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Summary. The problem of choosing an appropriate reserve method for estimating loss

reserves for a given set of loss data has long been an important task for actuaries. A

Growing Triangle technique is proposed for this purpose. At the root of this technique,

sub-triangles of losses, embedded in the full triangle of available data, are used to as-

sess the prediction power of various candidate methods of estimation. The technique is

demonstrated using real data.
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1 Introduction

As a return of paying future claims on specific losses described on insurance contracts,

insurer received premiums from policyholders in advance. However, the actual losses are

not known in advance. Therefore, a method to estimate the expected liability is needed

so that the insurer can calculate the profit of written policies and allocate assets to ensure

liquidity.
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For life insurance, the task is easier. As mortality and morbidity of a population can

be predicted fairly accurately, reserve can be calculated based on formula established

from the plan design. For example, life reserve actuaries use life contingency formula

(Bowers et al. 1933) for estimating net premium reserve for a whole life policy in life

contingency. However, for property and casualty insurers, losses are usually due to events

that are highly random in nature. For example, in calculating property losses due to

fire, the probability of a forest fire depends on weather condition, location and physical

structure of the building and many other factors, all of which hinder precise estimation

of losses. This makes the loss projection based solely on the fundamental causes of loss

impossible. Instead, property and causality actuaries usually estimate loss reserves based

on all reported or known losses and events.

The chain-ladder method is the most popular method of loss reserving. During the past

decades, loss-reserving has become a very sophisticated and developed field in insurance

industry. A complete list of these methods is non-exhausting, ranging from the simplest

one of loss ratio estimation to the complicated Bayesian hierarchical models. For a recent

book summarizing many of the existing methods, see Loss Reserving - An Actuarial

Perspective by G. Taylor (2000).

The chain-ladder method has been extended based on the stochastic nature of the losses.

Two broadly used models are the log-linear and the log-normal ANOVA-type models

(Renshaw and Verrall 1994, Renshaw 1989, Verrall 1991, 1993, 1996 and Haberman and

Renshaw 1996). Others include the dynamic state space model (Verrall 1989 and 1994)

as an extension to the log-normal models and the Bayesian models using Markov chain

Monte Carlo method (Makov, Smith and Liu 1996).

As for simulation methods, Stanard (1985) and Pentikäinen and Rantala (1995) describe

methods of simulating random loss triangles in which data of the upper triangle are

simulated and used to estimate the simulated losses, that is, the missing values of the

lower triangle. The former is based on a loss severity distribution of individual claim

amounts whereas the latter uses an aggregate stochastic claim process. Simulated models

are desirably compared in Narayan and Warthen (2000). However the problem with

simulation methodology is that the underlying assumptions behind the simulation may
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not be realistic, namely, that the nature of the simulated losses does not mimic closely

that of the actual losses. These new methods differ in their underlying assumptions,

degree of sophistication and complexity.

For the practicing actuary, the idea of exchanging the simple-to-use ‘chain-ladder’ method,

with another more complicated one, is quite unattractive. This is reflected by the fact

that most actuaries solely use the chain-ladder method and rarely attempt any other

methods. For researches onto different methods of loss reserving, selecting an appropriate

reserve method thus becomes an important task. At present, there are not much research

work on model selection for loss reserves.

A common practice to introduce a new methodology for loss reserves is to offer numer-

ical examples in which the supremacy of one method over the others is demonstrated.

However, in most cases, the methods are judged by their ability to predict accurately the

values of the existing data, in the form of upper triangle. This is an undesirable practice

since the same data is used both for model building and for model assessment.

