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Abstract

Motivation: Merging gene expression datasets is a simple way to increase the number of samples in
an analysis. Experimental and data processing conditions, which are proper to each dataset or batch,
generally influence the expression values and can hide the biological effect of interest. It is then important
to normalize the bigger merged dataset, as failing to adjust for those batch effects may adversely impact
statistical inference. However, over-adjusting can be more damaging than not normalizing at all, especi-
ally in the context of prediction tasks where the phenotype to predict is unequally distributed among the
batches.
Results: We compare the two main types of batch effects removal approaches: location-scale (Com-
Bat and centering-scaling) and matrix factorization (based on SVD or ICA) normalization methods. We
investigate on breast cancer data how those normalization methods improve (or possibly degrade) the
performance of a simple classifier in the presence of two kinds of difficulties: (i) strong batch effects due
to differences in summarization methods, (ii) strong correlation between outcome and batch. Our results
indicate that if the best method varies depending on the two difficulties, a method based on Independent
Component Analysis gives the most consistent results across all cases.
Availability: R code available on http://sites.uclouvain.be/absil/2017.01

Contact: emilie.renard@uclouvain.be

1 Introduction

Nowadays, the development of sequencing technologies allows to measure
gene expression levels at a reasonable cost. The analysis ofthe resulting
data helps to better understand how genes are working, with the goal of
developing better cures for genetic diseases such as cancer. Due to different
constraints such as the limited number of samples that can beprocessed at
the same time in an experiment, the size of such datasets is often limited
in samples. However, statistical inferences need a high number of sam-
ples to be robust enough and generalizable to other data. As more and
more of those datasets are available on public repositoriessuch as GEO
http://www.ncbi.nlm.nih.gov/geo/, merging and combining
different datasets appears as a simple solution to increasethe number of
samples analyzed and potentially improve the relevance of the biological
information extracted.

Expression levels of genes are the result of interactions between diffe-
rent biological processes. When measuring those expression levels, noise
may also be added at each step of data acquisition due to imprecisions. In
particular, different biases can be introduced depending on experimental
conditions. Such confounding factors, or batch effects, that complicate
the analysis of genomic data can be for example due to difference in chip
type or platform, procedures that can differ from one laboratory to another,
storage conditions, ambient conditions during preparation,... A carefully
designed experimental process can limit the impact of such effects, but
some are often unavoidable, especially when a large number of samples
is necessary. Those batch effects can be quite large and hidethe effects
related to the biological process of interest. Not including those effects in
the analysis process may adversely affect the validity of biological conclu-
sions drawn from the datasets (Leek and Storey, 2007; Leeket al., 2010;
Teschendorffet al., 2011). It is then important to be able to combine data
from different sources while removing the batch effects. The difficulty is
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that the precise effects of those technical artefacts on gene expression levels
is often unknown. However some partial information is usually available,
such as the batch number or the date of experiment, and can be used as a
proxy for those effects.

From here, we will refer to the smaller datasets to merge asbatches,
and to the bigger dataset resulting from the concatenation of the smaller
datasets asdataset. We assume that the batch effect removal methods,
termed here(cross-batch) normalization methods, have only access to the
gene-by-samples matrix of expression levels ans to the batch number of
each sample.

Available normalization can be classified in two main approaches:
location-scale methods and matrix factorization methods.The location-
scale methods assume a model for the data distribution within batches,
and adjust the data within each batch to fit this model. This approach is the
most straight-forward one and many methods have already been propo-
sed: XPN (Shabalinet al., 2008), DWD (Benitoet al., 2004), ratio-based
methods (Luoet al., 2010), ComBat (Johnsonet al., 2007), quantile based
methods (Warnatet al., 2005), mean or median centering (Simset al.,
2008), ... The matrix factorization based methods assume that the gene-
by-sample expression matrix can be represented by a small set of rank-one
components which can be estimated by means of matrix factorization.
The components that correlate with the batch number are thenremoved to
obtain the normalized dataset (Alteret al., 2000; Renardet al., 2016). In
Leeket al.(2010); Teschendorffet al. (2011), matrix factorization is used
to model covariates in a differentially expressed gene (DEG) detection pro-
cess. Matrix factorization based methods are less used, probably because
of the indirect approach to the problem: if no batch effects is recovered in
the rank-one components, then the data matrix is left unchanged.

