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Abstract

It is now well recognized that the maximum likelihood estimator applied to the

dynamic conditional correlation model is severely biased in high dimensions and, in

particular, in cases where the time series dimension is close to the sample size. In

this paper, we argue that one of the reasons for the bias lies in an ill-conditioned

sample covariance matrix, which is used in the so-called variance targeting technique

to match sample and theoretical unconditional covariances. We propose to reduce

the bias by using shrinkage to target methods for the sample covariance matrix.

As targets we use, alternatively, the identity matrix, a single factor model, and

equicorrelation. Since the shrinkage intensity decreases towards zero with increasing

sample size, the estimator is asymptotically equivalent to the efficient maximum

likelihood estimator. The finite sample performance of the proposed estimator over

alternative estimators is demonstrated through a Monte Carlo study. Finally, we

provide an illustrative application to financial time series.
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1 Introduction

Over the last 20 years, modelling of time-varying covariances of financial asset returns has

become an integral part of financial econometrics. Estimation of time-varying volatilities

and co-movements between financial series has proved to be a useful tool in financial

management. Correlations between returns are relevant for problems such as time-varying

beta coefficients in CAPM-type models, estimation of hedge ratios, and Value-at-Risk

(VaR) of a portfolio.

Alternative multivariate GARCH (generalized autoregressive conditional heteroscedas-

ticity) models, which are aiming to give simple solutions to the problems described above,

have become the subject of wide discussions. The most well known of them are the VEC

model of Bollerslev et al. (1988), the BEKK model of Engle and Kroner (1995), and the

DCC model of Engle (2002). Recent proposals include the Flexible Multivariate GARCH

model of Ledoit et al. (2003), the asymmetric DCC model of Cappiello et al. (2006),

Generalized Autoregressive Conditional Correlation (GARCC) model of McAleer et al.

(2008), and the Dynamic Equicorrelation (DE) model of Engle and Kelly (2008). For re-

cent reviews of multivariate GARCH models, see Bauwens et al. (2006) and Silvennoinen

and Teräsvirta (2008).

The Dynamic Conditional Correlation (DCC) model of Engle (2002) is one of the

most cited works related to the parametric modelling of time-varying correlations for

multivariate portfolios. It is a generalization of the Constant Conditional Correlation

(CCC) model of Bollerslev (1990), where volatilities are time-varying but conditional

correlations are assumed to be constant. The CCC model is, however, too restrictive as

it does not take into account the time variation in co-movements of the assets during the

periods of economic stability, growth or crises. Engle (2002) and Tse and Tsui (2002)

extended the CCC model by allowing the correlation to change over time. Both models

are quite similar but, while Tse and Tsui (2002) model the correlation process directly,

Engle (2002) specifies the model using a nonlinear transformation of a GARCH-type

process to ensure that the resulting process is a sequence of correlation matrices. Engle

and Sheppard (2001) provide some theoretical properties for the DCC model, but due to

the complexity of the model, a rigorous treatment of the theory is not yet available.

Although the DCC model is easy to implement and is widely used, it is now well

accepted that it does not perform well for the case of large dimensions. To a minor

extent, the reason is the assumption of the same parameters driving all correlations.

Hafner and Franses (2009) extend the DCC model by allowing the parameters to vary
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across the assets. More importantly, it turned out that in high dimensions the parameter

estimates encounter severe negative biases, resulting in increasingly smooth correlation

trajectories, which eventually become virtually flat and constant. Engle and Sheppard

(2001) recognize the presence of downward bias in the estimated parameters but do not

propose solutions.

Aielli (2008) reveals a weak point in the DCC model of Engle (2002). His theoretical

computations and results of the simulation study show that the DCC model possesses a

significant asymptotic bias in the estimator of the sample covariance matrix which is a

constituent of the correlation evolution process. Aielli (2008) proposes a consistent DCC

(cDCC) model. He modifies the form of the correlation driving process of the DCC model

in such a way that it has martingale difference innovations.