In this paper, we propose a Growing Triangle (GT) technique for comparing between

different models for loss reserves. At the root of the proposed method, lies the assumption

that there is no universal ‘good’ methodology and that for every data set of losses there

are methodologies which are better suited for predicting loss reserves. In order to assess

a methodology for a particular set of data, we split the data into smaller embedded tri-

angles, in a way that their lower triangle values are known and can be used for prediction

assessment. To be specific, the data in the triangle are used to train the proposed model

and then the predicted losses outside the run-off triangle will be compared with the ob-

served losses in the triangle. Finally a weighted average of the sum of squared discrepancy

for each triangle of size n is obtained which is then used as a measure for model selection.

Section 2 introduces nine simple models for loss reserves and they are compared using the

proposed GT technique. We did not consider complicated loss reserve models because the

aim of this paper is to demonstrate the use of growing triangles to evaluate the predictive

power of different models and hence to facilitate models selection. Section 3 describes the

GT technique for comparing between different models for loss reserves. Finally in Section

4, the proposed technique is demonstrated using three data sets.
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2 Models for loss reserves

For each triangle of size n, n = 2, . . . N − 1, let Xij, i, j = 1, . . . , n, i + j ≤ n + 1 denote

the incremental loss of policies written in year i and reported in the j-th year thereafter.

Claims from policies written are incurred in year 1 to n. Moreover, for policies written in

year i, there will be n + 1− i different report lags. Therefore, data for incremental claims

are usually summarized in a triangular format as shown in Table 1.

To demonstrate the GT technique for comparing the predictive power between different

models for loss reserves, we consider, in this paper, nine models as given below.

1. Chain ladder

Model 1 uses the chain ladder method which is simple and is widely used in ac-

tuarial practice. It indirectly estimates the incremental loss Xij by projecting the

cumulative loss Sij given by

Sij =
j∑

k=1

Xij, i = 1, . . . , n, j = 1, . . . , n + 1− i.

The cumulative loss Sij at lag year j(> n + 1− i) can be estimated by multiplying

successively the projection factor fj to the latest known cumulative loss, Si,n+1−r

for accident year i using the formula

Ŝij = Ŝi,j−1 × fj, i = 2, . . . n, j = n + 2− i, . . . , n∗ (1)

where Ŝi,n+1−i = Si,n+1−i, n∗ = min{n, N + 1− i} and the projection factors fj are

estimated by

fj =

n+1−j∑
i=1

Sij

n+1−j∑
i=1

Si,j−1

=
n+1−j∑

i=1

wijfij, j = 2, . . . , n, (2)

which is a weighed average of the age-to-age development factors

fij =
Si,j

Si,j−1

, i = 2, . . . , n, j = 2, . . . , n + 1− i (3)

with weights

wi =
Si,j−1

n+1−j∑
i=1

Si,j−1
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and
n+1−j∑

i=1

wij = 1.

Note that the predicted Sij which is further away from the latest known loss, is less

reliable as more projection factors are required and the projection factors of higher

lag year become less reliable because of the availability of less data.

2. Modified chain ladder

Alternatively, in model 2, the projection factors fj (Brown and Gottlieb 2001) are

calculated as a simple average of the age-to-age development factors, that is

fj =
1

n + 1− j
fij, j = 2, . . . , n (4)

replaces (2) and the procedures in (1) and (3) remain the same.

3. Modified Bornhuetter-Ferguson

Bornhuetter and Ferguson (1972) developed this reserve method to incorporate both

the information from reported claims and also the prior actuarial knowledge from

plan design. Firstly, an actuary is required to estimated the expected loss ratio,

which is defined as

Expected Loss Ratio =
(Present Value of) Future Loss

(Present Value of) Premiums
,

either subjectively or based on policy design and past experience. The loss reserves

are then estimated using

Reserve = Expected Loss Ratio× Premium Received× 1∏
j fj

.

