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1 Introduction

In recent years, econometric research has set to relax many of the restrictive assumptions

used to estimate economic models. The area of efficiency measurement is no exception. Be-

ginning with Schmidt and Sickels (1984), who relaxed distributional assumptions on the error

components, econometricians have attempted to further relax the parametric assumptions

in production frontier models. Here the ongoing debate has been between using nonpara-

metric methods which use linear programming methods versus parametric methods which

use econometrics. Although the debate continues, it is obvious that a stochastic procedure

which adopts nonparametric techniques would be optimal. The use of nonparametric kernel

methods has helped facilitate this trend in the literature (e.g., see Adams, Berger and Sickles

1999, Fan, Li and Weersink 1996, Kneip and Simar 1996, Park, Sickles and Simar 1998, 2003

and Sickles 2005).

Evidence for this suggestion comes from the Monte Carlo exercises of Gong and Sickles

(1992). They show that estimates of technical efficiency for parametric panel data stochastic

frontier models are improved when the employed form of the production function is closer

to the true underlying technology. In general, when a data generating process is unknown,

nonparametric kernel methods often give the most reliable results (of course, the relative

performance also depends on such things as dimensionality and sample size).

The objective of this paper is to provide fully nonparametric estimators of production

frontiers and time variant technical efficiency. Based on recent results on regression with

continuous and categorical data (Racine and Li 2004) we improve upon past attempts by

allowing firm and time effects to be smoothed as well as the continuous regressors. This

approachmakes the estimation procedure fully nonparametric and thus only requires minimal

restrictions on the technology. Further, we see that the rate of convergence of the estimators

are of the standard nonparametric rate. We feel that these procedures should prove fruitful

for estimating observation specific estimates of both elasticities and technical efficiencies in

a panel data setting.

The remainder of this paper is organized as follows: Section 2 provides a brief explanation

of past measures, whereas the third section defines our model, proposes the nonparametric

estimators and gives some asymptotic results. Section 4 provides an empirical example.

Finally, Section 5 concludes the paper.
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2 Past Modeling Strategies

In this section we describe previous methods used for estimating production frontiers and

technical efficiency in a panel data setting. In these models the production frontiers are

estimated, and time invariant estimates of output oriented technical efficiency for each firm

are obtained as a by-product of the exercise. This basic framework assumes that we observe

a cross-section of data on N firms over T time periods. Quantities of d inputs are used to

produce a scalar output through a production function. More specifically, the production

frontier model can be written as

yit = f(xit, β) exp(εit − ui), (1)

where yit represents the level of output for firm i at time period t, f is the production frontier,

β is a d×1 vector of unknown parameters, εit represents the two sided noise component, and
ui is the non-negative technical inefficiency component of the error term. Estimation of the

production frontier, as well as the technical efficiency term can be estimated in several ways.

For the remainder of this section we will focus on two specific estimation techniques: one

parametric, where the functional form of f will be assumed, and a second semiparametric,

where we will allow the data to tell us the form of the production frontier.

2.1 Parametric Estimation

Although many methods exist for estimating a parametric model with panel data, here we

choose one of the most popular methods, which is comparable to the remaining procedures.

Fixed Effects (FE) estimation of the production frontier, introduced by Schmidt and Sick-

les (1984), can be obtained, for example, from the log-linear Cobb-Douglas one-way error

component model

yit = xitβ + αi + εit, (2)

where yit again represents the output for firm i at time period t. xit is the d × 1 vector of
inputs, β is the d dimensional vector of parameters, αi (= α− ui) is the firm fixed effect and

εit is the random disturbance. In other words, we assume that each firm shares the same

parametric technology in each time period, but that differences between them are captured

by a location (firm) effect αi (time effects can also be accounted for, for example, by simply

detrending the data). Estimation of β (elasticities) can be obtained, for example, by means

of the within estimator. Firm specific estimates of α are then obtained by

bαi =
1

T

TX
t=1

³
yit − xitbβ´ . (3)
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Here we note that the estimate of β is consistent as NT → ∞, but bαi is consistent only if

