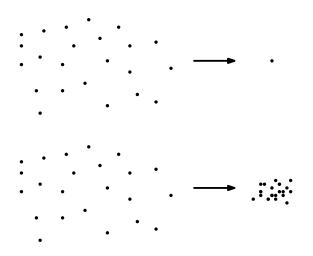
A Unifying Approach to Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

OPODIS 2022

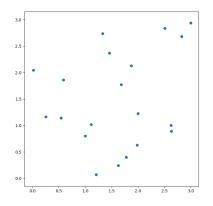
December 14, 2022

Jannik Castenow, Jonas Harbig, Daniel Jung, Peter Kling, Till Knollmann, Friedhelm Meyer auf der Heide

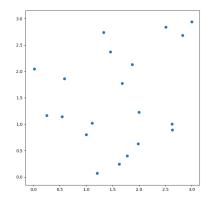
Gathering and Near-Gathering



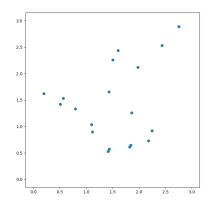
3



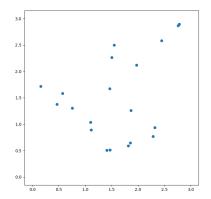
Near-Gathering



Gathering



Near-Gathering

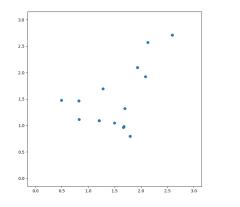


7 NIXDORF

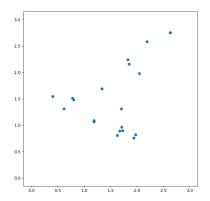
UNIVERSITÄT PADERBORN

HEIN

Gathering

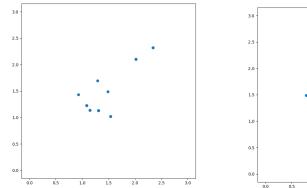


Near-Gathering

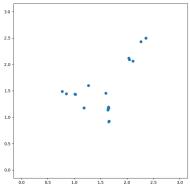


HEINZ NIXDORF IN

Gathering

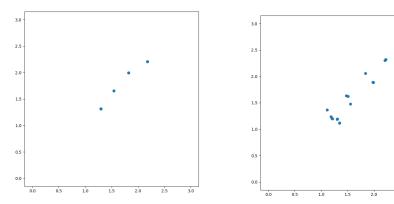


Near-Gathering



HEINZ NIXDORF INS

Gathering

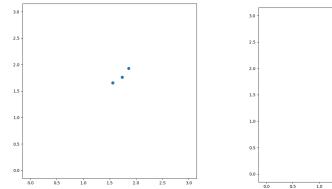


Near-Gathering

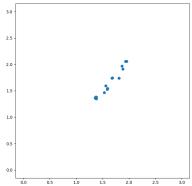
2.5 3.0

HEINZ NIXDORF INS

Gathering

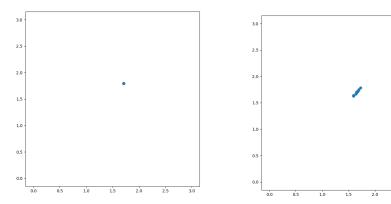


Near-Gathering



HEINZ NIXDORF INS

Gathering



Near-Gathering

2.5 3.0

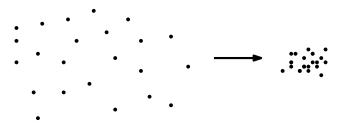
HEINZ NIXDORF INS

Near-Gathering

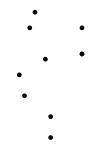
Definition 1 (Near-Gathering)

Gather all robots in close proximity

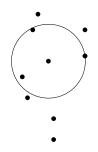
- constant diameter
- collisionless
- simultaneous termination



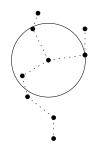
- autonomous mobile robots (OBLOT)
 - identical, anonymous, homogeneous
 - oblivious & silent
- euclidean space (k dimensional)