Following the idea, Model 3 is defined as

Ŝij = Ŝi,j−1 + rh ×
(

1− 1

fj

)
, i = 2, . . . n, j = n + 2− i, . . . n∗

where h = i + j − n, h ≥ 2,

rh =
1

n− h + 1

n∑

k=h

Ŝn+h−k,k−1 × fk

and Ŝn+2−k,k−1 = Sn+2−k,k−1 for k = 2, . . . , n.
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4. Adjustment to total known losses

Model 4, referred as the ‘Cape Cod method’, is described in Stanard (1980). It

consists of averaging the known losses first and then applying an adjustment factor

to the sum

Ŝij = Ŝi,j−1 + r∗i ×
(

1− 1

fj

)
, i = 2, . . . n, j = n + 2− i, . . . n∗

where

r∗h =

n∑
k=h

Sn+h−k,k−1

n∑
k=h

1
fk

.

5. Log-normal model

Now we consider a more complicated family of models within the Generalized Linear

models (GLMs) framework for incremental losses as

h(X) = ZTθ + ε

where X is the matrix with elements Xij, h(·) is a linked function, Z is the design

matrix, θ is a vector of parameters and ε is a vector of error terms which follows

some multivariate distribution say normal with mean zero. Properties of a particular

model is determined by the linked function, the design matrix as well as the error

distribution.

Ntzoufras and Dellaportas (1998) developed several Bayesian models in actuarial

estimation. In model 5, the incremental loss Xij is modeled as

ln(Xij) ∼ N(µij, σ
2), (5)

where

µij = µ + αi + βj, i, j = 1, . . . , n

such that the mean µij relates additively to the policy year i and reported lag j.

Models are conveniently implemented using a Bayesian software called ‘Bayesian

using Gibbs outputs in Window Version, WinBUGS’ (Spiegelhalter et al. 2000).

Prior distributions for the parameters are given by

µ ∼ N(0, σµ
2), αi ∼ N(0, σα

2), βj ∼ N(0, σβ
2), τ = σ−2 ∼ G(aτ , bτ ). (6)
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Without any prior information for the parameters, we set 1/σµ
2, 1/σα

2, 1/σβ
2, aτ

and bτ to be very small, say 0.001. Finally, to specify the parameters uniquely, we

impose the sum-to-zero constraints on α and β such that

n∑

i=1

αi =
n∑

j=1

βj = 0.

6. Log-normal model with linear policy-year effect

This model 6 is similar to the previous model except that

µij = µ + α× i + βj, i, j = 1, . . . , n

such that the mean relates linearly to the policy-year but the reported-lag effect

is still year specific. Prior distributions for the parameters are given by (6) except

that α ∼ N(0, σα
2) and the sum-to-zero constraint on β is

n∑

j=1

βj = 0.

7. Log-normal model with linear reported-lag effect

This model 7 is similar to model 5 except that

µij = µ + αi + β × j, i, j = 1, . . . , n

such that the mean relates linearly to reported-lag but the policy-year effect is still

year specific. Prior distributions for the parameters are given by (6) except that

β ∼ N(0, σβ
2) and the sum-to-zero constraint on α is

n∑

i=1

αi = 0.

8. Log-normal model with linear policy-year and reported-lag effects

Again, this model 8 is similar to model 5 except that the mean relates linearly to

both policy-year and reported-lag as

µij = µ + α× i + β × j, i, j = 1, . . . , n.

Prior distributions for the parameters are given by (6) except that α ∼ N(0, σα
2)

and β ∼ N(0, σβ
2).

9. State Space Model:

The State space model is an extension of the log-normal such that parameters β
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are allowed to depend on both i and j and αi and βij depend recursively on values

of the previous written year. The full model is given by (5) where

µij = µ + αi + βij, i, j = 1, . . . , n

with

βij = βi−1,j + vi, vi ∼ N(0, σ2
v), i = 2, . . . , n, (7)

αi = αi−1 + hi, hi ∼ N(0, σ2
h), i = 2, . . . , n, (8)

and the corner constraints

α1 = βi1 = 0, i = 1, 2, . . . , n.

Here the reported-lag effect changes with policy years and the recursive relations

in (7) and (8) assert that parameters αi and βij evolve through time via known

stochastic mechanisms which are determined by the disturbance terms, vi and hi.