Engle et al. (2008) suggest a composite likelihood estimator based on summing up

the quasi-likelihood functions of subsets of assets and thus avoids working with high

dimensional matrices. They work with the specification of Aielli (2008) and suppose

that the bias problem of the standard DCC model stems from the bias in the covariance

targeting parameter. However, we show in this paper that the problem of biased parameter

estimates prevails in the specification proposed by Aielli (2008) in high dimensions. This

suggests that the problem is genuine to the dimensionality issue.

We claim that the main problem in estimating either the standard DCC model or

the modified version of Aielli (2008) in high dimensions is an ill-conditioned estimator of

the sample covariance matrix, which is used for covariance targeting. We suggest using

the shrinkage technique of Ledoit and Wolf (2004a), which is a solution to obtain a well-

conditioned and asymptotically accurate estimator of the covariance matrix. We show

that this approach considerably improves the downward bias of the DCC model as well

as the cDCC model. Moreover, our estimator is asymptotically efficient, because the

shrinkage intensity goes to zero when keeping the dimension fixed and letting the sample

size go to infinity. This contrasts the composite likelihood estimator of Engle et al. (2008),

which will be less efficient due to the information loss by ignoring the joint likelihood.

This paper is organized as follows. In Section 2 we review the benchmark model,

namely the DCC model of Engle (2002) and the related model of Aielli (2008). We

discuss the main problems of the parametric estimation of time-invariant correlation and

suggest alternative solution, which considerably improves the results of the DCC model

for vast dimensions. Section 3 provides the results of a Monte Carlo simulation study.

The last section presents an empirical example. Finally, Section 5 gives the conclusions.
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2 Dynamic conditional correlation model

Let us consider the log-returns rt = (r1t, . . . , rKt)
′ for t = 1, . . . , T with E(rt|Ft−1) = 0

and Var(rt|Ft−1) = Ht, where Ft−1 is the information available up to time t − 1. The

objective is to model the time varying behavior of the conditional covariance matrix Ht.

The Constant Conditional Correlation (CCC) model of Bollerslev (1990) decomposes the

conditional covariance as

Ht = DtRDt, (1)

where Dt = Dt(θ) is the diagonal matrix of time varying volatilities
√

hii,t, i = 1, . . . , K,

parametrized by a vector θ, and R is a (K ×K) constant conditional correlation matrix.

The correlation matrix R is usually estimated by the sample correlation matrix of stan-

dardized returns εt = D−1
t rt. However, the assumption of time invariant correlation is

too restrictive. Engle (2002) extended this model to the more general case of Dynamic

Conditional Correlation (DCC) where the conditional correlations are driven by lagged

standardized residuals and an autoregressive term. The DCC model is defined as

Ht = DtRtDt, (2)

Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2, (3)

Qt = (1 − α − β)S + αεt−1ε
′

t−1 + βQt−1, (4)

where Rt = Rt(φ, θ) is the matrix of time varying conditional correlations with the ele-

ments on the diagonal equal to one, φ = (α, β) is the parameter vector and S is the sample

covariance matrix of εt. It is also easy to show that Rt is the conditional covariance matrix

of εt.

The estimation of the parameters is done in two steps by quasi-maximum likelihood

(QML), assuming that the innovations are Gaussian. The joint log-likelihood of the model

can be split into two parts and maximized sequentially. First, the univariate volatilities

are modeled for each series of returns. Then, the parameters of the correlation process

are estimated. The joint likelihood of the model is

L(θ, φ) = −0.5
T∑

t=1

(
K log(2π) + log |Ht| + r′tH

−1
t rt

)
(5)

= Lv(θ) + Lc(θ, φ), (6)
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with

Lv(θ) = −0.5
T∑

t=1

(
K log(2π) + log |Dt|2 + r′tD

−2
t rt

)
, (7)

