First validation of a functional-structural root model

For the first time ever, a functional–structural root-system model (FSRSM) is validated by combining a tracer experiment monitored with magnetic resonance imaging and three-dimensional modeling of water and solute transport. This study is the first that combines 4D (space and time) root system architecture with spatially resolved measurements of root-zone tracer concentrations to validate/parameterize a FSRSM. We have shown that R-SWMS, a FSRSM, can properly represent water and solute fluxes in the root zone. Moreover, 3D tracer distribution maps were demonstrated to contain valuable information for inferring the hydraulic parameters of roots of different orders and ages. The parameter set obtained was in the range of other previous studies of lupin plants. This great work by Axelle Koch (UCLouvain) and colleagues is published in Journal of Experimental Botany. You can download it here .

MECHA model is out!

Valentin Couvreur and colleagues just released their new model on water flow through roots. Their new article 'Going with the flow: multiscale insights into the composite nature of water transport in roots' is published in Plant Physiology and available online. See publication here.

It describes a new model that simulates the distribution of the water fluxes and potentials between the soil root interface and the xylems vessels. The paper demonstrates how anatomy, plasmodesmata, and membrane permeability control the distribution of water fluxes through roots. You can also try it online! MECHA

R-SWMS 9.0

Yesterday August 13th, 2018, R-SWMS developers from Germany and Belgium met in Liège (BE) to set up a new version of R-SWMS. The former one was 8.2. The new version, called R-SWMS 9.0, has several new features. Now, it is possible to simulate multiple root systems with different transpiration and growth, peticide uptake and transport in the plant and root growth in the biopores. Techical changes have also been implemented like the parallel processing for solute transport with particle tracking or the possibility compile only water flow (without solute).


About us

R-SWMS was originally developped in the Agrosphere institute of the Forschungszentrum Juelich GmbH in 2004-2006. It has then been continuously developped through research projects and PhD grants at the Forschungszentrum Juelich (Germany), at the Katolieke Universiteit Leuven(Belgium) and at the Université catholique de Louvain (Belgium).

Jülich Forschungszentrum


Jülich Forschungszentrum conduct research to provide comprehensive solutions to the grand challenges facing society in the three fields of energy and environment, information and brain research.

Earth and Life Institute

The Earth and Life Institute pursues the objectives of understanding the basic processes of the Earth & Life System at different scales and designing sustainable solutions to meet major challenges for our societies.

See contributors