od [-v][-A address_base][-j
skip][-N
count][-t type_string]...
[file...]
od [-bcdosx][file]
[[+]offset[.][b]]
The od utility shall write the contents of its input files to standard output in a user-specified format.
The od utility shall conform to the Base Definitions volume of IEEE Std 1003.1-2001, Section 12.2, Utility Syntax Guidelines, except that the order of presentation of the -t options and the -bcdosx options is significant.
The following options shall be supported:
Specify the input offset base. See the EXTENDED DESCRIPTION section. The application shall ensure that the address_base option-argument is a character. The characters 'd' , 'o' , and 'x' specify that the offset base shall be written in decimal, octal, or hexadecimal, respectively. The character 'n' specifies that the offset shall not be written.
By default, the skip option-argument shall be interpreted as a decimal number. With a leading 0x or 0X, the offset shall be interpreted as a hexadecimal number; otherwise, with a leading '0' , the offset shall be interpreted as an octal number. Appending the character 'b' , 'k' , or 'm' to offset shall cause it to be interpreted as a multiple of 512, 1024, or 1048576 bytes, respectively. If the skip number is hexadecimal, any appended 'b' shall be considered to be the final hexadecimal digit.
Specify one or more output types. See the EXTENDED DESCRIPTION section. The application shall ensure that the type_string option-argument is a string specifying the types to be used when writing the input data. The string shall consist of the type specification characters a , c , d , f , o , u , and x , specifying named character, character, signed decimal, floating point, octal, unsigned decimal, and hexadecimal, respectively. The type specification characters d , f , o , u , and x can be followed by an optional unsigned decimal integer that specifies the number of bytes to be transformed by each instance of the output type. The type specification character f can be followed by an optional F , D , or L indicating that the conversion should be applied to an item of type float, double, or long double, respectively. The type specification characters d , o , u , and x can be followed by an optional C , S , I , or L indicating that the conversion should be applied to an item of type char, short, int, or long, respectively. Multiple types can be concatenated within the same type_string and multiple -t options can be specified. Output lines shall be written for each type specified in the order in which the type specification characters are specified.
Multiple types can be specified by using multiple -bcdostx options. Output lines are written for each type specified in the order in which the types are specified.
The following operands shall be supported:
If there are no more than two operands, none of the -A, -j, -N, or -t options is specified, and either of the following is true: the first character of the last operand is a plus sign ( '+' ), or there are two operands and the first character of the last operand is numeric; the last operand shall be interpreted as an offset operand on XSI-conformant systems. Under these conditions, the results are unspecified on systems that are not XSI-conformant systems.
The standard input shall be used only if no file operands are specified. See the INPUT FILES section.
The input files can be any file type.
The following environment variables shall affect the execution of od:
Determine the locale for selecting the radix character used when writing floating-point formatted output.
See the EXTENDED DESCRIPTION section.
The standard error shall be used only for diagnostic messages.
The od utility shall copy sequentially each input file to standard output, transforming the input data according to the output types specified by the -t option or the -bcdosx options. If no output type is specified, the default output shall be as if -t oS had been specified.
The number of bytes transformed by the output type specifier c may be variable depending on the LC_CTYPE category.
The default number of bytes transformed by output type specifiers d , f , o , u , and x corresponds to the various C-language types as follows. If the c99 compiler is present on the system, these specifiers shall correspond to the sizes used by default in that compiler. Otherwise, these sizes may vary among systems that conform to IEEE Std 1003.1-2001.
The type specifier character a specifies that bytes shall be
interpreted as named characters from the International
Reference Version (IRV) of the ISO/IEC 646:1991 standard. Only the
least significant seven bits of each byte shall be used for
this type specification. Bytes with the values listed in the following
table shall be written using the corresponding names for
those characters.
Value | Name | Value | Name | Value | Name | Value | Name | |||
\000 | nul | \001 | soh | \002 | stx | \003 | etx | |||
\004 | eot | \005 | enq | \006 | ack | \007 | bel | |||
\010 | bs | \011 | ht | \012 | lf or nl | \013 | vt | |||
\014 | ff | \015 | cr | \016 | so | \017 | si | |||
\020 | dle | \021 | dc1 | \022 | dc2 | \023 | dc3 | |||
\024 | dc4 | \025 | nak | \026 | syn | \027 | etb | |||
\030 | can | \031 | em | \032 | sub | \033 | esc | |||
\034 | fs | \035 | gs | \036 | rs | \037 | us | |||
\040 | sp | \177 | del |
The type specifier character c specifies that bytes shall be interpreted as characters specified by the current setting of the LC_CTYPE locale category. Characters listed in the table in the Base Definitions volume of IEEE Std 1003.1-2001, Chapter 5, File Format Notation ( '\\' , '\a' , '\b' , '\f' , '\n' , '\r' , '\t' , '\v' ) shall be written as the corresponding escape sequences, except that backslash shall be written as a single backslash and a NUL shall be written as '\0' . Other non-printable characters shall be written as one three-digit octal number for each byte in the character. If the size of a byte on the system is greater than nine bits, the format used for non-printable characters is implementation-defined. Printable multi-byte characters shall be written in the area corresponding to the first byte of the character; the two-character sequence "**" shall be written in the area corresponding to each remaining byte in the character, as an indication that the character is continued. When either the -j skip or -N count option is specified along with the c type specifier, and this results in an attempt to start or finish in the middle of a multi-byte character, the result is implementation-defined.
The input data shall be manipulated in blocks, where a block is defined as a multiple of the least common multiple of the number of bytes transformed by the specified output types. If the least common multiple is greater than 16, the results are unspecified. Each input block shall be written as transformed by each output type, one per written line, in the order that the output types were specified. If the input block size is larger than the number of bytes transformed by the output type, the output type shall sequentially transform the parts of the input block, and the output from each of the transformations shall be separated by one or more <blank>s.