Lc(θ, φ) = −0.5
T∑

t=1

(
log |Rt| + ε′tR

−1
t εt − ε′tεt

)
. (8)

Firstly, we estimate the parameters of the volatility model. The estimate of θ is

θ̂ = arg max
θ

Lv(θ). (9)

Once θ̂ is obtained, S is estimated as 1
T

∑T
t=1 ε̂tε̂

′

t, where ε̂t = D(θ̂)−1
t rt. Thus, we

proceed to the second step, where the parameters of the correlation model are estimated:

φ̂ = arg max
φ

Lc(θ̂, φ). (10)

This estimation technique is called “correlation targeting” (Engle, 2009, Ch.11), since

S in equation (4) is not estimated as a MLE, but is a moment estimator Ŝ and obtained

prior to step two. This technique is based on the assumption that Q̄ = 1
T

∑T
t=1 Qt is equal

to Ŝ. However, this assumption cannot be justified as the unconditional expectation of Qt

is not equal to the unconditional expectation of εtε
′

t. Aielli (2008) performed a simulation

study where he demonstrated that such model specification produces quite a high bias of

Ŝ. His results show that the estimator of the S matrix is inconsistent.

Aielli (2008) proposes a similar model called consistent DCC (cDCC). He suggests

that the Qt process should take a slightly different form than in (4), namely

Qt = (1 − α − β)Ψ + αε∗t−1ε
∗
′

t−1 + βQt−1, (11)

where ε∗t = diag{Qt}1/2εt. Here, it is apparent that the corrected standardized residuals

have conditional variance Var(ε∗t |Ft−1) equal to Qt and the unconditional covariance ma-

trix E[ε∗t ε
∗
′

t ] equal to Ψ. This expectation can be estimated consistently by the sample

covariance matrix of ε∗t .

The estimation of the cDCC model is based on the maximization by QML of the

same likelihood function as the DCC model. In the first step, the parameter vector θ of

the univariate volatility models is estimated. The parameter vector φ of the correlation

process of the cDCC model is estimated as
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φ̂ = arg max
φ

Lc(θ̂, Ψ̂(θ̂, φ), φ). (12)

The estimator of Ψ is then Ψ̂(θ̂, φ̂) = 1
T

∑T
t=1 ε∗t ε

∗
′

t .

The cDCC model of Aielli (2008) is elegant and easy to implement. His simulation

studies show that there is a considerable bias in the estimator of S for the DCC even when

the cross-section size is small. However, it does not solve the problem of the downward

bias in α and β, which is a recognized problem of large systems (Engle and Sheppard,

2001). Engle et al. (2008) suggest a composite likelihood approach to overcome the issue

of high dimension. Such an approach allows to estimate models even when the size of the

cross-section is larger than the number of observations. The DCC composite likelihood

(DCC CL) model is based on subsets of observations, say for example subset of 2 assets

Yjt = {r1j,tr2j,t} j = 1, . . . , N . There are different ways to select subsets: it could be all

possible combinations of pairs of assets (N = K(K − 1)/2), contiguous pairs (N = K)

or subsets of pairs selected randomly. The simulation study in Engle et al. (2008) shows

that the results for different types of subsets are approximately the same. The conditional

variance of Yjt is

Var(Yj,t|Ft−1) = Hj,t. (13)

The innovations obtained upon the devolatilizing are defined as

εj,t =

(
h
−1/2

1j,t 0

0 h
−1/2

2j,t

)(
r1j,t

r2j,t

)
, (14)

so the conditional covariance of εj,t is the same as the conditional correlation of Yj,t. The

dynamics of the correlation process is defined as

Qj,t = Sj(1 − α − β) + αεj,t−1ε
′

j,t−1 + βQj,t−1, (15)

where Sj is the sample covariance matrix of εj,t. The parameter vector φ = (α, β) is

estimated as

φ̂ = arg max
φ

LCL(φ), (16)
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where

LCL(φ) =
T∑

t=1

1

N

N∑

j=1

logLj,t(φ), (17)

logLj,t(φ) = −0.5
(
log |Rj,t| + ε′j,tR

−1
j,t εj,t − ε′j,tεj,t

)
, (18)

Rj,t = diag{Qj,t}−1/2Qj,tdiag{Qj,t}−1/2. (19)

Engle et al. (2008) also extend the estimator to the cDCC case. Their simulation

study shows that for these estimates the problem of the downward bias does not exist.