T →∞. Further, we estimate the individual ui by means of the normalization

bui = max
i
bαi − bαi,

and firm specific estimates of technical efficiency are given by

dTEi = exp (−bui) .
2.2 Semiparametric Estimation

The (linear) parametric assumption (above) may not be suitable for all panel data sets. If

one assumes a linear specification and the Data Generating Process (DGP) is non-linear,

then the estimates will most likely be biased. To counter situations such as this, Kneip and

Simar (1996) suggest a more general form for the production function:

yit = h(xit) + αi + εit, (4)

where h(·) is an unknown smooth production function that each firms shares, but differences
between them are captured by the location effect αi. The DGP leading to this model will be

described in details in the next section, as a particular case of a more general nonparametric

model. There, h(x) will be viewed as an “average” production function, where the average

is over the population of firms. Consequently, the “average” of αi is supposed to be equal

to 0 (see Section 3.2 for details).

Estimation of h can be obtained several ways. Kneip and Simar (1996) propose using a

Nadaraya-Watson type estimator, but here we suggest using the Local Linear Least Squares

(LLLS) estimator. Not only does the local linear estimator give more efficient estimates of

h(·), it also allows for estimation of both the production function and the elasticities in one
step. To use this method, one must take the first order Taylor expansion of h(xit) at the

point x, where x is any value of interest in the range of the inputs. This leads to

yit ≈ h(x) + (xit − x)β(x) + αi + εit, (5)

where β(x) ≡ 5h(x). Thus, when x and y are expressed in logarithmic form, β(x) is

interpreted as an elasticity. Estimation of δ(x) ≡ (h(x), β0(x))0 is then obtained as
bδ(x) ≡ ³bh(x), bβ0(x)´0 = (X 0K(x)X)−1X 0K(x)y, (6)

whereX = (1, (xit − x)) andK(x) is aNT×NT diagonal matrix of kernel (weight) functions

K (b−1 (xit − x)) (note that generally kernel functions can be any probability function having
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a finite second moment) and b are the optimal bandwidths (known to be the most important

factor in kernel estimation). Estimation of the bandwidths can be obtained by using the

Least-Squares Cross-Validation (LSCV) procedure. In short, the procedure chooses b such

that it minimizes the LSCV function given by

CV (b) =
TX
t=1

NX
i=1

[yit − bh−i(xit)]2, (7)

where bh−i(xit) is computed by leaving out, as in Kneip and Simar (1996), all the T observa-
tions (yit, xit) of the ith firm (leave-one firm-out estimator).

Having determined an estimator bh of h, estimators of α (again, time effects can also be
accounted for, for example, by simply detrending the data) for each i are also obtained by

the method of least squares as

bαi =
1

T

TX
t=1

³
yit − bh(xit)´ . (8)

Under the regularity assumptions of Kneip and Simar (1996), as NT →∞
|bhi(x)− hi(x)| = Op

¡
(NT )−2/(d+4) +N−(1/2)¢ ,

where hi(x) = h(x) + αi. Further, under the same regularity conditions, when N →∞
|bαi − αi| = Op

¡
(NT )−2/(d+4) + T−(1/2) +N−(1/2)¢ .

Again, we estimate the individual ui by means of the normalization

bui = max
i
bαi − bαi,

and firm specific estimates of technical efficiency are given bydTEi = exp (−bui) .
3 A More General Approach

Although the semiparametric approach above was a step in the right direction, it has several

restrictive assumptions. First, the firm effect enters in linearly. Second, it is assumed to

be time invariant. Finally, although one can detrend the data on inputs and output, these

types of procedures are parametric in nature and do not allow for optimal smoothing.

