at Y . The latter can be identified with \BbbR n\times p since \BbbR n\times p

\ast 
is an open submanifold of \BbbR n\times p. Note that, letting | | Z| | \mathrm{F} denote the Frobenius norm
of Z, we have | | Z| | 2\mathrm{F} = \langle Z,Z\rangle .

For every Y \in \BbbR n\times p
\ast , define the horizontal space \scrH Y at Y as the orthogonal

complement of the vertical space \scrV Y , i.e.,

(23)
\scrH Y = \{ Z \in \BbbR n\times p : tr

\bigl( 
(Y \Omega )\top Z

\bigr) 
= 0 \forall \Omega =  - \Omega \top \in \BbbR p\times p\} 

= \{ Z \in \BbbR n\times p : Y \top Z  - Z\top Y = 0\} .

The second equality comes because the relation tr (\Omega S) = 0 for all \Omega \in \scrS \mathrm{s}\mathrm{k}\mathrm{e}\mathrm{w}(p)
implies that S is symmetric. The dimension of \scrH Y is the dimension of \BbbR n\times p

\ast /\scrO p, i.e.,

pn - p(p - 1)
2 . We have the alternative description

\scrH Y = \{ Y (Y \top Y ) - 1H + Y\bot K : H = H\top \in \BbbR p\times p,K \in \BbbR (n - p)\times p\} ,

where Y\bot \in \BbbR n\times (n - p) is orthonormal and satisfies Y \top Y\bot = 0. Indeed, it is readily
checked that this subspace is orthogonal to the vertical space and has the correct
dimension.

For every vector field \xi on \BbbR n\times p
\ast /\scrO p, there exists one and only one vector field \xi 

on \BbbR n\times p
\ast such that, for all Y \in \BbbR n\times p

\ast ,

\xi Y \in \scrH Y(24)

and

D\pi (Y )[\xi Y ] = \xi \pi (Y ).(25)

Condition (24) expresses that \xi is a horizontal vector field. The vector field \xi is called
the horizontal lift of \xi (see [36, Chap. II, Prop. 1.2]).

Proposition A.8. If \xi \pi (Y ) \in \scrT \pi (Y )\BbbR n\times p
\ast /\scrO p, then its horizontal lift satisfies

\=\xi Y Q = \=\xi Y Q for all Q \in \scrO p. Hence if \=\xi Y \in \scrH Y , then, for all Q \in \scrO p, \=\xi Y Q \in \scrH Y Q is
the horizontal lift at Y Q of D\pi (Y )[\=\xi Y ].

Proof. Let \=\xi Y be the horizontal lift of \xi \pi (Y ) at Y . We need to show that \=\xi Y Q \in 
\scrH Y Q and D\pi (Y Q)[\=\xi Y Q] = \xi \pi (Y ), and the proof is complete. For the former, since

Y \top \=\xi Y is symmetric, we have that (Y Q)\top \=\xi Y Q = Q\top Y \top \=\xi Y Q is symmetric, and hence
\=\xi Y Q \in \scrH Y Q. For the latter, observe that

D\phi (Y Q)[\=\xi Y Q] = \=\xi Y Q(Y Q)\top + Y Q(\=\xi Y Q)\top 

= \=\xi Y Y
\top + Y \=\xi \top Y

= D\phi (Y )[\=\xi Y ],

and hence D\pi (Y Q)[\=\xi Y Q] = D\pi (Y )[\=\xi Y ] = \xi \pi (Y ).

Proposition A.9. The relation

(26) g\pi (Y )(\xi \pi (Y ), \zeta \pi (Y )) = tr
\bigl( 
\xi Y

\top \zeta Y
\bigr) 

defines a Riemannian metric g on \BbbR n\times p
\ast /\scrO p. The metric g turns the quotient map

\pi : \BbbR n\times p
\ast \rightarrow \BbbR n\times p

\ast /\scrO p into a Riemannian submersion. In other words, (\BbbR n\times p
\ast /\scrO p, g)

is a Riemannian quotient manifold of (\BbbR n\times p
\ast , \langle \cdot , \cdot \rangle ).
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Proof. We just need to show that (26) makes sense, i.e., the right-hand side
depends on Y only through \pi (Y ). This holds because if \pi (Y1) = \pi (Y2), then Y2 = Y1Q
for some Q \in \scrO p, and thus

tr
\Bigl( 
\xi Y2

\top 
\zeta Y2

\Bigr) 
= tr

\Bigl( 
\xi Y1Q

\top 
\zeta Y1Q

\Bigr) 
= tr

\Bigl( 
Q\top \xi Y1

\top 
\zeta Y1

Q
\Bigr) 
= tr

\Bigl( 
\xi Y1

\top 
\zeta Y1

\Bigr) 
.

