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Abstract

Motivation: Merging gene expression datasets is a simple way to increase the number of samples in
an analysis. Experimental and data processing conditions, which are proper to each dataset or batch,
generally influence the expression values and can hide the biological effect of interest. It is then important
to normalize the bigger merged dataset, as failing to adjust for those batch effects may adversely impact
statistical inference. However, over-adjusting can be more damaging than not normalizing at all, especi-
ally in the context of prediction tasks where the phenotype to predict is unequally distributed among the
batches.

Results: We compare the two main types of batch effects removal approaches: location-scale (Com-
Bat and centering-scaling) and matrix factorization (based on SVD or ICA) normalization methods. We
investigate on breast cancer data how those normalization methods improve (or possibly degrade) the
performance of a simple classifier in the presence of two kinds of difficulties: (i) strong batch effects due
to differences in summarization methods, (ii) strong correlation between outcome and batch. Our results
indicate that if the best method varies depending on the two difficulties, a method based on Independent
Component Analysis gives the most consistent results across all cases.

Availability: R code available on htt p: //si t es. ucl ouvai n. be/ absi | /2017. 01

Contact: emilie.renard@uclouvain.be

1 Introduction Expression levels of genes are the result of interactiohsdsn diffe-
rent biological processes. When measuring those exprekesiels, noise
may also be added at each step of data acquisition due todisiores. In
particular, different biases can be introduced dependmgxperimental
conditions. Such confounding factors, or batch effectat tomplicate
the analysis of genomic data can be for example due to differé chip
type or platform, procedures that can differ from one latmyeto another,
storage conditions, ambient conditions during prepamnatioA carefully
designed experimental process can limit the impact of stfelats, but
some are often unavoidable, especially when a large nunftsamoples
is necessary. Those batch effects can be quite large andhadsffects
related to the biological process of interest. Not inclgdinose effects in
the analysis process may adversely affect the validityalblical conclu-
sions drawn from the datasets (Leek and Storey, 2007; eeak, 2010;
Teschendorfkt al,, 2011). It is then important to be able to combine data
from different sources while removing the batch effectse Tifficulty is

Nowadays, the development of sequencing technologiessttomeasure
gene expression levels at a reasonable cost. The analytis tésulting
data helps to better understand how genes are working, heétilysoal of
developing better cures for genetic diseases such as caneeto different
constraints such as the limited number of samples that carooessed at
the same time in an experiment, the size of such datasetweis lohited
in samples. However, statistical inferences need a highbeurof sam-
ples to be robust enough and generalizable to other data. oks and
more of those datasets are available on public repositsties as GEO
http://ww. nchi.nl mnih. gov/ geo/, merging and combining
different datasets appears as a simple solution to inctéaseumber of
samples analyzed and potentially improve the relevanckeobiplogical
information extracted.
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thatthe precise effects of those technical artefacts oa gegpression levels
is often unknown. However some partial information is usuaVailable,
such as the batch number or the date of experiment, and casedeas a
proxy for those effects.

From here, we will refer to the smaller datasets to merglesdshes
and to the bigger dataset resulting from the concatenafidinecsmaller

expressed genes are linked to the batch or the phenotyple aSizse can
occur when, for example, a laboratory first analyses theadesssamples
and matches them later with the controls. When combining flain alre-
ady existing studies, the reality is often somewhere betvthese two
extremes: group repartition of the phenotype to predictfenounbala-
nced, as for example in the breast cancer batches we usmldier paper

datasets aslataset We assume that the batch effect removal methods,(see Table 1). In cases where the repartition of the pheaatyjnterest

termed herécross-batch) normalization methgdsave only access to the
gene-by-samples matrix of expression levels ans to thélratmber of
each sample.

Available normalization can be classified in two main apphes:
location-scale methods and matrix factorization methdde location-
scale methods assume a model for the data distributionwithiches,
and adjust the data within each batch to fit this model. Thigegeh is the
most straight-forward one and many methods have already jego-
sed: XPN (Shabaliet al., 2008), DWD (Benitcet al., 2004), ratio-based
methods (Lueet al,, 2010), ComBat (Johnsat al, 2007), quantile based
methods (Warnaét al, 2005), mean or median centering (Sietsal.,
2008), ... The matrix factorization based methods assuatetiie gene-
by-sample expression matrix can be represented by a smaflrs@k-one
components which can be estimated by means of matrix faatan.
The components that correlate with the batch number arerémeaved to
obtain the normalized dataset (Altetral, 2000; Renarct al., 2016). In
Leeket al.(2010); Teschendor#t al. (2011), matrix factorization is used
to model covariates in a differentially expressed gene (pd&Bction pro-
cess. Matrix factorization based methods are less usebaplpbecause
of the indirect approach to the problem: if no batch effestecovered in
the rank-one components, then the data matrix is left urggthn