In this section we propose our fully nonparametric model. Then we will show how to

estimate the model as well as give the rates of convergence for our estimators. Our results

will show that our estimation procedure is appealing and, as intuitively expected, much more

flexible than the preceding ones.
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3.1 A Nonparametric Model

A general nonparametric model can be written as follows:

yit = h(xit, i, t) + εit, (9)

where yit is output and xit ∈ Rd is a vector of inputs for firm i at time period t, i = 1, . . . , N

and t = 1, . . . , T . Here we will address the problem of estimating the production function,

h(x, i, t) which is allowed to vary over each firm and each time period, for all x in a compact

subinterval D ⊂ Rd.

Here we first describe the DGP by introducing some regularity conditions on the sto-

chastic elements of the model, specifically adapting from those given in Kneip and Simar

(1996). The setup is quite general and very flexible. First, we consider t as non-random and

the value of T will be held fixed (as is the situation in many panel models, the asymptotic

case for T → ∞ does not have any practical meaning). Then we specify the stochastics of

the DGP through the following assumptions:

— (A1) Production function and random sample of firms: for a fixed firm i and a given

time period t, the production function is given by h(x, i, t), each firm i is indepen-

dently drawn from a population (real or conceptual) of firms. Therefore, for each t,

h(·) are i.i.d. random functions. Furthermore, we assume each possible realization

of the random function h(·) is a smooth function in x (at least twice continuously

differentiable).

— (A2) Frontier function: for any x ∈ D, the functional values h(x, i, t) are i.i.d. real

valued random variables with unknown density φx,t. The frontier function at time

period t (the geometrical locus of optimal production plans) is defined as follows:

ft(x) = sup{y ∈ R|φx,t(y) > 0},
and we assume that ft(x) <∞ for all x ∈ D.

— (A3) Error term: the error term ε represents the stochastic component in (9). It is

the usual random noise term. We make the usual standard assumption that the εit are

i.i.d. zero mean random variables.

— (A4) Inputs: for a given t, the xit are independent continuous d-variate inputs with

an unknown density ρit, with support D. Thus, we allow for some time dependence

between the inputs. Note that the results of Li and Racine (2005) show that we can

allow for weak dependence between the xit.
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— (A5) Independence of stochastic components: h, xit and εit are independent.

These regularity conditions are similar to those used in Kneip and Simar (1996) who

also propose a nonparametric estimator of a special case of our model, where h(x, i, t) =

hi(x) for all t = 1, . . . , T . Since the production function is time invariant, they propose a

nonparametric estimator of hi(x) based on a standard kernel estimator (Nadaraya-Watson)

obtained by averaging the weighted (by the kernel) values of yit over the T periods of time.

The drawback of this approach (as pointed by Kneip and Simar) is that they need large

values of T to get sensible estimators of the production functions and they do not take

advantage of the information on the production process across the different firms.

For this reason, Kneip and Simar suggest the use of their semiparametric model given in

(4) where they restrict the nonparametric hi(x) to the previously defined additive structure

(hi(x) = h(x)+αi). Thus, the nonparametric estimation of h(x) can be taken by smoothing

over all NT observations. In the general approach we propose here, we will consider the non-

parametric model where the production frontier can vary over time. We will take advantage

of the information over different time periods and across different firms by smoothing the

values of yit not only over the values of xit but also over the firm and the time index (i, t);

so we are also using the NT observations to estimate h(·). To achieve this, we adapt to this
panel situation the method proposed in Li and Racine (2004) and Racine and Li (2004) for

regression with both categorical and continuous regressors.

The semiparametric restriction of our model, described in section 2.2 and analog to (4)

would be:

hSP1(x, i, t) = αi + ht(x), (10)

where ht(x) = E(h(x, i, t))), the expectation being relative to φx,t, so that E(αi) = 0.

Note that an alternative semiparametric model would be a fully additive effect model

where we consider a further decomposition of ht(x):

hSP2(x, i, t) = αi + γt + h(x), (11)

where h(x) = 1
T

PT
t=1 ht(x), so that

PT
t=1 γt = 0. This latter model will not be developed

further in this paper.