The presence or absence of batch effects in a dataset — and thus the
effectiveness of normalization methods — can be evaluated by different
methods, which can be classified in three main groups: local approaches,
global approaches and, in supervised cases, performance based approa-
ches. Global methods aim to illustrate the global behavior of the dataset:
the evaluation of batch effect presence uses many features at once. For
example, the global behavior of all genes can be summarized by a cluste-
ring dendogram or a plot of the first principal components. A clustering
of samples by batch shows presence of batch effects; it meansthat the
predominant trend present in the data is linked to batches. However it does
not imply that all genes are affected to the same extend, or even affected
at all. On the contrary, local methods examine the behavior of one gene at
a time: expression levels of a gene should have the same behavior (typi-
cally similar probability distributions) for all batches.When evaluating a
normalization method, the clustering by batch and/or the differences in
behavior across batches should disappear (or at least be weaker). Those
evaluation methods are unsupervised in the sense that thereis no ground
truth to refer to: maybe the observed differences are due to abiological
difference in the batches, and not to a technical artefact only. If we have
access to some (part of) ground truth, then the adequacy of the batch effect
removal method can be evaluated quantitatively. If some genes are known
to be truly (not) differentially expressed, the proportionof those genes in
the DEG list after normalization should ideally be higher (lower). P-values
corresponding to null genes or negative control genes should be uniformly
distributed across[0, 1]. The list of DEG should also be more stable after
normalization. In prediction tasks where the final objective is for example
to determine to which class a new sample belongs, performances should
be improved after normalization. See for example Lazaret al. (2013) for
a list of techniques to evaluate batch effects presence.

In sample classification tasks, if the class labels (i.e., the phenotype
to predict) are quite balanced across batches, then batch effects are less
likely to adversely impact the outcome (Taminauet al., 2014; Parker and
Leek, 2012). In the extreme case of perfect confounding of batches with
the phenotype, it is much more difficult to be sure that the differentially

expressed genes are linked to the batch or the phenotype. Such a case can
occur when, for example, a laboratory first analyses the disease samples
and matches them later with the controls. When combining data from alre-
ady existing studies, the reality is often somewhere between those two
extremes: group repartition of the phenotype to predict is often unbala-
nced, as for example in the breast cancer batches we use laterin this paper
(see Table 1). In cases where the repartition of the phenotype of interest
is highly unbalanced among batches, being able to separate batch effects
from phenotype is more challenging (Sonesonet al., 2014). Using datasets
only preprocessed with either RMA or fMRA summarization, Parker and
Leek (2012) tried to predict estrogen receptor status in a breast cancer data-
set when batch and status are perfectly confounded. Their results suggest
that the algorithm tends to predict the batch more than the status, and that
a careful feature selection can improve those results. Nygaardet al.(2016)
propose a sanity check using random numbers: replacing realdata with
normal random numbers shows that the F-statistic is inflatedin presence
of unbalanced repartition. Rudy and Valafar (2011) comparethe list of
DEG obtained from two batches separately to the DEG list obtained from
the normalized merge of the two batches. When introducing unbalance
in the repartition of group treatment among batches, most location-scale
normalization methods they tested tend to detect less DEG. So if batch
effects should be taken into account to avoid to predict batch instead of
phenotype, we should also check that what is removed during the norma-
lization step is really only the batch effects and does not contain potential
useful information about the phenotype to predict. This more challenging
configuration is at the heart of this paper, that aims to understand which
normalization methods can handle this situation.

In this paper, we investigate the impact of cross-batch normalization
methods on sample classification tasks. We compare the two approach
families (location-scale vs matrix factorization) to understand their advan-
tages and weaknesses, and to find out which methods perform best in which
scenario. More specifically, we examine three configurations of batch effe-
cts. The first one includes an ’outlier’ batch where all gene expressions are
really different from the other batches, which implies a strong correlation
(in the broad meaning of correlation) between gene expression and batch.
The second one does not include any ’outlier’, but presents acorrelation
between batch and phenotype to predict. The last one combines both dif-
ficulties: the ’outlier’ batch, and unbalanced phenotype repartition among
batches.