The presence or absence of batch effects in a dataset — anththu
effectiveness of normalization methods — can be evaluayedifferent
methods, which can be classified in three main groups: Iggaioaches,
global approaches and, in supervised cases, performasee baproa-
ches. Global methods aim to illustrate the global behavidh® dataset:
the evaluation of batch effect presence uses many featti@sca. For
example, the global behavior of all genes can be summarigedchiste-
ring dendogram or a plot of the first principal components.léstering
of samples by batch shows presence of batch effects; it mbanshe
predominant trend present in the data is linked to batcheseMer it does
not imply that all genes are affected to the same extend, eor affected
at all. On the contrary, local methods examine the behafione gene at
a time: expression levels of a gene should have the sameibelgypi-
cally similar probability distributions) for all batche#/hen evaluating a
normalization method, the clustering by batch and/or tfierdinces in
behavior across batches should disappear (or at least berye@hose
evaluation methods are unsupervised in the sense thatitheoeground
truth to refer to: maybe the observed differences are duebiolagical
difference in the batches, and not to a technical artefagt Grwe have
access to some (part of) ground truth, then the adequacs bftich effect
removal method can be evaluated quantitatively. If somegeanre known
to be truly (not) differentially expressed, the proportmiithose genes in
the DEG list after normalization should ideally be highen(r). P-values
corresponding to null genes or negative control genes dtmuliniformly
distributed acrosf), 1]. The list of DEG should also be more stable after
normalization. In prediction tasks where the final objexisfor example
to determine to which class a new sample belongs, perforesasttould
be improved after normalization. See for example Lasal. (2013) for
a list of techniques to evaluate batch effects presence.

In sample classification tasks, if the class labels (i.e,phenotype
to predict) are quite balanced across batches, then bd@ttsetre less
likely to adversely impact the outcome (Tamiretal, 2014; Parker and
Leek, 2012). In the extreme case of perfect confounding tHes with
the phenotype, it is much more difficult to be sure that theedéhtially

is highly unbalanced among batches, being able to sepaatik éffects
from phenotype is more challenging (Sonesbal., 2014). Using datasets
only preprocessed with either RMA or fMRA summarizationrkea and
Leek (2012) tried to predict estrogen receptor status ieadticancer data-
set when batch and status are perfectly confounded. Tiseiltsesuggest
that the algorithm tends to predict the batch more than titestand that
a careful feature selection can improve those results. &g al. (2016)
propose a sanity check using random numbers: replacinglegalwith
normal random numbers shows that the F-statistic is inflatguesence
of unbalanced repartition. Rudy and Valafar (2011) comlaeelist of
DEG obtained from two batches separately to the DEG listioéthfrom
the normalized merge of the two batches. When introducirtgplamce
in the repartition of group treatment among batches, masition-scale
normalization methods they tested tend to detect less DBGH. Isatch
effects should be taken into account to avoid to predicttbatstead of
phenotype, we should also check that what is removed dunmgdrma-
lization step is really only the batch effects and does notain potential
useful information about the phenotype to predict. Thiserdrallenging
configuration is at the heart of this paper, that aims to wtedad which
normalization methods can handle this situation.

In this paper, we investigate the impact of cross-batch abzation
methods on sample classification tasks. We compare the tp@agh
families (location-scale vs matrix factorization) to uretand their advan-
tages and weaknesses, and to find out which methods perfstinéich
scenario. More specifically, we examine three configuratafibatch effe-
cts. The first one includes an 'outlier’ batch where all geq@essions are
really different from the other batches, which implies @sty correlation
(in the broad meaning of correlation) between gene exmessid batch.
The second one does not include any ’outlier’, but presectslation
between batch and phenotype to predict. The last one combaota dif-
ficulties: the "outlier’ batch, and unbalanced phenotypgmargtion among
batches.

The paper is organized as follows. Section 2 details the odstbexa-
mined, which are experimented and analyzed in Section 3c@mzusions
are drawn in Section 4.