As σ2
v approaches to zero, the model degenerates to a log-normal model . The

corner constraints imply that µ is the expected log-adjusted claim amount for the

first written year paid without delay.

3 The Growing Triangle (GT) technique

The GT technique is developed to compare the efficiency of different loss reserve methods

based on the accuracy of their projection on real data. In this technique, out of a full

upper triangle of size N for a loss data, run-off triangles of observed losses grow gradually

in size n from 5 (or 6) to N − 1, each divides the full triangle into 3 sub-parts:

1. The dark squares in the upper run-off triangle of size show the data used for model

training;

2. The light squares in the lower run-off triangle show the observed data used to

compare with the projected data to assess the model predictive power; and

3. The white squares in the full upper triangle of size outside the run-off triangle show

the unused data.
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This is illustrated with N = 11 and n = 7 in the figure below:

n=7

N=11 h=3

Experience shows that run-off triangles of size less than 5 may not have stable parameter

estimates. Moreover, we define the following quantities:

1. len : number of data used for model training

2. lpn : number of observed data to be compared with the projected data

3. ltn = len + lpn

4. lrn = len/lpn

where

len =
1

2
n(n + 1)

and

lpn =





1
2
n(n− 1) if n ≤ m

1
2
n(n− 1)− 1

2
h(h− 1) if n > m

,

with

h =





2(n−m) + 1 if N is odd

2(n−m) if N is even

and the middle value of N is m = 1
2
(N + 1) if N is odd and m = N

2
if N is even.

The accuracy of prediction can then be measured using the weighted mean square error

(WMSE). For a run-off triangle of size n,

WMSE =
N−1∑

n=5

wn ×MSEn
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where

MSEn =
1

lpn

n∑

i=5

n∗∑

j=n−i+2

(x̂ij − xij)
2

and

n∗ =





n if i < m

N + 1− i if i ≥ m
.

There are several ways of defining the importance measures wn, n = 5, . . . , N − 1:

1. wen =
len

N−1∑
i=5

lei

which is proportional to the number of data used for model training,

2. wtn =
ltn

N−1∑
i=5

lti

which is proportional to the total number of data, for model training

as well as prediction assessment, or

3. wrn =
lrn

N−1∑
i=5

lri

which is proportional to the number of data used for model training

per each data used in prediction assessment.

The first two sets of weights will increase with the size n of the run-off triangle, giving

heavier weights to larger run-off triangles which contain more information. The third set

of weights will decrease with the size of run-off triangle but will increase again if n > m

so that MSE from large run-off triangle will not dominant WMSE. Values of lpn, len,

the sum ltn and the ratio lrn for n = 5, . . . , N − 1 are given in Table 3 when N = 18.

4 Examples and results

The GT technique is illustrated using the following three data set, given in Tables 4-6.

1. Paid losses during 1978-1995

2. Payments per claim during 1981-1995

3. Number of claim notified per 100,000 vehicle years of exposure during 1985-1995

We consider the square root transformation in (5) for this data set.

MSE for different run-off triangles of size n are shown in Figures 1-3. Then results of

WMSEk, k = e, t, r with ranks in brackets using the three weights wen and wtn and wrn
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respectively for each data set are shown in Table 3. The log-normal model with linear

policy-year effect is the best model for the paid losses data. This reveals the fact that the

reported-lag effect on incremental loss is more year specific while the written year effect

is generally linear.

On the other hand, the modified chain ladder method provides the best predictions for

the other two data sets. The chain ladder method, being one of the most traditional

method of reserve estimation used by actuaries, produces relative consistent results in the

growing triangle assessment. This is explained by its relative simple and non-parametric

nature. Without heavy assumptions on the behaviors of underlying claim amount and

frequency, it generates fairly accurate reserve estimation in all cases and out-performs the

more complicated models for the other two data sets.