We discuss below how to estimate the production function h(x, i, t) for any x ∈ D and we

also particularize to the semiparametric model (10) and provide a nonparametric estimator

of ht(x) in this case.
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3.2 A Nonparametric Estimator

Recent advances in nonparametric econometrics allow us to also smooth firm effects (as

well as other categorical variables — both unordered and ordered). Here we use Li-Racine

Generalized Kernel Estimation (Li and Racine 2004; Racine and Li 2004) to estimate our

model (9). Taking a first-order Taylor expansion of h(xit, i, t) with respect to xit at a point

x, where x is any value of interest in the range of the inputs, yields

yit ≈ h(x, i, t) + (xit − x)β(x, i, t) + εit (12)

where β(x, i, t) is defined as the partial derivative of h(x, i, t) with respect to x. Again, if

y and x are both expressed in logarithmic form, then β(x, i, t) is interpreted as a “local”

elasticity for the firm i, at time t, evaluated at the point x.

The estimator of δ(x, i, t) ≡ (h(x, i, t), β0(x, i, t))0 is given by
bδ(x, i, t) =

³bh(x, i, t), bβ0(x, i, t)´0
=

"X
j,s

K(b,λu,λo)

µ
1 xjs − x

xjs − x (xjs − x) (xjs − x)0

¶#−1
(13)

×
X
j,s

K(b,λu,λo)

µ
1

xjs − x

¶
yjs,

where
P

j,s stands for
PN

j=1

PT
s=1 and K(b,λu,λo) = cc× cu× co is the commonly used product

kernel function (e.g., see Pagan and Ullah 1999). Here cc is the standard kernel function used

for each of the continuous inputs as described in the previous section with window width

b. Moreover cu is a variation of Aitchison and Aitken’s (1976) kernel function for unordered

categorical variables, which equals one if j = i and λu otherwise and co is the Wang and

Van Ryzin (1981) kernel function for ordered categorical variables which equals one if s = t

and (λo)|t−s| otherwise. So the weighting in the localizing process does not only depend (as

usually when smoothing over continuous covariates) on the distance between x and the data

points xjs but also on the difference between the firm i and the time t indices with the data

j, s indices.

As noted previously, estimation of the bandwidths (b, λu, λo) is typically the most salient

factor when performing nonparametric estimation. The extension of the LSCV procedure

here is trivial. Now the procedure chooses (b, λu, λo) which minimize the LSCV function

given by

CV (b, λu, λo) =
TX
t=1

NX
i=1

[yit − bh−i(xit, i, t)]2, (14)
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where bh−i(xit, i, t) is computed, as in Kneip and Simar (1996), by leaving out all the T

observations (yit, xit) of the ith firm (leave-one firm-out estimator). In the empirical section

below we explain how this can be done in practice.

According to the properties established for nonparametric estimation of regression with

both categorical and continuous regressors, our nonparametric estimator ĥ(x, i, t) achieves

the standard nonparametric rate of convergence
¡
N2/(d+4)

¢
when N → ∞ (remember that

T is fixed) under the appropriate regularity conditions and technical assumptions on the

bandwidths, as described in Theorem 2.1 of Li and Racine (2004). Under these conditions,

we can write, for a firm i, for any x ∈ D and any time period t, as N →∞

|ĥ(x, i, t)− h(x, i, t)| = Op((NT )−2/(d+4)), (15)

where of course the last term is in fact Op(N
−2/(d+4)), since T is fixed, but the writing in

(15) exposes the fact that the NT observations are used in the estimation.

3.3 Frontier and Efficiency Estimation

From the definition of the production function above, we propose, as in Kneip and Simar

(1996), the following estimator of ft:

f̂t(x) = max
i=1,...,N

ĥ(x, i, t), t = 1, . . . , T. (16)

Following the arguments in Theorem 2 of Kneip and Simar (1996), it can be seen that

the rate of convergence of the frontier level relies on the rates obtained for the production

function, with a factor involved by the max operator. It is easy to see that the production

frontier in (16) is defined as the maximum production possible across each of the N firms at

time period t for each x. We then have, under the same regularity conditions, when N →∞:

|f̂t(x)− ft(x)| = Op((NT )−2/(d+4) logN +N−1).