If, as a result of the specification of the -N option or end-of-file being reached on the last input file, input data only partially satisfies an output type, the input shall be extended sufficiently with null bytes to write the last byte of the input.
Unless -A n is specified, the first output line produced for each input block shall be preceded by the input offset, cumulative across input files, of the next byte to be written. The format of the input offset is unspecified; however, it shall not contain any <blank>s, shall start at the first character of the output line, and shall be followed by one or more <blank>s. In addition, the offset of the byte following the last byte written shall be written after all the input data has been processed, but shall not be followed by any <blank>s.
If no -A option is specified, the input offset base is unspecified.
The following exit values shall be returned:
Default.
The following sections are informative.
XSI-conformant applications are warned not to use filenames starting with '+' or a first operand starting with a numeric character so that the old functionality can be maintained by implementations, unless they specify one of the -A, -j, or -N options. To guarantee that one of these filenames is always interpreted as a filename, an application could always specify the address base format with the -A option.
If a file containing 128 bytes with decimal values zero to 127, in increasing order, is supplied as standard input to the command:
od -A d -t a
on an implementation using an input block size of 16 bytes, the standard output, independent of the current locale setting, would be similar to:
0000000 nul soh stx etx eot enq ack bel bs ht nl vt ff cr so si 0000016 dle dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us 0000032 sp ! " # $ % & ' ( ) * + , - . / 0000048 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 0000064 @ A B C D E F G H I J K L M N O 0000080 P Q R S T U V W X Y Z [ \ ] ^ _ 0000096 ` a b c d e f g h i j k l m n o 0000112 p q r s t u v w x y z { | } ~ del 0000128
Note that this volume of IEEE Std 1003.1-2001 allows nl or lf to be used as the name for the ISO/IEC 646:1991 standard IRV character with decimal value 10. The IRV names this character lf (line feed), but traditional implementations have referred to this character as newline ( nl) and the POSIX locale character set symbolic name for the corresponding character is a <newline>.
The command:
od -A o -t o2x2x -N 18
on a system with 32-bit words and an implementation using an input block size of 16 bytes could write 18 bytes in approximately the following format:
0000000 032056 031440 041123 042040 052516 044530 020043 031464 342e 3320 4253 4420 554e 4958 2023 3334 342e3320 42534420 554e4958 20233334 0000020 032472 353a 353a0000 0000022
The command:
od -A d -t f -t o4 -t x4 -N 24 -j 0x15
on a system with 64-bit doubles (for example, IEEE Std 754-1985 double precision floating-point format) would skip 21 bytes of input data and then write 24 bytes in approximately the following format:
0000000 1.00000000000000e+00 1.57350000000000e+01 07774000000 00000000000 10013674121 35341217270 3ff00000 00000000 402f3851 eb851eb8 0000016 1.40668230000000e+02 10030312542 04370303230 40619562 23e18698 0000024
The od utility went through several names in early proposals, including hd, xd, and most recently hexdump. There were several objections to all of these based on the following reasons:
The original reasons for not standardizing historical od were also fairly widespread. Those reasons are given below along with rationale explaining why the standard developers believe that this version does not suffer from the indicated problem:
The sizes of the C-language types char, short, int, long, float, double, and long double are used even though it is recognized that there may be zero or more than one compiler for the C language on an implementation and that they may use different sizes for some of these types. (For example, one compiler might use 2 bytes shorts, 2 bytes ints, and 4 bytes longs, while another compiler (or an option to the same compiler) uses 2 bytes shorts, 4 bytes ints, and 4 bytes longs.) Nonetheless, there has to be a basic size known by the implementation for these types, corresponding to the values reported by invocations of the getconf utility when called with system_var operands {UCHAR_MAX}, {USHORT_MAX}, {UINT_MAX}, and {ULONG_MAX} for the types char, short, int, and long, respectively. There are similar constants required by the ISO C standard, but not required by the System Interfaces volume of IEEE Std 1003.1-2001 or this volume of IEEE Std 1003.1-2001. They are {FLT_MANT_DIG}, {DBL_MANT_DIG}, and {LDBL_MANT_DIG} for the types float, double, and long double, respectively. If the optional c99 utility is provided by the implementation and used as specified by this volume of IEEE Std 1003.1-2001, these are the sizes that would be provided. If an option is used that specifies different sizes for these types, there is no guarantee that the od utility is able to interpret binary data output by such a program correctly.
This volume of IEEE Std 1003.1-2001 requires that the numeric values of these lengths be recognized by the od utility and that symbolic forms also be recognized. Thus, a conforming application can always look at an array of unsigned long data elements using od -t uL.
The use of "**" as an indication of continuation of a multi-byte character in c specifier output was chosen based on seeing an implementation that uses this method. The continuation bytes have to be marked in a way that is not ambiguous with another single-byte or multi-byte character.
An early proposal used -S and -n, respectively, for the -j and -N options eventually selected. These were changed to avoid conflicts with historical implementations.
The original standard specified -t o2 as the default when no output type was given. This was changed to -t oS (the length of a short) to accommodate a supercomputer implementation that historically used 64 bits as its default (and that defined shorts as 64 bits). This change should not affect conforming applications. The requirement to support lengths of 1, 2, and 4 was added at the same time to address an historical implementation that had no two-byte data types in its C compiler.
The use of a basic integer data type is intended to allow the implementation to choose a word size commonly used by applications on that architecture.
All option and operand interfaces marked as extensions may be withdrawn in a future version.