2 Normalization methods

Among the many normalization methods mentioned above, weseh
to investigate more in depth factorization based methoagyu€A and
SVD and to compare them to the location-scale method ConiBemhBat

is widely used in the literature, often appears among thertmemalization
methods (Cheet al, 2011; Rudy and Valafar, 2011; Taminetal., 2014;
Shabalinet al,, 2008; Luoet al., 2010) and can easily be applied to more
than two batches at a time. Another widely used method, bas&Y/D, is
SVA Leeket al.(2010). However unlike ComBat this method necessitates
more information than only batch and requires the phenatiypeedict to
be available. Thisis why SVAis notincluded in the companisBentering-
scaling was also investigated, but as ComBat is an improgeslon of it,
results for centering-scaling are not systematically dieed.

“comp_berem” — 2017/2/8 — page 2 — #2



Comparison of batch effect removal methods

2.1 Location-scale methods

Location-scale methods are maybe the most intuitive wayatalle the
data. Choosing a reasonable model representing the pligpalstribu-
tion of gene expression, and assuming that genes behawe sathe way
in each batch, expression values are adapted to fit this mothéh each
batch. The goal is to let each gene have a similar mean anariamee
in each batch. A main hypothesis in such methods is that ustdg the
gene distributions no biological information is removed.

The simplestway to normalize adatasetin order to remowhledfects
is to standardize each batch separately. Thatis, for eahigeach batch,
the expression values are centered and divided by thelataeviation.

A widely used and more complex location-scale method is CaimB
(Johnsoret al, 2007). The expression value of geihér samplej in
batchb is modeled asXy;; = a; + 8;Cj + Y + Spi€pij Wherea; is
the overall gene expression, afiglis the vector of known covariates repre-
senting the sample conditions. The error tefyyy; is assumed to follow
a normal distributionV (0, o2). Additive and multiplicative batch effects
are represented by parametggsandd,; . ComBat uses a Bayesian appro-
ach to model the different parameters, and then removesatioh bffects
from the data to obtain the clean dagg, ; = é;; + @i + $3:C;. By poo-
ling information across genes, this approach is more rdioustitliers in
small sample sizes.

2.2 Matrix factorization based methods

The factorization based normalization process, adapted Renarcet al.
(2016), is detailed in Algorithm 1. It is more general tharRienardet al.
(2016) because there are still two main choices to do: firstntiatrix
factorization method to use (line 1), second the measure tasevaluate
the correlation between batches and components (line 2¢. ¢derelation
should be understood in is broad sense, that is a relatjpnsitiether
causal or not, between two variables. Let us now discussriitgo 1 line
by line.

The first step is to find the best approximation of the gensdiyple
matrix X using a low-rank factorization (line 1):

K
X~ ABT =) A, B, (1)
k=1

A, ;, can be interpreted as the gene activation pattern of conmbdne
and B, ;, as the weights of this pattern in the samples. Each can be
interpreted as a meta-gene, i.e. a group of genes workirghtegin a
specific condition B, ;, should then be related to the activation pattern of
this condition among samples. Many methods exist to faxgaai matrix,
depending on the properties the factorization componeat® o ful-
fill. Imposing orthogonality among components leads to @&iar Value
Decomposition (SVD). Normalization of gene expressiomdsing SVD
was first proposed in Altest al.(2000). Minimizing statistical dependence
across component leads to Independent Component Andiggiy ifheth-
ods. Different variants exist for such methods dependinigonstatistical
dependence is evaluated, and if we want to impose indepeadenong
genes or samples dimension, or even using a trade-off betaah opti-
ons. ICA was shown to better model the different sources iiditian than
SVD (Teschendorfét al,, 2011). A normalization method using an imple-
mentation based on JADE approach and offering the poggitnlichoose
the trade-off between samples and genes independence ossed in
Renardet al. (2016). Other factorization methods exist in the literatur
such as Non-negative Matrix Factorization (Lee and Seud@9)lwhich
can be used when dealing with non-negatives matrix valuelsteon com-
ponents with non-negatives values only. Matrix of binarlpga have also
their corresponding factorization techniques (Zhanhgl., 2010).