Once the frontier is defined, we can estimate the efficiency of each firm in each time period.

Previous attempts to measure efficiency have consisted of finding an average over time of the

difference between the observed output and estimated output (in other words, residuals).

These average differences are then used to obtain time invariant technical efficiency through

a normalization procedure. However, this type of procedure requires that one firm be deemed

technically efficient and that all others be measured against that firm regardless of their level

of production. Here, not only will we be able to estimate time variant technical efficiency,

but we will actually allow for the possibility that more than one firm is deemed to be efficient
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in any given time period. Further, the estimation procedure also allows for the possibility

that no firm is deemed efficient in any time period.

Specifically, the estimation of time variant technical efficiency goes as follows: in a given

time period t, a firm i uses a given amount of inputs xit to produce a given amount of output

yit observed with noise εit. We have shown above how to distinguish the actual (estimated)

output ĥ(xit, i, t) from the observed output yit and the random noise εit. The question of

how to determine the efficiency for a particular firm at a particular time period is thus the

following: given the amount of inputs used by firm i in time period t, could any of the other

firms have produced more output than did firm i in that same time period t, using the same

amount of inputs xit?

From (13) we can see that the estimates of h can be evaluated at any x ∈ D ⊂ Rd.

Therefore, we simply evaluate the function for each firm j in the sample in that same time

period t, using the input levels xit that were used by firm i. Essentially the measure of

technical efficiency compares the difference between the actual (estimated) output of firm i

and the maximal potential output produced by any other firm in the sample for the same

time period. If the output is measured in logarithms, then the estimate of technical efficiency

for firm i in time period t is defined as

TEit =
exp

³
ĥ (xit, i, t)

´
exp

³
maxj=1,...,N

³
ĥ (xit, j, t)

´´ .
This measure of technical efficiency is simply the ratio of actual to potential output.

In order to help visualize this measure, consider the following trivial example shown in

Figure 1. Here we have a sample of two firms (1,2) in a particular time period (t) with

a single input (x) and a single output (y). Each firm in period t sits on its production

function, h(x, 1, t), and h(x, 2, t) respectively. The production frontier at time period t

(ft(x)) is defined as the locus of optimal production plans. It is easy to see, that up to

an input level around 35, firm 1 defines the production frontier, however after that input

level, firm 2 defines the production frontier. Estimation of efficiency is also straight forward

from the figure. Suppose the observed input for firm 1 at time period t was 80. The

actual (estimated) output for firm 1 (h(80, 1, t)) is roughly equal to 22. However, employing

that same amount of input, firm 2 could produce (h(80, 2, t)) roughly 30 units of output.

Therefore the efficiency for firm 1 at time period t would be the ratio of actual (estimated)

to potential output, 0.733 (= 22/30).
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4 Empirical Example

In this section we will use an empirical example to illustrate the above procedures. Here we

consider the analysis of labor efficiencies of 17 railway companies over a period of 14 years

(annual observations). Although the sample size (238 observations) is relatively small, this

example will allow us to show, from a practical point of view, how the procedures work.

Data on the activity of the main international railway companies can be found in the annual

reports of the Union Internationale des Chemins de Fer (U.I.C.). The railways retained over

the period 1970-1983 can be found in Table 1. One reason for choosing this data set is that

it has also been studied in a similar fashion by Hall, Härdle and Simar (1995), Kneip and

Simar (1996), and Park and Simar (1994).

Since we analyze a labor function, the support of h is bounded from below (the most

technically efficient railway company uses the least labor), and thus the firm with the smallest

value of α will be deemed the most efficient in the sample. Following Kneip and Simar (1996),

the variables used in this example are

yit = labor (total number of employees) / total length of network (in kms)

x1it = total distance covered by trains (in 103 kms) / total length

of network (in kms)

x2it = ratio of passenger trains in x1it (in %)

x3it = density of network (kms of lines by 100 km2).