The paper is organized as follows. Section 2 details the methods exa-
mined, which are experimented and analyzed in Section 3, andconclusions
are drawn in Section 4.

2 Normalization methods

Among the many normalization methods mentioned above, we choose
to investigate more in depth factorization based methods using ICA and
SVD and to compare them to the location-scale method ComBat.ComBat
is widely used in the literature, often appears among the best normalization
methods (Chenet al., 2011; Rudy and Valafar, 2011; Taminauet al., 2014;
Shabalinet al., 2008; Luoet al., 2010) and can easily be applied to more
than two batches at a time. Another widely used method, basedon SVD, is
SVA Leeket al.(2010). However unlike ComBat this method necessitates
more information than only batch and requires the phenotypeto predict to
be available. This is why SVA is not included in the comparison. Centering-
scaling was also investigated, but as ComBat is an improved version of it,
results for centering-scaling are not systematically described.
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2.1 Location-scale methods

Location-scale methods are maybe the most intuitive way to handle the
data. Choosing a reasonable model representing the probability distribu-
tion of gene expression, and assuming that genes behave in the same way
in each batch, expression values are adapted to fit this modelwithin each
batch. The goal is to let each gene have a similar mean and/or variance
in each batch. A main hypothesis in such methods is that by adjusting the
gene distributions no biological information is removed.

The simplest way to normalize a dataset in order to remove batch effects
is to standardize each batch separately. That is, for each gene in each batch,
the expression values are centered and divided by their standard deviation.

A widely used and more complex location-scale method is ComBat
(Johnsonet al., 2007). The expression value of genei for samplej in
batchb is modeled asXbij = αi + βiCj + γbi + δbiǫbij whereαi is
the overall gene expression, andCj is the vector of known covariates repre-
senting the sample conditions. The error termǫbij is assumed to follow
a normal distributionN(0, σ2

i ). Additive and multiplicative batch effects
are represented by parametersγbi andδbi. ComBat uses a Bayesian appro-
ach to model the different parameters, and then removes the batch effects
from the data to obtain the clean dataX∗

bij
= ǫ̂bij + α̂i + β̂iCj . By poo-

ling information across genes, this approach is more robustto outliers in
small sample sizes.

2.2 Matrix factorization based methods

The factorization based normalization process, adapted from Renardet al.
(2016), is detailed in Algorithm 1. It is more general than inRenardet al.

(2016) because there are still two main choices to do: first the matrix
factorization method to use (line 1), second the measure used to evaluate
the correlation between batches and components (line 2). Here correlation
should be understood in is broad sense, that is a relationship, whether
causal or not, between two variables. Let us now discuss Algorithm 1 line
by line.

The first step is to find the best approximation of the gene-by-sample
matrixX using a low-rank factorization (line 1):

X ≈ ABT =
K∑

k=1

A:,kB
T
:,k. (1)

A:,k can be interpreted as the gene activation pattern of component k
andB:,k as the weights of this pattern in the samples. EachA:,k can be
interpreted as a meta-gene, i.e. a group of genes working together in a
specific condition.B:,k should then be related to the activation pattern of
this condition among samples. Many methods exist to factorize a matrix,
depending on the properties the factorization components have to ful-
fill. Imposing orthogonality among components leads to a Singular Value
Decomposition (SVD). Normalization of gene expression data using SVD
was first proposed in Alteret al.(2000). Minimizing statistical dependence
across component leads to Independent Component Analysis (ICA) meth-
ods. Different variants exist for such methods depending onhow statistical
dependence is evaluated, and if we want to impose independence among
genes or samples dimension, or even using a trade-off between both opti-
ons. ICA was shown to better model the different sources of variation than
SVD (Teschendorffet al., 2011). A normalization method using an imple-
mentation based on JADE approach and offering the possibility to choose
the trade-off between samples and genes independence was proposed in
Renardet al. (2016). Other factorization methods exist in the literature,
such as Non-negative Matrix Factorization (Lee and Seung, 1999) which
can be used when dealing with non-negatives matrix values toobtain com-
ponents with non-negatives values only. Matrix of binary values have also
their corresponding factorization techniques (Zhanget al., 2010).