Once the factorization computed, we select fhg,’s that correlate
with the batch. If a component presents enough correlatitmtte batch
(line 3), then this component is selected. As batch is a oateg infor-
mation and theB. ;,'s are continuous, the usual linear correlation formula
(Pearson or Spearman) cannot be used. To estimate whichocems
are related to batch, as in Renatdal. (2016) we use thé?? value that
measures how well a variable (here,c) can predict a variablg (here,
B.;) in alinear model:

2 _ SSre.s
R (z,y) =1 SSuor”
SStot = Y, (y; — )2 is the sum of squares of the prediction errors if we
take the meag = % -1 yias predictor 0fy. SSres = >, (yi —9i)?
is the sum of squares of the prediction errors if we use adineadel
4; = f(x;) as predictor: ifc is continuous the prediction model is a linear
regression, ifz is categorical we use a class mean. Rfevalue indicates
the proportion of the variance ipthat can be predicted from, and has
the advantage to be usable with categorical or continuatablas. So the
higher theR? value, the better the association between both variabkes. A
the batch information is categorica®?(c, B.;) compares the prediction
of B;. by a general mean B—jf or by a batch meagjeci %
(whereC; represents all samples in the same batch as sajjhple

An additional step can be added in the process to check ifleeted
components do not correlate with some information of irge(ines 4-6,
optional). The selected components are then removed frermttrix X
to obtain a cleaned dataset (line 7).

Algorithm 1 Matrix factorization based normalization

Require. X (p x n) the aggregated dataset to be normalizedn) a
categorical variable indicating the batch numbeut fact the matrix
factorization method;, € [0, 1] the threshold to consider a component
associated te, [optional] c2 (n) categorical/continuous information
that we want to preserve

1: A, B + mat f act (X)

2: R < cor (¢, B)

3: iz < whi ch(R > ¢)

4: Ry < cor (c2,B) > optional
5: ixo < whi ch(R2 > R) > optional
6: ix <+ iz \ iz2 > optional
7

P X < X — Al ia] x B[, i) T

3 Results and discussion

We tested the normalization methods on breast cancer eipnesie
combined different batches which can be accessed under GEDears
GSE2034 (Wanet al., 2005) and GSE5327 (Miret al., 2007), GSE7390
(Desmedet al., 2007), GSE2990 (Sotirioet al., 2006), GSE3494 (Miller
et al, 2005), GSE6532 (Lcet al, 2007) and GSE21653 (Sabatgral.,
2011). All batches were summarized with MAS5 and represkintéog2
scale, except GSE6532 which was already summarized with RIM&
took as phenotype of interest to predict the estrogen-tecsgatus (ER).
We removed the samples and features with missing informatibich
gives an aggregated dataset of 22276 genes.

In order to compare the effect of normalization in variousesa we
considered three different aggregated datasets. Therigsteeps all sam-
ples, the main difficulty being that batch 5 is summarizedgisi different
method. In the second we removed batch 5, but introducebtetetely
a correlation between ER status and the batch number by raphbeg
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Table 1. Repartition of ER status in the batches: numfieof
samples by batch, and proportiprof positive estrogen receptors

Batch| Dataset 1

N p

Dataset 3| GEO number

N p

Dataset 2
N p

344
198
183
247
126
263

0.61{ 169 0.20| - -
0.68| - - - -
0.81| 183 0.81| 183 0.81
0.86| 247 0.86| 247 0.86
0.68| - - 50 0.20
0.58| 138 0.20| 138 0.20

GSE2034, GSE5327
GSE7390

GSE2990

GSE3494

GSE6532
GSE21653

o g WN

among 4 batches. The third dataset combines both diffisu{téferent
summarizations and correlation). The repartition of thesERus in these
three cases is described in Table 1.

To evaluate the presence of batch effects, we plotted thditstqri-
ncipal components of the datasets (see Figure 1). Princgnraponents
represent linear combinations of features (here, genegsjpiving the
largest possible variance, such that components are etatied: the first
components capture most of the variability in the data. Qo 1, we can
see that the first two principal components of the datasetw shglobal
clustering by batch. Batch 5 is the most clearly separatedhgbly due to
its summarization using RMA and not MAS5 as the others.

In the rest of this section, three normalization methods{Bat, SVD
and ICA based) and the case without normalization are ccedpagar-
ding possible batch effects. First we investigate the efféactorization
in Section 3.1. In a second time, we compare in Section 3.2ebelts
obtained in the context of a classification task.