The method also has an advantage that it is computationally easy and does not require

to invert large dimensional covariance matrices.

Thus, we can see that estimation of the DCC model for large cross-sections leads to

two problems, the problem of downward bias of α and β and the problem of inconsistent

estimator of the sample covariance matrix. The model of Aielli (2008) improves the latter,

whereas the method of Engle et al. (2008) combined with the cDCC model, improves both.

However, it is important to notice that the estimates of the composite likelihood method

are not efficient. We propose a method, which can be applied to both, DCC and cDCC

models and improves the estimates for high dimensions.

We propose to use a shrinkage technique to reduce the bias of parameters of the

correlation process. We suppose that the root of the problem is the fact that when

the number of series is large and approaches the number of observations, which is quite

common in financial econometrics, the sample covariance matrix is ill-conditioned. We

suggest applying the shrinkage methods of Ledoit and Wolf (2003, 2004a, 2004b) to the

DCC model. The main idea of their approach is that the positive (negative) error comes

from the extra high (low) coefficients and by pulling them downwards (upwards) one can

obtain a well-conditioned sample covariance matrix. By doing so they impose a particular

structure, which depends on the shrinkage target and shrinkage intensity δ. The optimal

shrinkage intensity is estimated consistently from the minimization of a loss function.

The loss function is based on the Frobenius norm || · ||2, basically the quadratic distance

between the shrinkage estimator Σ∗ and the true covariance matrix Σ and does not require

to invert the covariance matrix.

Ledoit and Wolf (2004a) suggest shrinkage to identity and use µIK as the shrinkage

target, where IK is the identity matrix. Thus, the optimal linear combination is

Σ∗

I = δIµIK + (1 − δI)S, (20)
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where δI is the shrinkage intensity and µ = 〈Σ, IK〉 = tr(Σ)/K is the Frobenius inner

product, which in this case is the mean of the diagonal elements of Σ. At the estimation

stage the true covariance matrix Σ is substituted by its sample counterpart S.

Ledoit and Wolf (2003) use the covariance matrix given by the single-index model of

Sharpe (1963) as shrinkage target, thus they impose a factor structure on the estimator of

the sample covariance matrix. This technique is called shrinkage to market. The model

of Sharpe (1963) assumes that stock returns εit depend on market returns ε0t as

εit = ai + biε0t + νit, (21)

where ai and bi are parameters. The covariance matrix will be

M = σ2
00bb

′ + ∆, (22)

where σ2
00 is the variance of the market returns, b = (b1, . . . , bK)′, νit are the idiosyncratic

errors of the model and ∆ = diag{Var(ν1t), . . . , Var(νKt)}. Then, the optimal linear

combination is

Σ∗

M = δMM + (1 − δM)S. (23)

Finally, Ledoit and Wolf (2004b) propose shrinkage to equicorrelation. By using

equicorrelation, they shrink the extreme values of the sample covariance matrix towards

the center. Let sij be the elements of the sample covariance matrix S. Then a typi-

cal element of the correlation matrix is ρij = sij/
√

siisjj and the average correlation is

calculated as

ρ̄ =
2

(K − 1)K

K−1∑

i=1

K∑

j=i+1

ρij. (24)

Thus, the elements of the equicorrelation matrix E are eij = ρ̄
√

siisjj. In this case, the

optimal linear combination is

Σ∗

E = δEE + (1 − δE)S. (25)

The estimates of the optimal shrinkage intensities δx, x = I,M,E are given by

δ̂x = max

(
0, min

(
1,

κ̂x

T

))
. (26)

This form keeps the shrinkage intensity in the interval [0, 1]. It is important to notice

that δ̂x = O( 1
T
), so asymptotically the effect of the shrinkage vanishes.