Since the mapping \Phi : \BbbR n\times p
\ast /\scrO p \rightarrow \scrS +(p, n) is a diffeomorphism, the following

relation holds between the horizontal space at Y and the tangent space of \scrS +(p, n)
(seen as an embedded submanifold of \BbbR n\times n):

(27) D\phi (Y )[\scrH Y ] = \scrT \phi (Y )\scrS +(p, n).

We will show in Proposition A.11 that we recover the description (21) of the
tangent space \scrT \phi (Y )\scrS +(p, n). To this end, we introduce for every E \in \BbbR p\times p the linear
operator

(28) TE : \BbbR p\times p \rightarrow \BbbR p\times p : X \mapsto \rightarrow EX +XE.

Lemma A.10. If E is such that \Lambda (E)\cap \Lambda ( - E) = \emptyset , i.e., E has no pair of opposite
eigenvalues, then the operator TE is invertible. In particular, if E is symmetric
positive-definite, then TE is invertible, and moreover TE(\scrS \mathrm{s}\mathrm{k}\mathrm{e}\mathrm{w}(p)) = \scrS \mathrm{s}\mathrm{k}\mathrm{e}\mathrm{w}(p).

Proof. The proof follows from [10, sec. 10].

As mentioned above, we now recover (27) using only tools from matrix theory.

Proposition A.11.
(29)

D\phi (Y )[\scrH Y ] =

\left\{   \Bigl[ Y Y\bot 

\Bigr] \left[  \~H K\top 

K 0

\right]  \Bigl[ Y Y\bot 

\Bigr] \top 
: \~H = \~H\top \in \BbbR p\times p,K \in \BbbR (n - p)\times p

\right\}   .

Proof. Let \=\xi Y \in \scrH Y , decomposed as \=\xi Y = Y (Y \top Y ) - 1H + Y\bot K. There holds

D\phi (Y )[\=\xi Y ] = \=\xi Y Y
\top + Y \=\xi \top Y ,

= Y
\bigl( 
(Y \top Y ) - 1H +H(Y \top Y ) - 1

\bigr) 
Y \top + Y\bot KY \top + Y K\top Y \top 

\bot ,

=
\Bigl[ 
Y Y\bot 

\Bigr] \left[  \~H K\top 

K 0

\right]  \Bigl[ Y Y\bot 

\Bigr] \top 
with \~H := (Y \top Y ) - 1H +H(Y \top Y ) - 1.

Conversely, let

\.S :=
\Bigl[ 
Y Y\bot 

\Bigr] \left[  \~H K\top 

K 0

\right]  \Bigl[ Y Y\bot 

\Bigr] \top 
with \~H = \~H\top \in \BbbR p\times p,K \in \BbbR (n - p)\times p.

According to Lemma A.10, there exists one (unique) matrix H such that there holds
\.S = Y

\bigl( 
H(Y \top Y ) - 1 + (Y \top Y ) - 1H

\bigr) 
Y \top + Y K\top Y \top 

\bot + Y\bot KY \top . As a result, there exists

one (unique) vector \=\xi Y = Y (Y \top Y ) - 1H+Y\bot K \in \scrH Y such that D\phi (Y )[\=\xi Y ] = \.S, which
concludes the proof.
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The Riemannian metric on \BbbR n\times p
\ast /\scrO p induces through the diffeomorphism \Phi a

metric on \scrS +(p, n), which we also denote by g in a mild abuse of notation:

g\Phi (\pi (Y ))

\bigl( 
D\Phi (\pi (Y ))[\xi \pi (Y )],D\Phi (\pi (Y ))[\eta \pi (Y )]

\bigr) 
:= g\pi (Y )

\bigl( 
\xi \pi (Y ), \eta \pi (Y )

\bigr) 
.

Applying the chain rule, we observe that

g\phi (Y )

\bigl( 
D\phi (Y )[\=\xi Y ],D\phi (Y )[\=\eta Y ]

\bigr) 
= g\Phi (\pi (Y ))

\bigl( 
D\Phi (\pi (Y ))[D\pi (Y )[\=\xi Y ]],D\Phi (\pi (Y ))[D\pi (Y )[\=\eta Y ]]

\bigr) 
= g\Phi (\pi (Y ))

\bigl( 
D\Phi (\pi (Y ))[\xi \pi (Y )],D\Phi (\pi (Y ))[\eta \pi (Y )]

\bigr) 
so that we can write

g\phi (Y )

\bigl( 
D\phi (Y )[\=\xi Y ],D\phi (Y )[\=\eta Y ]

\bigr) 
= tr

\bigl( 
\=\xi \top Y \=\eta Y

\bigr) 
.