Moreover the modified chain ladder method produces even better estimations of the lower

triangles than the chain ladder method. This explains why it is more frequently used

and presented in the actuarial context. Another explanation for its popular usage lies in

the estimation of projection factors fj: instead of using the simple arithmetic average,

actuaries can also modify fj in (2) as other types of average of fij, like average excluding

extreme values, median and geometric mean in line with the actuarial expectation of

behavior for the loss data. This provides a flexible method for the actuaries.

On the other hand, the log-normal model is a relative straight forward parametric model

and out-performs the modified chain ladder method for the paid losses data. Quite out of

our expectation, the more advanced state space model fails to produce better estimation

in all three data sets. Parameters αi and βij in the state space model depend recursively

on their values of the previous policy year with the differences being hi and vi respectively.

Therefore, errors in the estimation of vi and hi in (7) and (8) respectively will accumulate

and make the prediction of incremental loss Xij less reliable in larger run-off triangles.

5 Conclusion

The GT technique provides a simple and effective method for assessing the projection

efficiency of different loss reserve models: the chain ladder methods, the log-normal models
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and the state space model, as illustrated in this paper. However, there are some limitations

of the method. Results show that model predictions are unstable for small run-off triangles

probably because of insufficient data. One remedy adopted in this paper is to start the

growing of triangles from run-off triangle of size that is suitably large, say from n = 6 for

the paid losses data and n = 5 for the other two data. However when the data set is not

large enough, the number of run-off triangles used in assessing the prediction accuracy will

be considerably reduced. For example, we have only 6 run-off triangles for the number of

claim data when N = 11.

Figure 1: MSE for paid losses data 
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Figure 2: MSE for payments per claim data
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Figure 3: MSE for number of claim data
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Table 1: Structure of outstanding claim amount data

Year Development year

1 2 · · · n− 1 n

1 X11 X12 · · · X1,n−1 X1n

2 X21 X22 · · · X2,n−1
...

...
...

n− 1 Xn−1,1 Xn−1,2

n Xn1

Table 2: The number of data for model training, for prediction assessment, their totals and their ratios for

N = 18.

n 5 6 7 8 9 10 11 12 13 14 15 16 17

len 10 15 21 28 36 44 49 51 50 46 39 29 16

lpn 15 21 28 36 45 55 66 78 91 105 120 136 153

ltn 25 36 49 64 81 99 115 129 141 151 159 165 169

lrn 1.50 1.40 1.33 1.29 1.25 1.25 1.35 1.53 1.82 2.28 3.08 4.69 9.56

Table 3: Weighted mean square errors (WMSE) for the three data sets.

Wt. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

WMSE (in 1000) for data of the paid losses during 1978-1995

wen 7,479 (3) 7,052 (2) 28,656 (7) 34,495 (8) 7,713 (4) 5,583 (1) 154,079 (9) 11,326 (6) 10,032 (5)

wtn 7,484 (3) 7,108 (2) 27,741 (7) 33,435 (8) 7,745 (4) 5,753 (1) 140,040 (9) 10,918 (6) 9,915 (5)

wrn 7,695 (3) 7,192 (2) 30,700 (7) 37,112 (8) 7,899 (4) 5,560 (1) 162,016 (9) 12,162 (6) 11,715 (5)

WMSE (in 1000) for data of the payments per claim during 1981-1995

wen 4,554 (2) 4,403 (1) 47,081 (7) 59,766 (9) 28,892 (5) 14,825 (3) 54,299 (8) 17,852 (4) 29,237 (6)

wtn 4,856 (2) 4,702 (1) 46,653 (7) 59,344 (9) 27,446 (5) 13,874 (3) 53,144 (8) 16,492 (4) 27,729 (6)

wrn 4,673 (2) 4,467 (1) 48,851 (7) 62,607 (9) 29,977 (5) 17,889 (3) 54,264 (8) 21,035 (4) 30,910 (6)