3.1 Factorization interpretation

We computed different factorizations of the aggregatedsst yielding
the factorsA and B as in Equation 1. We compared the SVD factorization
to three different ICA factorization: independence amoeges, inde-
pendence among samples, and a trade-off between both spiitose
three ICA factorizations correspond to setthparameter in Renaret al.
(2014) to0, 1 and0.5 respectively.

Ideally, the components removed for normalization showdabso-
ciated to the batch, an not to ER. We compared the associaitveen
factorization components and ER or batch usingiRevalue on Figure 2.
For all datasets, all factorizations recovered componass®ciated to
batch number. Associations with ER status are weaker, butregli-
gible nevertheless. Due to the presence of correlationdssivbatch and
ER status in datasets 2 and 3, it is more difficult to obtain moments
linked to the batch but not to the ER, and conversely. To beiteluate
the R? values when components have signific&3tvalues for both batch
and ER status, we sub-sampled the data to re-balance bat&Restatus.
Comparison of mea®? values obtained from 100 sub-samplings in the

Table 2. Various estimations dt? values, on all batches or only the training
batches (see Section 3.1), using all samples or a mean edtaom 100 sub-
samplings to rebalance the POl among batches in trainingéfaset 2, ICA —o
and SVD).

Cmpt R?(batch) on samples in batches

R? on all sample: b R?(ER) on samples in batches n
1,3 1,4

batch ER|1,3 1,4 1,6 3,4 3,6 4, 1,6 3,4 3,6 4,
ICA5| 0.79 0.25/0.24 0.92 0.73 0.80 0.43 0.48.00 0.37 0.24 0.30 0.110.04
13| 0.19 0.400.00 0.18 0.18 0.20 0.210.00({0.24 0.37 0.41 0.39 0.42 0"7A|I samples
14| 0.58 0.25/0.02 0.80 0.80 0.31 0.33 0.180.01 0.32 0.27 0.23 0.210.03 P
18| 0.26 0.53/0.01 0.25 0.30 0.23 0.280.01[0.31 0.57 0.54 0.53 0.51 0.45
ICA5| 0.82 0.00|0.26 0.92 0.79 0.83 0.55 0.§®.00 0.00 0.00 0.01 0.010.07
13| 0.01 0.35(0.00 0.00 0.01 0.01 0.01 0.®.34 0.36 0.37 0.34 0.36 0.3Balanced
14| 0.60 0.01)0.02 0.82 0.82 0.23 0.27 0.320.01 0.00 0.00 0.05 0.04 0.4%ub-sampling
18| 0.02 0.47(0.03 0.00 0.02 0.00 0.02 0.®.43 057 0.43 054 041 0.4
SvD1| 0.87 0.27/0.06 0.93 0.91 0.59 0.61 0.§2.00 0.38 0.37 0.26 0.300.00
2| 089 0.14/0.17 0.96 0.880.03 0.08 0.95(0.01 0.46 0.36 0.080.01 0.00f Il samples
3| 042 0.42/0.00 0.05 0.040.55 0.54 0.340.27 0.31 0.29 0.60 0.55 O.zﬁA P
VD1| 0.88 0.00/0.02 0.94 0.93 0.60 0.60 O. 00 0.00 0.00 0.00 0.01 0.0
2| 091 0.00|0.15 0.96 0.910.00 0.13 0.95/0.01 0.01 0.00 0.09 0.01 0.01] Balanced
3| 024 0.31)0.00 0.05 0.030.23 0.27 0.330.36 0.43 0.36 0.35 0.28 0.3Gub-sampling

Components shown are those exhibiting a signifidahtvalue with both batches and
ER status. Initalic thé?? values< 0.05. After resampling, ICA components 5 and 14
and SVD components 1 and 2 did not show anymore correlatitmBR status, while
ICA components 13 and 18 did not show anymore correlatioh étches. Unlike
ICA, an indetermination remains in SVD components: resamgpdid not allow to
determine if component 3 is linked to only ER status or batch.

Table 3. Correlation betweeB components linked to
batches 2 > 0.5) for dataset 2¢ = 0

| Bis Bis B 11 B 14
B.s |1.00 0.65 0.57 0.52
B.s 0.65 1.00 0.76 0.35
B.ui  |057 0.76 1.00 0.40
B 14 0.52 0.35 0.40 1.00

samples onlyd = 1) decreases the number of component linked to the
batch. We choose to investigate only the= 0 anda = 0.5 cases further.