This last expression will allow us to write g as a metric on \scrS +(p, n). Replacing \phi (Y )
and D\phi (Y )[\cdot ] by their definition yields

gY Y \top 
\bigl( 
Y \=\xi \top Y + \=\xi Y Y

\top , Y \=\eta \top Y + \=\eta Y Y
\top \bigr) = tr

\bigl( 
\=\xi \top Y \=\eta Y

\bigr) 
.

As in the proof of Proposition A.11, let us write \=\xi Y =: Y (Y \top Y ) - 1H\xi + Y\bot K\xi and

\.S := Y \=\xi \top Y +
\=\xi Y Y

\top =
\Bigl[ 
Y Y\bot 

\Bigr] \left[  \~H\xi K\top 
\xi 

K\xi 0

\right]  \Bigl[ Y Y\bot 

\Bigr] \top 
, \~H\xi :=H\xi (Y

\top Y ) - 1+(Y \top Y ) - 1H\xi .

Analogously, we define \=\eta Y =: Y (Y \top Y ) - 1H\eta + Y\bot K\eta and

\v S := Y \=\eta \top Y +\=\eta Y Y
\top =

\Bigl[ 
Y Y\bot 

\Bigr] \left[  \~H\eta K\top 
\eta 

K\eta 0

\right]  \Bigl[ Y Y\bot 

\Bigr] \top 
, \~H\eta :=H\eta (Y

\top Y ) - 1+(Y \top Y ) - 1H\eta .

We get

gY Y \top 

\Bigl( 
\.S, \v S
\Bigr) 
= tr

\bigl( 
\=\xi \top Y \=\eta Y

\bigr) 
= tr

\bigl( 
H\xi (Y

\top Y ) - 1H\eta +K\top 
\xi K\eta 

\bigr) 
= tr

\Bigl( \Bigl( 
T - 1

(Y \top Y ) - 1
\~H\xi 

\Bigr) 
(Y \top Y ) - 1

\Bigl( 
T - 1

(Y \top Y ) - 1
\~H\eta 

\Bigr) 
+K\top 

\xi K\eta 

\Bigr) 
.

Observe that this metric is different from the embedded submanifold metric in-
herited from \BbbR n\times n described in [54].

A.5. Projection. Because for every Y \in \BbbR n\times p
\ast the tangent space TY \BbbR n\times p

\ast \simeq 
\BbbR n\times p is the direct sum of the vertical space \scrV Y and the horizontal space\scrH Y , every Z \in 
\BbbR n\times p decomposes uniquely into the sum of a vertical term P\mathrm{v}

Y (Z) and a horizontal
term P\mathrm{h}

Y (Z).

Proposition A.12.

P\mathrm{v}
Y (Z) = Y T - 1

Y TY
(Y \top Z  - Z\top Y ),(30)

P\mathrm{h}
Y (Z) = Z  - P\mathrm{v}

Y (Z),(31)

where T is as in (28).

Proof. The vertical projection P\mathrm{v}
Y (Z) is characterized by P\mathrm{v}

Y (Z) = Y \Omega with
\Omega \in \scrS \mathrm{s}\mathrm{k}\mathrm{e}\mathrm{w}(p) and (Z  - P\mathrm{v}

Y (Z)) \in \scrH Y . According to (23), this yields Y \top (Z  - Y \Omega ) - 
(Z\top  - \Omega \top Y \top )Y = 0, and thus \Omega = T - 1

Y \top Y
(Y \top Z  - Z\top Y ), which is well defined by

Lemma A.10. The claims follow.
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A.6. Gradient. The gradient of a function defined on the quotient \BbbR n\times p
\ast /\scrO p

can be obtained from the gradient in the total space \BbbR n\times p
\ast .

Proposition A.13. Let f : \BbbR n\times p
\ast /\scrO p \rightarrow \BbbR , and \=f : \BbbR n\times p

\ast \rightarrow \BbbR be the correspond-
ing function on \BbbR n\times p

\ast (i.e., \=f = f \circ \pi ). Then the horizontal lift at Y of the gradient
of f is

(32) gradfY = grad \=f(Y ).

Proof. See [5, sec. 3.6.2].

