LARGE DEVIATIONS AND RUIN PROBABILITIES FOR SOLUTIONS TO STOCHASTIC RECURRENCE EQUATIONS WITH HEAVY-TAILED INNOVATIONS

DIMITRIOS G. KONSTANTINIDES AND THOMAS MIKOSCH

ABSTRACT. In this paper we consider the stochastic recurrence equation $Y_t = A_t Y_{t-1} + B_t$ for an iid sequence of pairs (A_t, B_t) of non-negative random variables, where we assume that B_t is regularly varying with index $\kappa > 0$ and $EA_t^{\kappa} < 1$. We show that the stationary solution (Y_t) to this equation has regularly varying finite-dimensional distributions with index κ . This implies that the partial sums $S_n = Y_1 + \cdots + Y_n$ of this process are regularly varying. In particular, the relation $P(S_n > x) \sim c_1 n P(Y_1 > x)$ as $x \to \infty$ holds for some constant $c_1 > 0$. For $\kappa > 1$, we also study the large deviation properties $P(S_n - ES_n > x)$, $x \ge x_n$, for some sequence $x_n \to \infty$) whose growth depends on the heaviness of the tail of the distribution of Y_1 . We show that the relation $P(S_n - ES_n > x) \sim c_2 n P(Y_1 > x)$ holds uniformly for $x \ge x_n$ and some constant $c_2 > 0$. Then we apply the large deviation result to derive bounds for the ruin probability $\psi(u) =$ $P(sup_{n\geq 1}([S_n - ES_n] - \mu n) > u)$ for any $\mu > 0$. We show that $\psi(u) \sim c_3 u P(Y_1 > u) \mu^{-1}(\kappa - 1)^{-1}$ for some constant $c_3 > 0$. In contrast to iid regularly varying Y_t 's, when the above results hold with $c_1 = c_2 = c_3 = 1$ the constants c_1, c_2 and c_3 are different from 1.

Department of Statistics and Actuarial Science, University of the Aegean, Karlovassi, GR-83 200 Samos, Greece

 $E\text{-}mail \ address: \texttt{konstant}@aegean.gr$

LABORATORY OF ACTUARIAL MATHEMATICS, UNIVERSITY OF COPENHAGEN, UNIVERSITETSPARKEN 5, DK-2100 COPENHAGEN, DENMARK, AND MAPHYSTO, THE DANISH RESEARCH NETWORK IN MATHEMATICS, PHYSICS AND STOCHASTICS

 $E\text{-}mail\ address: mikosch@math.ku.dk$, www.math.ku.dk/ \sim mikosch