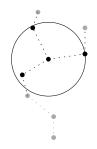
- autonomous mobile robots (OBLOT)
 - identical, anonymous, homogeneous
 - oblivious & silent
- euclidean space (k dimensional)
- local
 - connectivity range: 1
 - viewing range: ≥ 1



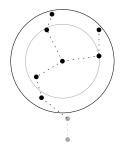
- autonomous mobile robots (OBLOT)
 - identical, anonymous, homogeneous
 - oblivious & silent
- euclidean space (k dimensional)
- local
 - connectivity range: 1
 - viewing range: ≥ 1



- autonomous mobile robots (OBLOT)
 - identical, anonymous, homogeneous
 - oblivious & silent
- euclidean space (k dimensional)
- local
 - connectivity range: 1
 - viewing range: ≥ 1



- autonomous mobile robots (OBLOT)
 - identical, anonymous, homogeneous
 - oblivious & silent
- euclidean space (k dimensional)
- local
 - connectivity range: 1
 - viewing range: ≥ 1



- autonomous mobile robots (OBLOT)
 - identical, anonymous, homogeneous
 - oblivious & silent
- euclidean space (k dimensional)
- local
 - connectivity range: 1
 - viewing range: ≥ 1
 - disoriented

- autonomous mobile robots (OBLOT)
 - identical, anonymous, homogeneous
 - oblivious & silent
- euclidean space (k dimensional)
- local
 - connectivity range: 1
 - viewing range: ≥ 1
 - disoriented
- $\mathcal{F}_{\mathrm{SYNC}}$ and $\mathcal{S}_{\mathrm{SYNC}}$

 $\mathcal{F}_{\mathrm{SYNC}}$

L	С	Μ	L	С	Μ	L	С	Μ
L	С	Μ	L	С	Μ	L	С	Μ
L	С	Μ	L	С	Μ	L	С	Μ

 $\mathcal{S}_{\mathrm{SYNC}}$

L	С	Μ				L	С	Μ
L	С	Μ	L	С	Μ	L	С	Μ
-						L	С	Μ

Related Work

Gathering

- GO-TO-THE-CENTER
 - Ando et al. 1999, Kempkes et al. 2011
 - gathering in $\mathcal{O}(\textit{n}+\Delta^2)$
 - 3 dimensional: Braun et al. 2020
- class of continuous gathering strategies in $\mathcal{O}(n\cdot\Delta),$ Podlipyan et al. 2021
- gathering on the grid in $\mathcal{O}(n^2)$, Jung et al. 2020
- gathering with compass in $\mathcal{O}(\Delta)$, Poudel et al. 2021

Related Work

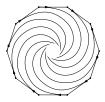
Near-Gathering

- NEAR-GATHERING introduced by Pagli et al.
 - 2012, "Getting close without touching."
 - both axis agreement (later one axis)
 - no running time
- Near-Gathering with unlimited memory used for pattern formation under limited visibility, Yamashita et al. 2013

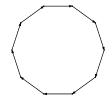
Our Results

- Class of Discrete Gathering Strategies in $\mathcal{O}(\Delta^2)$
 - -k dimensional
 - improved running time (previously $\mathcal{O}(n+\Delta^2)$)
- Class of Discrete Near-Gathering Strategies in $\mathcal{O}(\Delta^2)$
 - first result under the disoriented \mathcal{OBLOT} model

- Motivated by Continuous Gathering Strategies (Podlipyan at al.)
 - there: run with constant speed inside convex hull



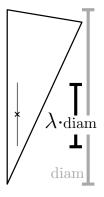
- Motivated by Continuous Gathering Strategies (Podlipyan at al.)
 - there: run with constant speed inside convex hull
- Discrete Gathering Strategies
 - target points must lie *sufficiently* inside convex hull



Definition of a point "*sufficiently inside*" local convex hull

Definition 2 (λ -centered Point)