A.7. Riemannian connection. The theory of Riemannian submersions [47]
(or see [5, sec. 5.3.4]) yields the following formula for the Riemannian connection \nabla 
(also known as the Levi-Civita connection):

(33) \nabla \eta \xi Y = P\mathrm{h}
Y

\bigl( 
D\xi (Y )[\eta Y ]

\bigr) 
for all vector fields \eta , \xi on \BbbR n\times p

\ast /\scrO p, where P
\mathrm{h}
Y is the horizontal projection (30) and

D\xi (Y )[\eta Y ] is the derivative of \xi (viewed as a function from \BbbR n\times p to \BbbR n\times p) at Y along
\eta Y .

A.8. Hessian.

Proposition A.14. The Riemannian Hessian of a function f : \BbbR n\times p
\ast /\scrO p \rightarrow \BbbR 

is given by
Hessf(\pi (Y ))[\xi \pi (Y )]Y = P\mathrm{h}

Y

\bigl( 
Dgrad \=f(Y )[\=\xi Y ]

\bigr) 
,

where \=f : \BbbR n\times p
\ast \rightarrow \BbbR is the corresponding function on \BbbR n\times p

\ast .

Proof. Definition 5.5.1 of [5] states that

Hessf(x)[\xi x] = \nabla \xi xgradf.

The result comes then from (33).

A.9. The exponential map. It is well known that geodesics on \BbbR n\times p
\ast /\scrO p are

obtained by projection through the quotient map \pi of horizontal geodesic on \BbbR n\times p
\ast ,

i.e., straight lines that remain in \BbbR n\times p
\ast . Now, we provide a proof of this result.

Theorem A.15. Let \scrD Y and Exp be defined as in section 3. For all \xi \pi (Y ) \in 
D\pi (Y )[\scrD Y ], the exponential map on \BbbR n\times p

\ast /\scrO p is given by

(34) Exp\pi (Y )\xi \pi (Y ) = \pi (ExpY
\=\xi Y ),

i.e., geodesics are images of straight lines in \BbbR n\times p
\ast , through the quotient map \pi , re-

stricted to the time interval where Y + t\=\xi Y remains full rank.

Proof. By definition, the exponential of a tangent vector \xi \pi (Y ) is the point reached
at time t = 1 by the geodesic emanating from \pi (Y ) with initial velocity \xi \pi (Y ). It is

therefore sufficient to show that the curve t \mapsto \rightarrow \pi (ExpY t
\=\xi Y ) is a geodesic on \BbbR n\times p

\ast /\scrO p,
starting at \pi (Y ) and with initial velocity \xi \pi (Y ). We propose here two proofs of this
result.

Proof 1: Let \=\xi Y \in \scrD Y . Consider the curve \gamma : t \mapsto \rightarrow ExpY t
\=\xi Y = Y + t\=\xi Y . The

curve \gamma is a geodesic of \BbbR n\times p
\ast for all t \in [0, 1], since it is a straight line that remains

in \BbbR n\times p
\ast by the definition of \scrD Y . Moreover \.\gamma (0) is horizontal, and hence the theory of

Riemannian submersions [25, Prop. 2.109] yields that \.\gamma (t) is horizontal for all t \in [0, 1],
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and indeed one readily checks that \gamma (t)\top \.\gamma (t) = (Y + t\=\xi Y )
\top \=\xi Y = Y \top \=\xi Y + t\=\xi \top Y

\=\xi Y is
symmetric. The theory also yields that \pi \circ \gamma = t \mapsto \rightarrow \pi (Y + t\=\xi Y ) is a geodesic of
\BbbR n\times p

\ast /\scrO p for t \in [0, 1]. Since \pi \circ \gamma (0) = \pi (Y ) and \mathrm{d}
\mathrm{d}t (\pi \circ \gamma )(0) = D\pi (Y )[\=\xi Y ] = \xi \pi (Y ),

the proof is complete.
Proof 2: This is a ``blindly"" constructive proof that does not use the property that

horizontal geodesics map to quotient geodesics. To find the horizontal lift through
Y of the geodesic through \pi (Y ) along D\pi (Y )[\=\xi Y ], we need to find the curve through
Y along \=\xi Y such that \nabla \.Y (t)

\.Y (t) \in \scrV Y (t) for all t. (This condition follows from

the formula \nabla \eta \xi x = Ph
x\nabla \eta x

\xi that relates the connection \nabla on the quotient to the

connection \nabla on the total space when the quotient map is a Riemannian submersion;
see section A.7.) Since the curve must be horizontal, we have Y \top \.Y  - \.Y \top Y = 0.
Differentiating once yields Y \top \"Y  - \"Y \top Y = 0. Moreover, since \nabla \.Y (t)