Once the factorization computed, we select theB:,k ’s that correlate
with the batch. If a component presents enough correlation with the batch
(line 3), then this component is selected. As batch is a categorical infor-
mation and theB:,k ’s are continuous, the usual linear correlation formula
(Pearson or Spearman) cannot be used. To estimate which components
are related to batch, as in Renardet al. (2016) we use theR2 value that
measures how well a variablex (here,c) can predict a variabley (here,
B:k) in a linear model:

R2(x, y) ≡ 1−
SSres

SStot

.

SStot =
∑

i(yi− ȳ)2 is the sum of squares of the prediction errors if we
take the mean̄y = 1

n

∑n
i=1 yi as predictor ofy.SSres =

∑
i(yi−ŷi)2

is the sum of squares of the prediction errors if we use a linear model
ŷi = f(xi) as predictor: ifx is continuous the prediction model is a linear
regression, ifx is categorical we use a class mean. TheR2 value indicates
the proportion of the variance iny that can be predicted fromx, and has
the advantage to be usable with categorical or continuous variables. So the
higher theR2 value, the better the association between both variables. As
the batch information is categorical,R2(c,B:k) compares the prediction

of Bik by a general mean
∑

j

Bjk

n
or by a batch mean

∑
j∈Ci

Bjk

#Ci

(whereCi represents all samples in the same batch as samplej).
An additional step can be added in the process to check if the selected

components do not correlate with some information of interest (lines 4-6,
optional). The selected components are then removed from the matrixX
to obtain a cleaned dataset (line 7).

Algorithm 1 Matrix factorization based normalization

Require: X (p × n) the aggregated dataset to be normalized,c (n) a
categorical variable indicating the batch number,matfact the matrix
factorization method,t ∈ [0, 1] the threshold to consider a component
associated toc, [optional] c2 (n) categorical/continuous information
that we want to preserve

1: A,B ← matfact(X)

2: R← cor(c,B)

3: ix← which(R ≥ t)

4: R2 ← cor(c2, B) ⊲ optional
5: ix2 ← which(R2 ≥ R) ⊲ optional
6: ix← ix \ ix2 ⊲ optional
7: Xn ← X − A[:, ix] ∗B[:, ix]T

3 Results and discussion

We tested the normalization methods on breast cancer expression. We
combined different batches which can be accessed under GEO numbers
GSE2034 (Wanget al., 2005) and GSE5327 (Minnet al., 2007), GSE7390
(Desmedtet al., 2007), GSE2990 (Sotiriouet al., 2006), GSE3494 (Miller
et al., 2005), GSE6532 (Loiet al., 2007) and GSE21653 (Sabatieret al.,
2011). All batches were summarized with MAS5 and represented in log2
scale, except GSE6532 which was already summarized with RMA. We
took as phenotype of interest to predict the estrogen-receptor status (ER).
We removed the samples and features with missing information which
gives an aggregated dataset of 22276 genes.

In order to compare the effect of normalization in various cases, we
considered three different aggregated datasets. The first one keeps all sam-
ples, the main difficulty being that batch 5 is summarized using a different
method. In the second we removed batch 5, but introduced deliberately
a correlation between ER status and the batch number by subsampling
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Table 1. Repartition of ER status in the batches: numberN of

samples by batch, and proportionp of positive estrogen receptors

Batch Dataset 1 Dataset 2 Dataset 3 GEO number
N p N p N p

1 344 0.61 169 0.20 - - GSE2034, GSE5327
2 198 0.68 - - - - GSE7390
3 183 0.81 183 0.81 183 0.81 GSE2990
4 247 0.86 247 0.86 247 0.86 GSE3494
5 126 0.68 - - 50 0.20 GSE6532
6 263 0.58 138 0.20 138 0.20 GSE21653

among 4 batches. The third dataset combines both difficulties (different
summarizations and correlation). The repartition of the ERstatus in these
three cases is described in Table 1.

To evaluate the presence of batch effects, we plotted the twofirst pri-
ncipal components of the datasets (see Figure 1). Principalcomponents
represent linear combinations of features (here, genes values) giving the
largest possible variance, such that components are uncorrelated: the first
components capture most of the variability in the data. On Figure 1, we can
see that the first two principal components of the datasets show a global
clustering by batch. Batch 5 is the most clearly separated, probably due to
its summarization using RMA and not MAS5 as the others.