All the variables are in logarithms and for the first two models (parametric and semipara-

metric) have been adjusted for the time trend effect. Note that Kneip and Simar (1996) have

placed in the denominator of both y and x1 the total length of the network which eliminates

the size effect. Further, the variable x1 represents a rough measure of the output (demand)

of the railways, whereas x2 characterizes some aspects of the demand and x3 is a physical

measure of the density of the network.

Here we present the results for the three separate models. First, we provide the results

for the estimation of the log-linear model

yit = xitβ + αi + εit,

where xit = (x1it, x2it, x3it). The top part of Table 2 gives the estimates for the elasticities

from the within estimator as well as the associated standard errors (in italics). Note that

the last two slopes of the linear model have negative signs and the latter is significant (these

are unexpected signs — a higher percentage of passenger trains and an increase in the density

of the network should lead to an increased demand for labor). At the same time, the first
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column of Table 3 gives the estimates of time invariant technical efficiencies of each network.

The estimated values of technical efficiency and the ranking of the networks (seen in Table

4) rely on the restrictive linear hypothesis. The next logical question is then, what happens

to the estimates when a less restrictive model on the technology is estimated?

Kneip and Simar (1996) suggest the semiparametric model

yit = h(xit) + αi + εit

to estimate the common labor function and associated firm effects. Here, h is the unknown

smooth labor function common to all firms and αi again represent the individual effect of

the ith firm. Further, since we are also interested in estimating the returns to each input

(β(x) ≡ 5h(x)) in a single step, we employ the LLLS estimator. This gives us observation

specific estimates of the labor function. The middle part of Table 2 gives the mean values

of the LLLS estimates of the parameters. The optimal bandwith was selected by cross-

validation as explained above. For the continuous multivariate variable x, we define the

bandwidths as bj = bbasis × σxj × (NT )−1/(4+d), for j = 1, 2, 3 where the optimal value for

bbasis is determined by the cross-validation criterion. The optimal value was found to be

bbasis = 0.83. The table also gives the bootstrapped (500 bootstrap replications) standard

errors of the estimates. Note now that the first and third coefficients are positive, but

insignificant at the means (again, the sign of the coefficient on x2 at the mean, although

insignificant, is unexpected).

In order to compare across two or more models, a unit-free goodness-of-fit measure is

usually used. Given the known drawbacks of the R2 measure based on the decomposition

of the sum of squares, we employ an alternative definition that is commonly used. This

definition defines R2 as the squared correlation coefficient between the dependent variable

(y) and fitted value (by), and is given by
R2 = ρ2yy =

"
cov(y, by)p

var(y)× var(by)
#2

,

which is identical to the standard measure when the model is linear and includes an in-

tercept term. The value given by the parametric model is 0.675 whereas the value for the

semiparametric model is 0.892.

The second column of Table 3 also gives the estimates of technical efficiency for each

network. Notice the discrepancy between the ranking of the semiparametric case and the

ranking of the linear case for a majority of the networks. This information, along with the

goodness of fit measure, may lead one to suggest that the parametric assumption is incorrect.
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Although this model is less restrictive than the parametric model, the estimated technical

efficiencies are assumed to be time invariant. Further, the model is semiparametric (h(x) +

αi) and the ranking of the networks rely on these restrictive assumptions. The question

now becomes, what happens to the estimates when an even less restrictive model for the

technology is estimated?

Our model is thus defined as

yit = h(xit, i, t) + εit,

where h is an unknown smooth labor function. Note that the independent and dependent

variables are no longer adjusted for the time trend effect because this will be picked up by the

categorical variable t. We estimate the model by the procedure explained in Section 3.2. Here

three optimal bandwidths have to be selected simultaneously. For the continuous variables

we proceed as in the preceding case and for the unordered and ordered categorical variables

we follow the Li and Racine (2004) and Racine and Li (2004) scaling suggestions (scaling

the bandwidths by a factor (NT )−2/(4+d)). Finally, the procedure provides the following

optimal values: for the continuous variables, bj = 34.00 × σxj × (NT )−1/(4+d) , j = 1, 2, 3

and for the categorical bandwidths, λu = 1.81× (NT )−2/(4+d) and λo = 0.81× (NT )−2/(4+d)

The bottom line of Table 2 provides mean values of the parameter estimates as well as

their associated bootstrapped (500 bootstrap replications) standard errors. Note that with

the nonparametric approach the returns take their expected signs and that the first and

third are significant. Further, we see an improvement in the goodness-of-fit measure with a

R2 = 0.954.