\.Y (t) = \"Y (t) must

belong to \scrV Y (t) for all t, we have \"Y = Y \Omega where \Omega is skew-symmetric. Replacing this

in the previous second-order differential equation yields Y \top Y \Omega + \Omega Y \top Y = 0. Since
Y \top Y is invertible, it follows from the theory of Sylvester equations (see [26, Chap. VI])
that \Omega = 0 is the only solution. Hence \"Y = 0, which implies that the horizontal lift
at Y of the geodesic with initial velocity \xi \pi (Y ) = D\pi (Y )[\=\xi Y ] is Y (t) = Y + \=t\xi Y for
t \in [0, 1].

The exponential on (\scrS +(p, n), g) is thus given by Exp\phi (Y )D\phi (Y )[\=\xi Y ] = \phi (Y + \=\xi Y )

(for \=\xi Y \in \scrD Y ), i.e.,

ExpY Y \top (Y \=\xi \top Y + \=\xi Y Y
\top ) = (Y + \=\xi Y )(Y + \=\xi Y )

\top .

A.10. A retraction. Following the theory in [5, sec. 4.1.2], a retraction on
\BbbR n\times p

\ast /\scrO p is given by

(35) R\pi (Y )\xi \pi (Y ) = \pi (Y + \xi Y ),

provided that this definition makes sense, i.e., the right-hand side only depends on Y
through \pi (Y ) only. This is the case, since for all Q \in \scrO p, Y Q + \xi Y Q = (Y + \xi Y )Q.
Interestingly, with (35), we have recovered the exponential map (34). This situation
is rather unusual (compare with the examples in [5, sec. 4.1.2]). This is, for example,
not the case for the quotient geometry of \scrS +(p, n) investigated in [14, 55] or for the
Grassmann manifold Grass(n,p) identified to the quotient \BbbR n\times p

\ast /GL(p) [4].

A.11. Curvature. Finally, we summarize some recent results, obtained in [44],
regarding the curvature of the manifold.

Theorem A.16. Let \xi , \eta , \alpha , and \beta be vector fields on \BbbR n\times p
\ast /\scrO p, and let \=\xi , \=\eta , \=\alpha ,

and \=\beta be their horizontal lifts. The Riemannian curvature tensor at \pi (Y ) satisfies

(36)
g
\Bigl( 
R\BbbR n\times p

\ast /\scrO p
(\xi \pi (Y ), \eta \pi (Y ))\alpha \pi (Y ), \beta \pi (Y )

\Bigr) 
=

1

2
\langle P\mathrm{v}

Y [\=\xi , \=\eta ],P
\mathrm{v}
Y [\=\alpha , \=\beta ]\rangle 

 - 1

4

\bigl( 
\langle P\mathrm{v}

Y [\=\eta , \=\alpha ],P
\mathrm{v}
Y [\=\xi , \=\beta ]\rangle  - \langle P\mathrm{v}

Y [\=\xi , \=\alpha ],P
\mathrm{v}
Y [\=\eta , \=\beta ]\rangle 

\bigr) 
,

where [\=\xi , \=\eta ] is the Lie bracket in \BbbR n\times p
\ast , and P\mathrm{v}

Y [\=\xi , \=\eta ] is given by (2).

Corollary A.17. Let \xi \pi (Y ), \eta \pi (Y ) be (independent) tangent vectors on \BbbR n\times p
\ast /\scrO p

with horizontal lifts \=\xi Y , \=\eta Y . The sectional curvature at \pi (Y ) in \BbbR n\times p
\ast /\scrO p is

(37) K\BbbR n\times p
\ast /\scrO p

(\xi \pi (Y ), \eta \pi (Y )) =
3| | YT - 1

Y \top Y

\bigl( 
\=\eta \top Y

\=\xi Y  - \=\xi \top Y \=\eta Y
\bigr) 
| | 2\mathrm{F}

\langle \=\xi Y , \=\xi Y \rangle \langle \=\eta Y , \=\eta Y \rangle  - \langle \=\xi Y , \=\eta Y \rangle 2
.
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Theorem A.18. If p = 1, the sectional curvature is always zero. If p \geq 2,
the minimum over the tangent planes of the sectional curvature is zero, while the
maximum is equal to 3/(\sigma 2

p - 1 + \sigma 2
p), where \sigma i is the i\mathrm{t}\mathrm{h} largest singular value of Y .
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