In the rest of this section, three normalization methods (ComBat, SVD
and ICA based) and the case without normalization are compared regar-
ding possible batch effects. First we investigate the effect of factorization
in Section 3.1. In a second time, we compare in Section 3.2 theresults
obtained in the context of a classification task.

3.1 Factorization interpretation

We computed different factorizations of the aggregated dataset, yielding
the factorsA andB as in Equation 1. We compared the SVD factorization
to three different ICA factorization: independence among genes, inde-
pendence among samples, and a trade-off between both options. Those
three ICA factorizations correspond to set theα parameter in Renardet al.
(2014) to0, 1 and0.5 respectively.

Ideally, the components removed for normalization should be asso-
ciated to the batch, an not to ER. We compared the associationbetween
factorization components and ER or batch using theR2 value on Figure 2.
For all datasets, all factorizations recovered componentsassociated to
batch number. Associations with ER status are weaker, but non negli-
gible nevertheless. Due to the presence of correlation between batch and
ER status in datasets 2 and 3, it is more difficult to obtain components
linked to the batch but not to the ER, and conversely. To better evaluate
theR2 values when components have significantR2 values for both batch
and ER status, we sub-sampled the data to re-balance batch and ER status.
Comparison of meanR2 values obtained from 100 sub-samplings in the
ICAα=0 and SVD in dataset 2 are given in Table 2. For ICA components,
the re-evaluations ofR2 suggest that each component is associated to only
one effect, the one with the initial higher association. In the SVD case,
there is still one component associated to both effects.

On Figure 3 page 7 we represented for different ICA decompositions
theR2 values between all components and ER/batches, and the Pearson
correlation between components themselves. In the ICA case, α = 0

allows to recover a higher number of components linked to thebatch.
For example on dataset 2, components 5, 6, 11 and 14 have aR2 higher
than 0.5. However, we can see on Table 3 that all components are highly
correlated. As expected, using anα greater than 0 enables to decreases
the correlation amongB components. Imposing independence among the

Table 2. Various estimations ofR2 values, on all batches or only the training

batches (see Section 3.1), using all samples or a mean obtained from 100 sub-

samplings to rebalance the POI among batches in training (for dataset 2, ICAα=0

and SVD).

Cmpt R2 on all samples R2(batch) on samples in batches nbR2(ER) on samples in batches nb
batch ER 1, 3 1, 4 1, 6 3, 4 3, 6 4, 6 1, 3 1, 4 1, 6 3, 4 3, 6 4, 6

ICA 5 0.79 0.25 0.24 0.92 0.73 0.80 0.43 0.480.00 0.37 0.24 0.30 0.110.04

All samples
13 0.19 0.40 0.00 0.18 0.18 0.20 0.210.00 0.24 0.37 0.41 0.39 0.42 0.27
14 0.58 0.25 0.02 0.80 0.80 0.31 0.33 0.180.01 0.32 0.27 0.23 0.210.03
18 0.26 0.53 0.01 0.25 0.30 0.23 0.280.01 0.31 0.57 0.54 0.53 0.51 0.45

ICA 5 0.82 0.00 0.26 0.92 0.79 0.83 0.55 0.500.00 0.00 0.00 0.01 0.010.07
Balanced
sub-sampling

13 0.01 0.35 0.00 0.00 0.01 0.01 0.01 0.000.34 0.36 0.37 0.34 0.36 0.38
14 0.60 0.01 0.02 0.82 0.82 0.23 0.27 0.320.01 0.00 0.00 0.05 0.04 0.05
18 0.02 0.47 0.03 0.00 0.02 0.00 0.02 0.000.43 0.57 0.43 0.54 0.41 0.54

SVD 1 0.87 0.27 0.06 0.93 0.91 0.59 0.61 0.820.00 0.38 0.37 0.26 0.300.00

All samples
2 0.89 0.14 0.17 0.96 0.88 0.03 0.08 0.95 0.01 0.46 0.36 0.08 0.01 0.00
3 0.42 0.42 0.00 0.05 0.04 0.55 0.54 0.34 0.27 0.31 0.29 0.60 0.55 0.22