Hence, for fixed K and T → ∞, our estimator becomes equivalent to the efficient

maximum likelihood estimator. The estimated constants κ̂x are given by
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κ̂I =
T−1

∑T
t=1 ‖εtε

′

t − S‖2

‖S − µ̂IK‖2
, (27)

κ̂M =
T−1

∑T
t=1 ‖εtε

′

t − S‖2 − Ω̂M

‖S − M‖2
, (28)

where Ω̂M =
∑K

i=1

∑K
j=1 ÂsyCov

(√
Tmij,

√
Tsij

)
with mij and sij being the elements of

M and S respectively, and finally

κ̂E =
T−1

∑T
t=1 ‖εtε

′

t − S‖2 − Ω̂E

‖S − E‖2
, (29)

where Ω̂E =
∑K

i=1

∑K
j=1 ÂsyCov

(√
Teij,

√
Tsij

)
.

Implementation of the shrinkage technique to the DCC model is straitforward. In

equation (4), the matrix S is replaced by the required shrinkage estimator Σ∗. The same

approach can be used in the cDCC model, where the shrinkage method is applied to the Ψ̂

matrix and the new shrinkage estimator replaces Ψ in equation (11). In the next sections,

we name the DCC and cDCC models with shrinkage by adding a letter associated with

the shrinkage target: I for Identity (DCCI, cDCCI), M for Market (DCCM,cDCCM) and

E for Equicorrelation (DCCE, cDCCE). Obviously, the DCC model with shrinkage is a

special case of the standard DCC model, to which it reduces when the shrinkage intensity

is equal to zero. Thus, the models are nested and can be compared by likelihood-ratio

tests.
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3 Monte Carlo study

In this section we examine the performance of the models described previously. We follow

the approach of Engle and Sheppard (2001) and Engle et al. (2008) and estimate the

models for different samples, varying the number of observations T and number of assets

K. We examine the statistical behavior of the estimators, given that the true parameters

are known.

For simplicity, let us assume that the data series rjt, j = 1, . . . , K have no trend and

that each series comes from a univariate GARCH process

rjt = εjt

√
hjt, (30)

hjt = 0.01 + 0.05ε2
j,t−1 + 0.9hj,t−1, (31)

where εj,t|Ft−1 ∼ N(0, 1) and E[εitεjt|Ft−1] = ρij,t.

Engle et al. (2008) report the results of their simulation study for the parameters

of the Q process (α, β) = (0.05, 0.93). In order to compare the results, we run the

simulation study for the same setup. To simulate from the DCC and cDCC models, we

use sample correlation matrices estimated from a real data series of daily S&P500 for the

period from 2005 until 2009 (each set includes the index itself and the series are ordered

alphabetically).

The performance of the models is examined for dimension K = 5, 10, 50, 100 and 200,

allowing the time span to be T = 100, 250, 500, 1000 and 2000. The simulation study is

based on M = 100 replications. We also estimate the parameters of the models using the

true correlation matrix S0 instead of Ŝ for the DCC model (DCCT) and Ψ0 instead of Ψ̂

for cDCC model (cDCCT).

For each data series we simulate 1.5 · T observations and then we discard the first

0.5·T observations. For the estimation of the DCC and cDCC parameters, the constraints

α ∈ [0, 1), β ∈ [0, 1) and α + β < 1 are used. By using these constraints, we guarantee

that the matrix Qt is positive semi-definite.

We present the results for 8 parametric models described in Section 2, namely: DCC,

cDCC, DCC and cDCC with shrinkage to the identity matrix (DCCI, cDCCI), to the

single-index model (DCCM,cDCCM) and to equicorrelation (DCCE,cDCCE), using the

shrinkage methods of Ledoit and Wolf (2003, 2004a, 2004b).