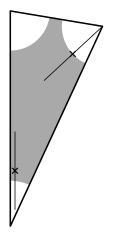
- $1 \ge \lambda > 0$
- line segment of length $\operatorname{diam} \cdot \lambda$
 - completely inside convex hull
- point in its middle is "λ-centered"



Definition of a point "*sufficiently inside*" local convex hull

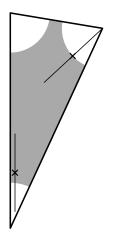
Definition 2 (λ -centered Point)

- $1 \ge \lambda > 0$
- line segment of length $\operatorname{diam}\cdot\lambda$
 - completely inside convex hull
- point in its middle is "λ-centered"



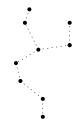
Definition 3 (λ -contracting gathering protocol)

- target point is λ-centered
- connectivity preserving
- collapsing



Definition 3 (λ -contracting gathering protocol)

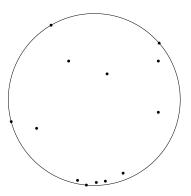
- target point is λ-centered
- connectivity preserving
- collapsing



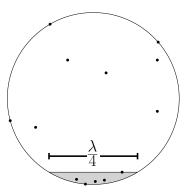
Definition 3 (λ -contracting gathering protocol)

- target point is λ-centered
- connectivity preserving
- collapsing

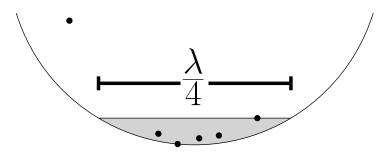
- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC



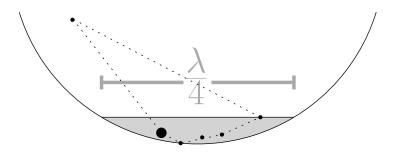
- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC



- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC

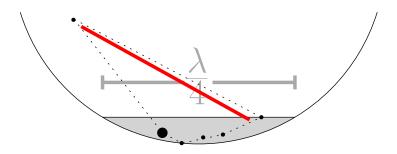


- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC

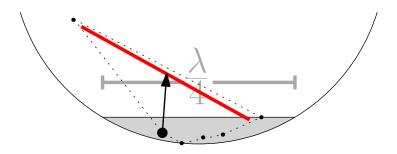


UNIVERSITAT PADERB

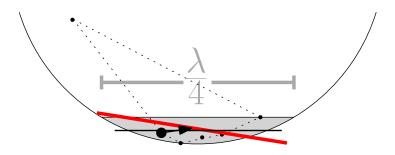
- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC



- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC

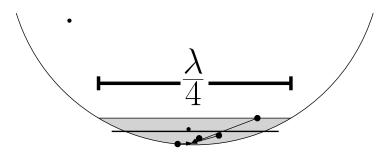


- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC

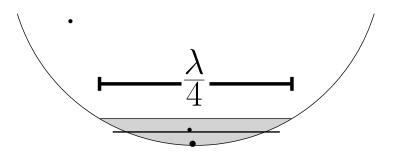


UNIVERSITAT PADERB

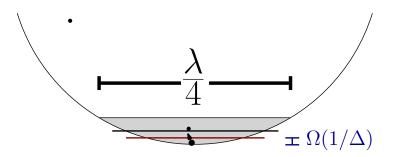
- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC



- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC

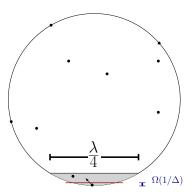


- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC

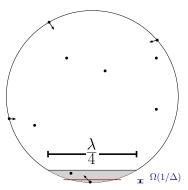


UNIVERSITÄT PADERBORN

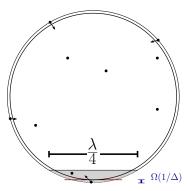
- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC



- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC
 - decreases by $\Omega(1/\Delta)$ after 2 rounds



- idea from GO-TO-THE-CENTER proof (Kempkes et al. 2011)
- we analyze diameter of global SEC
 - decreases by $\Omega(1/\Delta)$ after 2 rounds



$\lambda\text{-contracting gathering protocol}$

Theorem 4

After $\mathcal{O}(\Delta^2)$ rounds (FSYNC), a λ -contracting gathering protocol reaches a GATHERING.