SVD 1 0.88 0.00 0.02 0.94 0.93 0.60 0.60 0.830.00 0.00 0.00 0.00 0.01 0.00
Balanced
sub-sampling

2 0.91 0.00 0.15 0.96 0.91 0.00 0.13 0.95 0.01 0.01 0.00 0.09 0.01 0.01
3 0.24 0.31 0.00 0.05 0.03 0.23 0.27 0.33 0.36 0.43 0.36 0.35 0.28 0.30

Components shown are those exhibiting a significantR2 value with both batches and
ER status. In italic theR2 values≤ 0.05. After resampling, ICA components 5 and 14
and SVD components 1 and 2 did not show anymore correlation with ER status, while
ICA components 13 and 18 did not show anymore correlation with batches. Unlike
ICA, an indetermination remains in SVD components: resampling did not allow to
determine if component 3 is linked to only ER status or batch.

Table 3. Correlation betweenB components linked to

batches (R2 > 0.5) for dataset 2,α = 0

B∗,5 B∗,6 B∗,11 B∗,14

B∗,5 1.00 0.65 0.57 0.52
B∗,6 0.65 1.00 0.76 0.35
B∗,11 0.57 0.76 1.00 0.40
B∗,14 0.52 0.35 0.40 1.00

samples only (α = 1) decreases the number of component linked to the
batch. We choose to investigate only theα = 0 andα = 0.5 cases further.

3.2 Validation by impact on classification

To compare the different normalization methods, we used them in a whole
classification process where the ER status is predicted using an SVM clas-
sifier. The ER status is thus the phenotype to predict, i.e. the outcome.
The whole process is described in Algorithm 2. The first step is to nor-
malize the aggregated datasetX with the chosen method (here, ComBat,
SVD or ICA based normalization) (line 2). Optionally, the training labels
(separated from test labels in line 1) can be used as extra information to
preserve. Here we did not use this option in our experiments (in particular,
c2 is not used in Algorithm 1). In ICA and SVD based normalizations,
we computed theK = 20 first components and removed the components
with anR2 value higher thant = 0.5. Training and testing sets are then
separated (line 3). To mimic the case where the model is builtbased on
some studies and then validated on other separate studies, we kept each
time two batches out for testing, and trained the SVM classifier on the
other batches. This gave a total ofC2

6 = 15 experiments for dataset 1,
andC2

4 = 6 experiments for datasets 2 and 3. A basic feature selection
is performed by selecting the genes with the best association with the ER
label based on a t-test (line 4). A standard SVM model is trained based on
those genes (lines 5 to 8). To keep the SVM model simple, we used the
linear kernel implementation provided in the LiblineaR R package. The
cost parameter is fixed using the heuristic implemented in the package,
and the classes weights are set to[1 − p0, 1 − p1] wherepi gives the
proportion of samples in classi. When training the SVM model, train data
are first centered and scaled to ensure to treat all features with the same
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Fig. 1. Global evaluation of batch effects in the 3 datasets: plots of the first two principal components. Colors represent the batch membership.
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Fig. 2. Association between factorization components and ER or batch, for SVD and ICA with α = {0, 0.5, 1}.

weight; the same centering-scaling is then applied on the test data. The ER
labels of testing set are finally predicted using the SVM model (line 9).
We repeated the prediction step (line 5 to 9) using differentnumbers of
selected genes (line 4).

Algorithm 2 Classification process

Require: X (p×n) aggregated matrix of gene expression,y (n) the label
to predict,c (n) the batch information

1: ytr, yte ← y

2: Xn ← normalizationMethod(X, c, ytr)

3: Xtr, Xte ← Xn;
4: idxbestGenes ← ttest(ytr ,Xtr)

5: XSVM ← Xtr [idxbestGenes , :]

6: c← heuristic(XSV M )

7: w ← 1− [propytr=1 propytr=0]

8: modelSV M ← SVM(XSV M , ytr , c, w)

9: ŷte ← prediction(modelSV M , Xte[idxbestGenes , :])

The results on the testing sets for the different normalization methods
applied on the three datasets were compared to the case without norma-
lization on Figure 4 (top). We choose to use the balanced classification
rate (BCR) as performance measure. The balanced classification rate, or
balanced accuracy, is computed as0.5( TP