For each DGP and each model we report the root mean squared errors (RMSE) and

the bias of the estimated parameters of the correlation process φ̂ = (α̂, β̂) calculated
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across the number of replications M

RMSE(φ̂) =

√√√√ 1

M

M∑

m=1

(
φ̂m − φ0

)2

, (32)

Bias(φ̂) =
1

M

M∑

m=1

(
φ̂m − φ0

)
, (33)

where φ0 is the true vector of parameters.

The results of the simulation study are presented in Tables 1-4. We also report the

mean of the shrinkage intensity for the models with shrinkage in Table 5.

(1) From Table 1 it is seen that the DCC estimator of α possesses high negative bias,

which considerably grows with the increase in dimension K. This issue is discussed in

Engle and Sheppard (2001) and is the main motivation for this research.

(2) The results of the DCC CL model show that for the case of small dimensions

and small number of observations, the bias is quite substantial. However, in contrast to

the DCC model, the bias of the DCC CL model is similar the same for any size of the

cross-section.

(3) The bias of αDCC is small when the number of observations T is relatively high, but

when the ratio K/T is high the bias is considerable. This is vividly seen, when comparing

with the results of the DCCT, for which the bias of the estimated α stays on about the

same level, not exceeding 0.005 in absolute value.

(4) The models DCCI, DCCM, DCCE show substantial improvement of the DCC

estimates. The bias for all three models is 2 or 3 times smaller than the bias of DCC. The

difference is considerable for small number of observations and vanishes when T increases.

The shrinkage techniques improve the estimators even for small cross-sections.

(5) The RMSE of the shrinkage estimators (Table 2) shows the same behavior as the

bias and is much smaller for small T than the RMSE of the DCC model.

(6) Table 5 reports the mean of the shrinkage intensities δ for the DCC and cDCC

models with shrinkage. The behavior of the estimators of the shrinkage intensities is

quite similar. For fixed number of dimensions and increasing number of observations, the

shrinkage intensity decreases. At the same time, for fixed T and increasing dimension,

the shrinkage intensities do not fluctuate much. This is also clearly seen in Figure 1 and

Figure 2.

Table 3 and Table 4 report the results for cDCC and relevant models. As in the

previous case, the shrinkage estimators show considerable improvement to the standard
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estimator both in terms of bias and RMSE. However, it seems that the more natural

specification of the Aielli model does not improve the estimates of α and β, so that the

bias of both the DCC and cDCC models is of comparable size.

Table 1: Results for the simulation study for the DCC model with the true parameter

vector (α, β) = (0.05, 0.93). The estimated models are: DCC, DCCT, DCC CL, DCCI,

DCCM and DCCE. Number of replications M = 100.
Bias

DCC DCCT DCC CL DCCI DCCM DCCE

K=5

T α β α β α β α β α β α β

100 -0.016 -0.084 0.008 -0.067 -0.014 -0.094 -0.006 -0.068 -0.015 -0.082 -0.005 -0.060

250 -0.002 -0.025 0.000 -0.006 -0.003 -0.027 0.000 -0.024 -0.002 -0.025 0.000 -0.022

500 -0.001 -0.009 -0.001 0.001 -0.001 -0.009 0.000 -0.008 -0.001 -0.009 0.000 -0.008

1000 0.000 -0.002 0.000 -0.001 0.000 -0.005 0.000 -0.002 0.000 -0.002 0.000 -0.002

2000 0.000 -0.001 0.001 -0.001 0.001 -0.002 0.000 -0.001 0.000 -0.001 0.000 -0.001

T K=10

100 -0.026 -0.110 -0.002 0.002 -0.009 -0.095 -0.014 -0.087 -0.019 -0.098 -0.010 -0.070

250 -0.007 -0.016 -0.001 0.002 -0.001 -0.027 -0.005 -0.015 -0.006 -0.016 -0.004 -0.013