3.2 Validation by impact on classification

To compare the different normalization methods, we used thea whole
classification process where the ER status is predicted asiisVM clas-
sifier. The ER status is thus the phenotype to predict, ie.otitcome.
The whole process is described in Algorithm 2. The first stefwinor-
malize the aggregated datasétwith the chosen method (here, ComBat,
SVD or ICA based normalization) (line 2). Optionally, thaitring labels
(separated from test labels in line 1) can be used as exwemation to
preserve. Here we did not use this option in our experiménsafticular,

c2 is not used in Algorithm 1). In ICA and SVD based normalizasip
we computed théd = 20 first components and removed the components
with an R? value higher thart = 0.5. Training and testing sets are then
separated (line 3). To mimic the case where the model is baged on

ICA,=0 and SVD in dataset 2 are given in Table 2. For ICA components,some studies and then validated on other separate studieept each
the re-evaluations a®? suggest that each component is associated to onlytime two batches out for testing, and trained the SVM classiin the

one effect, the one with the initial higher association.Ha 8VD case,
there is still one component associated to both effects.
On Figure 3 page 7 we represented for different ICA decontiposi

other batches. This gave a total @g = 15 experiments for dataset 1,
andC? = 6 experiments for datasets 2 and 3. A basic feature selection
is performed by selecting the genes with the best assatiadith the ER

the R? values between all components and ER/batches, and theoRears label based on a t-test (line 4). A standard SVM model is ¢chinased on

correlation between components themselves. In the ICA, case 0
allows to recover a higher number of components linked tobtteh.
For example on dataset 2, components 5, 6, 11 and 14 h&?hégher
than 0.5. However, we can see on Table 3 that all componeatsiginly

those genes (lines 5 to 8). To keep the SVM model simple, we tree
linear kernel implementation provided in the LiblineaR Rkege. The
cost parameter is fixed using the heuristic implemented eénpéckage,
and the classes weights are se{1o- po, 1 — p1] wherep; gives the

correlated. As expected, using angreater than O enables to decreases proportion of samples in clagsWhen training the SVM model, train data
the correlation among components. Imposing independence among theare first centered and scaled to ensure to treat all featuthdhve same
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Dataset 1

2nd PC (3%)
——
2nd PC (7%)

‘et
i, X0

1st PC (80%)

Dataset 2

1st PC (19%)

Dataset 3

2nd PC (4%)

by

1st PC (79%)

Fig. 1. Global evaluation of batch effects in the 3 datasets: plots of the first twoipainmomponents. Colors represent the batch membership.

Dataset 1 Dataset 2 Dataset 3
14 1- A
® ° ICAD ° a °a
o ICA0.5 5 &
i ICA1
A SVD °
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N g © N
© A 4 © o
R o
5 g0
A L0 o o o
& o 8o 20
2 6% A
o- Kbo o &% P S
0 ' 1 0 ' i 0 ' 1
R2(ER) R2(ER) R2(ER)

Fig. 2. Association between factorization components and ER or batch, for S¥DCsawith o« = {0, 0.5, 1}.

weight; the same centering-scaling is then applied on gteltga. The ER
labels of testing set are finally predicted using the SVM nhdlitee 9).
We repeated the prediction step (line 5 to 9) using differemhbers of
selected genes (line 4).

Algorithm 2 Classification process

Require: X (p x n) aggregated matrix of gene expressigi(n) the label
to predict,c (n) the batch information

SYtryYte <Y

Xn < normal i zati onMet hod(X, ¢, yir)

Xtm Xte <~ Xn;

id$bestGenes «—ttest (ytT, Xtr)

P Xsvm Xtr[idxbestGenesv :}

c<+ heuristic(Xsyar)

w < 1 — [propy,, =1 propy,,=ol

s modelsy s <+ SYMXsvar, Yir, ¢, W)

: Jte <+ predi ction(modelsy ar, XtelidTpestGeness )

o RONE

The results on the testing sets for the different normadinatnethods
applied on the three datasets were compared to the caseutvitboma-
lization on Figure 4 (top). We choose to use the balancedsitilzetion
rate (BCR) as performance measure. The balanced clagsificate, or
balanced accuracy, is computedia®( 755 + 7+ 5 ) and allows
to take into account a potential imbalance between claSé@dlar results
(not shown) were obtained when using area under the ROC aaverfor-
mance measure. The better performances are obtained tisswly with
dataset 1 that has a higher number of training samples, angldise with
dataset 3 that presents a higher correlation between battlbwcome.
We can see with dataset 1 that if all normalization methotiswbes simi-

larly, the normalization step is necessary and allows teese the BCR.