WMSE for data of the number of claim notified per 100,000 vehicle years of exposure during 1985-1995

wen 215 (2) 206 (1) 410 (3) 423 (4) 2,686 (6) 7,501 (9) 4,874 (8) 2,728 (7) 2,645 (5)

wtn 207 (2) 199 (1) 397 (3) 410 (4) 2,682 (6) 7,252 (9) 4,816 (8) 2,788 (7) 2,644 (5)

wrn 238 (2) 227 (1) 447 (3) 460 (4) 2,885 (7) 7,955 (9) 5,218 (8) 2,795 (5) 2,840 (6)
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Table 4: Data of paid losses during 1978-1995
Year Development year

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1978 3323 8332 9572 10172 7631 3855 3252 4433 2188 333 199 692 311 0.01 405 293 76 14

1979 3785 10342 8330 7849 2839 3577 1404 1721 1065 156 35 259 250 420 6 1 0.01

1980 4677 9989 8746 10228 8572 5787 3855 1445 1612 626 1172 589 438 473 370 31

1981 5288 8089 12839 11829 7560 6383 4118 3016 1575 1985 2645 266 38 45 115

1982 2294 9869 10242 13808 8775 5419 2424 1597 4149 1296 917 295 428 359

1983 3600 7514 8247 9327 8584 4245 4096 3216 2014 593 1188 691 368

1984 3642 7394 9838 9733 6377 4884 11920 4188 4492 1760 944 921

1985 2463 5033 6980 7722 6702 7834 5579 3622 1300 3069 1370

1986 2267 5959 6175 7051 8102 6339 6978 4396 3107 903

1987 2009 3700 5298 6885 6477 7570 5855 5751 3871

1988 1860 5282 3640 7538 5157 5766 6862 2572

1989 2331 3517 5310 6066 10149 9265 5262

1990 2314 4487 4112 7000 11163 10057

1991 2607 3952 8228 7895 9317

1992 2595 5403 6579 15546

1993 3155 4974 7961

1994 2626 5704

1995 2827

Table 5: Data of payments per claim during 1981-1995
Year Development year

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1981 5686 12823 14072 16648 10035 3196 4184 3103 3364 428 58 185 0 0 0

1982 2256 8698 11228 13258 12488 6000 5021 1962 2544 2543 219 9 25 0

1983 3735 11039 13805 13129 4795 6310 7886 1603 405 240 975 28 59

1984 3708 7794 11457 12720 11004 6043 5322 1635 1037 2422 14 1632

1985 2625 7530 8555 15446 8344 7428 2373 7257 2002 9 1096

1986 2371 5366 10018 9675 9826 6648 4949 2907 3581 2198

1987 2349 6234 7442 3312 8904 6050 4428 1856 1799

1988 2128 4328 6459 8233 6494 4404 2712 3243

1989 2670 6043 6196 7375 7145 4973 4249

1990 2833 4028 4177 8053 8475 8352

1991 2996 8491 6082 8614 7598

1992 2800 4543 5034 6948

1993 3561 5997 9485

1994 2961 5615

1995 3131

Table 6: Number of claim notified per 100,000 vehicle years of exposure during 1985-1995
Year Development year

1 2 3 4 5 6 7 8 9 10 11

1985 488 227 53 10.2 4.3 6.0 5.1 4.3 0.9 0.0 0.9

1986 472 228 26 21.9 9.7 10.5 4.9 1.6 0.8 0.0

1987 434 175 34 14.3 9.6 7.2 4.0 1.6 0.0

1988 388 203 37 16.8 11.4 3.0 6.1 0.0

1989 422 150 21 12.2 8.6 2.9 6.4

1990 369 128 15 7.8 5.9 3.3

1991 379 127 18 5.6 4.4

1992 414 104 12 7.4

1993 364 112 24

1994 381 93

1995 375
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