The last column of Table 3 gives the average (for the nonparametric case) technical ef-

ficiency for each network. Note that although some of the rankings are similar with the

nonparametric and semiparametric procedures (e.g., ÖBB), many of the rankings differ sig-

nificantly (e.g., DSB).

Of course in this approach we have more information on the firm and time dependent

structure of the efficiencies. Table 5 provides all the efficiency scores for each firm at each

time period with the corresponding averages. For instance, we see that five firms are deemed

efficient in at least one time period (CP, DB, NS, SNCB and SJ). Further, we see that NS

and SJ are considered to be efficient in each time period. Thus, neither of these two firms

dominates the other. Of course, this type of detailed analysis is not availbale with the other

techniques described above.

Also notable from this table, is the fact that the time invariant assumption does not hold

for the technical efficiencies. These restrictions (especially the time invariant assumption), in
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the semiparametric framework, may penalize some networks. For example, if we simply look

at the average technical efficiency for each firm, the results for CH look similar between the

nonparametric and semiparametric measures. However, by examining Figure 2 we see that

although the two measures were similar at the beginning of the sample, towards the end of the

sample, the technical efficiency falls in the nonparametric case. As another example, consider

the case of JNR versus VR. In terms of average efficiency, the two networks are ranked last

and second to last respectively. Further, the average estimate of technical efficiency for JNR

appears to be much less than that of VR. Thus, given these average results, one might believe

that JNR is much worse off than VR. However, if we look at Figure 3, which plots technical

efficiencies over time we can see that although JNR had a relatively poor efficiency score

at the beginning of the sample, as we approach the end of the sample, JNR improves in

terms of efficiency. At the same time, VR had a significantly higher efficiency score at the

beginning of the sample, but in fact JNR slightly overtakes VR in terms of efficiency scores

during the final period.

In our illustration with railway companies we have shown the problems induced by using

restrictive assumptions on the technology when it could be incorrect. This might provide

spurious inefficiencies and wrong efficiency scores which penalizes some networks.

5 Conclusion

This paper presents a procedure to estimate fully nonparametric production frontiers as well

as estimate time variant measures of technical efficiency. This is achieved by exploiting recent

advances in econometrics which allowed us to smooth categorical variables. Specifically, we

used Generalized Kernel Estimation to smooth both the continuous regressors as well as

the categorical regressors representing both individual firms and time periods. This added

flexibility did not come at an additional cost because we found that the estimates of both

the production function and the production frontier converge at the standard nonparametric

rate.

The illustration to a real data set indicates that the procedure is easy to implement

and provides sensible results, much more sensible than those obtained by more restrictive

models. Our results have shown that the estimation procedure is appealing and, as intuitively

expected, much more flexible than the other ones. The analysis provides also more insights

into the structure and the evolution of efficiencies over time and across firms.
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Table 1 - Railway Companies

Network Country
BR Great Britain
CFF Switzerland
CFL Luxemburg
CH Greece
CP Portugal
DB Germany
DSB Denmark
FS Italy
JNR Japan
NS Netherlands
NSB Norway
ÖBB Austria
RENFE Spain
SJ Sweden
SNCB Belgium
SNCF France
VR Finland
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Table 2 - (Average) Elasticity Estimates

x1 x2 x3
Parametric 0.111 -0.096 -0.637

0.068 0.138 0.141
Semiparametric 0.079 -0.261 0.082

0.222 0.258 0.072
Nonparametric 0.333 0.433 0.432

0.181 0.396 0.110
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Table 3 - (Average) Estimates of Technical Efficiency