TP+FN
+ TN

TN+FP
) and allows

to take into account a potential imbalance between classes.Similar results
(not shown) were obtained when using area under the ROC curveas perfor-
mance measure. The better performances are obtained unsurprisingly with
dataset 1 that has a higher number of training samples, and the worse with
dataset 3 that presents a higher correlation between batch and outcome.
We can see with dataset 1 that if all normalization methods behaves simi-
larly, the normalization step is necessary and allows to increase the BCR.
The necessity of normalization is mainly due to batch 5, which is highly

decentered compared to the others, as shown with the plots ofprincipal
components on Figure 1. Dataset 2 presents a correlation between batch
and outcome, so applying location-scale normalization method like Com-
Bat tends to remove too much information and decreases the BCR. No
normalization or an ICAα=0.5 based normalization gave the best results;
SVD is in between. The effect of the normalizations on the twofirst genes
selected by a t-test is shown on Figure 5. The worst class separation is
obtained using ComBat: by forcing all batches to have a similar mean,
both classes are pushed closer to each other. Dataset 3 is theworse dataset
in the sense that there is an ’outlier’ batch that necessitates some norma-
lization, and correlation between outcome and batch which requires to be
careful when normalizing: for a limited number of genes ICA based nor-
malization gives the best performances. In this specific case, the ICAα=0

gives significantly better results, nearly as good as dataset 1. We can hypo-
thesize that with so strong batch effects, assuming independence in the
sample dimension is less realistic.

To investigate robustness with respect to features, we removed from
the dataset (before any normalization) the 100 best genes associated to ER
status. For this we ranked the genes using a t-test within each batch and
within the un-normalized merged dataset. Then we took the median of
those ranks for each genes as a final ranking. As expected, removing those
genes decreased performances (on Figure 4, bottom), especially when
selecting a limited number of genes. The ”none” curve (no normalization)
curve is more affected than the others, especially in dataset 3.

4 Conclusion

In the context of merging gene expression datasets, we have condu-
cted a detailed comparison between two types of batch effectremoval
approaches: location-scale (ComBat and centering-scaling) and matrix
factorization (based on SVD or ICA) normalization methods.We have
compared those normalization methods, used as classifier preprocessing
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Fig. 4. Influence of the normalization methods on BCR. Thiner lines corresponds to standard deviations. The horizontal axis gives the imposed number of genes to be selected by line 4 of

Algorithm 2. Top: results using all features. Bottom: results when removing from the dataset (before any normalization) the 100 first features with the best association with the ER.
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tools, in three different configurations with stronger or weaker batch effe-
cts, and stronger or weaker presence of correlation betweenbatch and the
phenotype to predict.

When merging batches preprocessed differently (such as using MAS5
and RMA summarization methods) with a reasonably balanced reparti-
tion of the phenotype to predict, applying any of the tested normalization
methods (even a simple centering-scaling) allows to improve classification
results (see Figure 4 left). In classification tasks, batch effects become a real
problem when the batch and the phenotype to predict are partially confoun-
ded. The difficulty is then to separate batch effects from real changes due
to the phenotype, to avoid the risk of removing meaningful information.
As location-scale methods using only batch information tend to remove
also phenotype information in such a case, they are not recommended.
As shown here (see Figure 4 center), using a matrix factorization method
instead of a location-scale one can have a significant positive impact on
classification performances when samples in batches are notwell bala-
nced. ICA factorization tends to better separate batch influence from the
phenotype of interest than SVD factorization. However without major
difference between batches (same preprocessing of data), merging sum-
marized batches directly without normalization gives goodresults. When

both difficulties are combined (different summarizations and unbalanced
repartition of the phenotype to predict), the ICA based normalization is
capable of dealing with the summarization differences while not removing
too much information, and gives considerably better results (see Figure 4
right). Finally, we have observed that the ICA0 normalization method cle-
arly outperforms the other methods in the most challenging setting (Figure
4 right).

In summary, a normalization is necessary when merging batches
preprocessed with different summarizations. However, location-scale
methods do more harm than good in presence of unbalanced repartition
of the phenotype to predict. On all tested normalization methods, the
ICA based normalization appears to give the most consistentresults in all
configurations.
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