500 -0.002 -0.004 -0.002 0.003 0.000 -0.008 -0.002 -0.004 -0.002 -0.005 -0.001 -0.004

1000 -0.001 -0.001 -0.001 0.001 0.000 -0.003 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

2000 0.000 0.000 0.000 0.001 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000

T K=50

100 -0.050 -0.073 -0.005 0.006 -0.016 -0.088 -0.020 -0.124 -0.015 -0.115 -0.004 -0.081

250 -0.024 -0.031 -0.003 0.004 -0.002 -0.020 -0.016 -0.025 -0.012 -0.022 -0.010 -0.019

500 -0.013 -0.002 -0.002 0.002 -0.001 -0.006 -0.011 -0.003 -0.008 -0.004 -0.008 -0.003

1000 -0.008 0.003 -0.001 0.001 0.000 -0.003 -0.007 0.003 -0.006 0.002 -0.006 0.002

2000 -0.005 0.003 -0.001 0.001 0.000 -0.002 -0.004 0.003 -0.004 0.002 -0.004 0.003

T K=100

100

250 -0.040 -0.114 -0.004 0.005 -0.004 -0.018 -0.021 -0.057 -0.013 -0.038 -0.010 -0.032

500 -0.022 -0.010 -0.002 0.003 -0.001 -0.006 -0.017 -0.010 -0.012 -0.009 -0.011 -0.008

1000 -0.016 0.004 -0.001 0.002 0.000 -0.002 -0.012 0.002 -0.009 0.001 -0.009 0.001

2000 -0.009 0.004 -0.001 0.001 0.000 0.002 -0.008 0.005 -0.007 0.004 -0.007 0.004

T K=200

100

250 -0.050 -0.254 -0.005 0.006 -0.003 -0.020 -0.013 -0.111 -0.004 -0.056 -0.002 -0.045

500 -0.035 -0.047 -0.004 0.004 0.005 -0.080 -0.022 -0.034 -0.012 -0.022 -0.010 -0.020

1000 -0.023 -0.003 -0.002 0.002 0.000 -0.002 -0.018 -0.004 -0.012 -0.004 -0.012 -0.004

2000 -0.015 0.003 -0.001 0.001 0.001 -0.001 -0.013 0.003 -0.003 -0.023 -0.010 0.002
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Table 2: Results for the simulation study for the DCC model with the true parameter

