Sathyanaryan Rao (PhD student at UClouvain) used R-SWMS to simulate drought experiment of maize plants in rhizotrons monitored with Electrical Resistivity Tomography (ERT). He investigated how the presence of roots affected the bulk soil electrical conductivity. He demonstrated that the contraxt between soil and root was a key factor for monitoring root systems with ERT.

His paper can be found here: See publication

For the first time ever, a functional–structural root-system model (FSRSM) is validated by combining a tracer experiment monitored with magnetic resonance imaging and three-dimensional modeling of water and solute transport. This study is the first that combines 4D (space and time) root system architecture with spatially resolved measurements of root-zone tracer concentrations to validate/parameterize a FSRSM. We have shown that R-SWMS, a FSRSM, can properly represent water and solute fluxes in the root zone. Moreover, 3D tracer distribution maps were demonstrated to contain valuable information for inferring the hydraulic parameters of roots of different orders and ages. The parameter set obtained was in the range of other previous studies of lupin plants. This great work by Axelle Koch (UCLouvain) and colleagues is published in Journal of Experimental Botany. You can download it here .

Yesterday August 13th, 2018, R-SWMS developers from Germany and Belgium met in Liège (BE) to set up a new version of R-SWMS. The former one was 8.2. The new version, called R-SWMS 9.0, has several new features. Now, it is possible to simulate multiple root systems with different transpiration and growth, peticide uptake and transport in the plant and root growth in the biopores. Techical changes have also been implemented like the parallel processing for solute transport with particle tracking or the possibility compile only water flow (without solute).

Valentin Couvreur and colleagues just released their new model on water flow through roots. Their new article 'Going with the flow: multiscale insights into the composite nature of water transport in roots' is published in Plant Physiology and available online. See publication here.

It describes a new model that simulates the distribution of the water fluxes and potentials between the soil root interface and the xylems vessels. The paper demonstrates how anatomy, plasmodesmata, and membrane permeability control the distribution of water fluxes through roots. You can also try it online! MECHA
Magdalena Landl (PhD student at FZ-Juelich, Germany) has added a new module in R-SWMS to simulate root growth, water and nutrient uptake in macropores. Qualitative and quantitative comparisons between simulated and experimentally observed root systems showed good agreement, suggesting that the drawn analogy between soil water flow and root growth is a useful one. You can download it here : See publication