13 (Near-) Gathering with Limited Visibility / Jonas Harbig

Near-Gathering

Properties in general

- collisionless
- robots converge to one point

Near-Gathering

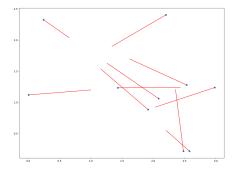
Properties in general

- collisionless
- robots converge to one point

Our Approach:

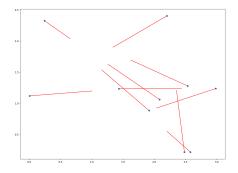
- take $\lambda\text{-contracting gathering protocol}$
- implement collision avoidance

- robots move not full to target point but stop in between
 - far enough (at least constant fraction)
 - stop only on points without possible collisions

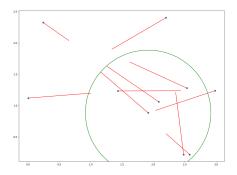


UNIVERSITÄT PADERBORN

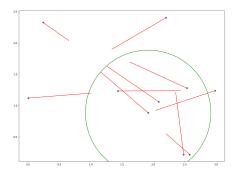
- robots move not full to target point but stop in between
 - far enough (at least constant fraction)
 - stop only on points without possible collisions
- Where are possible collisions?
 - on intersections between trajectories



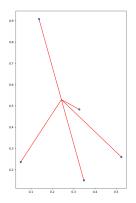
- need to compute trajectory of neighbors
 - larger viewing range (still constant)
 - trajectory must be invariant of local rotation and translation



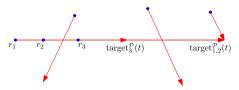
- need to compute trajectory of neighbors
 - larger viewing range (still constant)
 - trajectory must be invariant of local rotation and translation
- avoid single intersection points



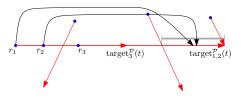
- need to compute trajectory of neighbors
 - larger viewing range (still constant)
 - trajectory must be invariant of local rotation and translation
- avoid single intersection points



- need to compute trajectory of neighbors
 - larger viewing range (still constant)
 - trajectory must be invariant of local rotation and translation
- avoid single intersection points
- collinear trajectories: compute unique target points



- need to compute trajectory of neighbors
 - larger viewing range (still constant)
 - trajectory must be invariant of local rotation and translation
- avoid single intersection points
- collinear trajectories: compute unique target points



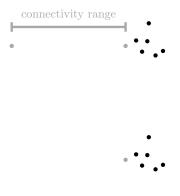
Viewing Range

Do we really need a viewing range > connectivity range?

Viewing Range

Do we really need a viewing range > connectivity range?

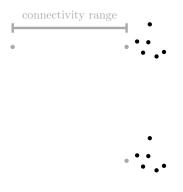
 Remember: NEAR-GATHERING needs simultaneous termination



Viewing Range

Do we really need a viewing range > connectivity range?

- Remember: NEAR-GATHERING needs simultaneous termination
- both configurations right are locally indistinguishable



Class of Near-Gathering Strategies

Theorem 5

After $\mathcal{O}(\Delta^2)$ epochs (SSYNC), λ -contracting gathering protocol with collision avoidance reaches a NEAR-GATHERING.

18 (Near-) Gathering with Limited Visibility / Jonas Harbig

Summary

- Class of Discrete Gathering Strategies in $\mathcal{O}(\Delta^2)$
 - high dimensional
 - improved running time (previously $\mathcal{O}(n+\Delta^2)$)
- Class of Discrete Near-Gathering Strategies in $\mathcal{O}(\Delta^2)$
 - first result under the disoriented \mathcal{OBLOT} model