Network Parametric Semiparametric Nonparametric
BR 0.122 0.922 0.871
CFF 0.118 0.909 0.805
CFL 0.078 0.913 0.820
CH 0.600 0.900 0.876
CP 0.281 0.902 0.888
DB 0.088 0.914 0.967
DSB 0.206 1.000 0.848
FS 0.129 0.834 0.785
JNR 0.095 0.845 0.614
NS 0.145 0.904 1.000
NSB 1.000 0.902 0.818
ÖBB 0.120 0.853 0.801
RENFE 0.477 0.870 0.887
SJ 0.844 0.944 1.000
SNCB 0.071 0.903 0.992
SNCF 0.208 0.933 0.892
VR 0.811 0.895 0.758
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Table 4 - (Average) Efficiency Estimate Rankings

Network Parametric Semiparametric Nonparametric
BR 11 4 9
CFF 13 7 13
CFL 16 6 11
CH 4 12 8
CP 6 10 6
DB 15 5 4
DSB 8 1 10
FS 10 17 15
JNR 14 16 17
NS 9 8 1
NSB 1 10 12
ÖBB 12 15 14
RENFE 5 14 7
SJ 2 2 1
SNCB 17 9 3
SNCF 7 3 5
VR 3 13 16
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Table 5 — Observation Specific Efficiency Scores

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 Mean
BR 0.864 0.869 0.887 0.893 0.890 0.879 0.874 0.861 0.853 0.852 0.849 0.856 0.888 0.879 0.871
CFF 0.827 0.830 0.824 0.818 0.813 0.808 0.811 0.814 0.801 0.798 0.803 0.792 0.784 0.754 0.805
CFL 0.801 0.804 0.831 0.836 0.818 0.838 0.835 0.823 0.827 0.806 0.811 0.815 0.822 0.817 0.820
CH 0.906 0.913 0.908 0.907 0.894 0.890 0.879 0.868 0.868 0.857 0.850 0.843 0.836 0.844 0.876
CP 0.792 0.804 0.850 0.861 0.861 0.847 0.835 0.858 0.869 0.907 0.960 1.000 1.000 0.992 0.888
DB 0.935 0.935 0.944 0.948 0.949 0.946 0.947 0.956 0.974 0.999 1.000 1.000 1.000 0.999 0.967
DSB 0.862 0.860 0.827 0.829 0.833 0.836 0.836 0.839 0.842 0.846 0.847 0.839 0.848 0.931 0.848
FS 0.792 0.789 0.785 0.784 0.783 0.774 0.778 0.777 0.773 0.778 0.787 0.790 0.800 0.798 0.785
JNR 0.583 0.590 0.597 0.602 0.603 0.612 0.605 0.602 0.608 0.608 0.622 0.638 0.654 0.668 0.614
NS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NSB 0.820 0.835 0.838 0.838 0.822 0.830 0.835 0.823 0.806 0.793 0.794 0.804 0.806 0.809 0.818
OBB 0.844 0.839 0.834 0.821 0.797 0.809 0.788 0.785 0.793 0.784 0.780 0.778 0.777 0.781 0.801
RENFE 0.854 0.873 0.866 0.877 0.874 0.888 0.851 0.901 0.897 0.899 0.896 0.904 0.897 0.885 0.877
SJ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SNCB 0.985 0.988 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.991 0.978 0.965 0.988 1.000 0.992
SNCF 0.898 0.898 0.898 0.898 0.898 0.899 0.884 0.875 0.874 0.881 0.891 0.901 0.894 0.898 0.892
VR 0.802 0.816 0.809 0.805 0.787 0.799 0.792 0.788 0.773 0.736 0.700 0.678 0.665 0.666 0.758
Mean 0.857 0.861 0.866 0.866 0.860 0.862 0.858 0.857 0.856 0.855 0.857 0.859 0.862 0.866 0.860