The necessity of normalization is mainly due to batch 5, Wwiigchighly

decentered compared to the others, as shown with the plgsraipal
components on Figure 1. Dataset 2 presents a correlatiorebetbatch
and outcome, so applying location-scale normalizatiorhotbtike Com-
Bat tends to remove too much information and decreases tlie BIO
normalization or an ICA—¢.5 based normalization gave the best results;
SVD is in between. The effect of the normalizations on thefived genes
selected by a t-test is shown on Figure 5. The worst clasgat@pais
obtained using ComBat: by forcing all batches to have a ammiean,
both classes are pushed closer to each other. Dataset istthe dataset
in the sense that there is an 'outlier’ batch that necessitsdme norma-
lization, and correlation between outcome and batch wléduires to be
careful when normalizing: for a limited number of genes ICs#séd nor-
malization gives the best performances. In this specifie,aag ICA,—o
gives significantly better results, nearly as good as dela¥¥e can hypo-
thesize that with so strong batch effects, assuming indigeae in the
sample dimension is less realistic.

To investigate robustness with respect to features, wevethisom
the dataset (before any normalization) the 100 best gesesiated to ER
status. For this we ranked the genes using a t-test within katch and
within the un-normalized merged dataset. Then we took thdianeof
those ranks for each genes as a final ranking. As expectedyigthose
genes decreased performances (on Figure 4, bottom), atpeghen
selecting a limited number of genes. The "none” curve (nonaization)
curve is more affected than the others, especially in dagase

4 Conclusion

In the context of merging gene expression datasets, we hawveue
cted a detailed comparison between two types of batch eféenbval
approaches: location-scale (ComBat and centering-ggaind matrix
factorization (based on SVD or ICA) normalization methodée have
compared those normalization methods, used as classiéprqmessing
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Fig. 4. Influence of the normalization methods on BCR. Thiner lines correspinstandard deviations. The horizontal axis gives the imposed nuifyenes to be selected by line 4 of
Algorithm 2. Top: results using all features. Bottom: results when rengdvom the dataset (before any normalization) the 100 first features veitheht association with the ER.
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Fig. 5. Effect of the normalization for dataset 2 on the first two genes selected applying a t-test on the normalized dataset (gene 1 is the same forildlgahe 2 is the same for none
and ICA on one side, and for SVD and ComBat on the other side). Eatotodresponds to a sample; shape/color gives the batch and fullpiy eorrespond to ER status. The contour
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tools, in three different configurations with stronger oraker batch effe-
cts, and stronger or weaker presence of correlation bethateh and the
phenotype to predict.

When merging batches preprocessed differently (such ag WAS5
and RMA summarization methods) with a reasonably balanepdrti-
tion of the phenotype to predict, applying any of the testednalization
methods (even a simple centering-scaling) allows to impadassification
results (see Figure 4 left). In classification tasks, baffelcts become areal
problem when the batch and the phenotype to predict arafyadonfoun-
ded. The difficulty is then to separate batch effects frorhgleanges due
to the phenotype, to avoid the risk of removing meaningftdrimation.
As location-scale methods using only batch informatiord tenremove
also phenotype information in such a case, they are not neded.
As shown here (see Figure 4 center), using a matrix factmizanethod
instead of a location-scale one can have a significant peditipact on
classification performances when samples in batches are/¢lbbala-
nced. ICA factorization tends to better separate batchanfie from the
phenotype of interest than SVD factorization. However withmajor
difference between batches (same preprocessing of dagadimg sum-
marized batches directly without normalization gives goeslilts. When

both difficulties are combined (different summarizationsl anbalanced
repartition of the phenotype to predict), the ICA based radization is

capable of dealing with the summarization differences evhdt removing

too much information, and gives considerably better reqske Figure 4
right). Finally, we have observed that the IgAormalization method cle-
arly outperforms the other methods in the most challengétiing (Figure

4 right).

In summary, a normalization is necessary when merging batch
preprocessed with different summarizations. Howeveratlon-scale
methods do more harm than good in presence of unbalanceditiepa
of the phenotype to predict. On all tested normalizationhoés, the
ICA based normalization appears to give the most consistsuotts in all
configurations.
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