vector (α, β) = (0.05, 0.93). The estimated models are: DCC, DCCT, DCC CL, DCCI,

DCCM and DCCE. Number of replications M = 100.
RMSE

DCC DCCT DCC CL DCCI DCCM DCCE

K=5

T α β α β α β α β α β α β

100 0.026 0.095 0.047 0.224 0.028 0.101 0.022 0.085 0.026 0.094 0.021 0.079

250 0.010 0.036 0.017 0.041 0.012 0.041 0.010 0.034 0.010 0.036 0.010 0.033

500 0.006 0.016 0.012 0.020 0.010 0.021 0.006 0.015 0.006 0.016 0.006 0.015

1000 0.005 0.008 0.008 0.014 0.006 0.011 0.005 0.008 0.005 0.008 0.005 0.007

2000 0.003 0.005 0.005 0.008 0.004 0.007 0.003 0.005 0.003 0.005 0.003 0.005

T K=10

100 0.028 0.113 0.009 0.014 0.021 0.102 0.018 0.094 0.022 0.102 0.015 0.078

250 0.009 0.019 0.005 0.008 0.011 0.039 0.008 0.018 0.009 0.019 0.007 0.017

500 0.005 0.008 0.004 0.005 0.007 0.014 0.004 0.008 0.004 0.008 0.004 0.008

1000 0.003 0.004 0.003 0.004 0.005 0.009 0.003 0.004 0.003 0.004 0.003 0.004

2000 0.002 0.003 0.002 0.003 0.003 0.005 0.002 0.003 0.002 0.003 0.002 0.003

T K=50

100 0.050 0.074 0.007 0.008 0.020 0.094 0.022 0.125 0.017 0.117 0.008 0.084

250 0.024 0.031 0.004 0.005 0.006 0.023 0.016 0.026 0.012 0.022 0.010 0.019

500 0.013 0.003 0.003 0.003 0.004 0.009 0.011 0.004 0.009 0.004 0.008 0.004

1000 0.008 0.004 0.002 0.002 0.003 0.006 0.007 0.003 0.006 0.002 0.006 0.002

2000 0.005 0.003 0.001 0.001 0.002 0.003 0.004 0.003 0.004 0.003 0.004 0.003

T K=100

100

250 0.040 0.115 0.005 0.006 0.007 0.020 0.021 0.058 0.013 0.038 0.010 0.033

500 0.022 0.010 0.003 0.003 0.003 0.008 0.017 0.010 0.012 0.009 0.011 0.009

1000 0.016 0.004 0.002 0.002 0.002 0.004 0.012 0.002 0.009 0.001 0.009 0.001

2000 0.009 0.004 0.001 0.001 0.000 0.002 0.008 0.005 0.007 0.004 0.007 0.004

T K=200

100

250 0.050 0.274 0.006 0.006 0.007 0.023 0.014 0.113 0.006 0.057 0.004 0.046

500 0.035 0.047 0.004 0.005 0.005 0.090 0.022 0.035 0.012 0.022 0.011 0.020

1000 0.023 0.003 0.002 0.002 0.000 0.003 0.018 0.004 0.012 0.004 0.012 0.004

2000 0.015 0.003 0.001 0.002 0.001 0.001 0.013 0.003 0.021 0.078 0.010 0.003
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Table 3: Results for the simulation study for the cDCC model with the true parameter

vector (α, β) = (0.05, 0.93). The estimated models are: cDCC, cDCCT, cDCC CL,

cDCCI, cDCCM and cDCCE. Number of replications M = 100.
Bias

cDCC cDCCT cDCC CL cDCCI cDCCM cDCCE

K=5

T α β α β α β α β α β α β

100 -0.021 -0.088 0.008 -0.067 -0.020 -0.079 -0.012 -0.068 -0.020 -0.089 -0.010 -0.057

250 -0.002 -0.026 0.000 -0.006 -0.001 -0.025 -0.001 -0.023 -0.002 -0.026 -0.001 -0.020

500 -0.001 -0.006 -0.001 0.001 -0.002 -0.008 0.000 -0.006 -0.001 -0.006 0.000 -0.006

1000 -0.001 -0.001 0.000 -0.001 0.000 -0.004 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

2000 -0.001 0.000 0.001 -0.001 0.000 -0.002 -0.001 0.000 -0.001 0.000 -0.001 0.000

T K=10

100 -0.029 -0.104 0.000 0.001 -0.018 -0.080 -0.018 -0.086 -0.023 -0.096 -0.013 -0.066

250 -0.008 -0.017 -0.002 0.004 -0.004 -0.025 -0.006 -0.016 -0.007 -0.017 -0.005 -0.013

500 -0.005 -0.002 -0.002 0.003 -0.003 -0.005 -0.004 -0.002 -0.004 -0.002 -0.004 -0.002

1000 -0.002 -0.001 -0.001 0.001 0.000 -0.003 -0.002 -0.001 -0.002 -0.001 -0.002 -0.001

2000 -0.001 0.000 0.000 0.000 0.000 -0.002 -0.001 0.000 -0.001 0.000 -0.001 0.000

T K=50

100 -0.050 -0.105 -0.007 0.009 -0.021 -0.094 -0.024 -0.124 -0.015 -0.107 -0.007 -0.073

250 -0.025 -0.032 -0.006 0.008 -0.004 -0.019 -0.018 -0.025 -0.014 -0.020 -0.012 -0.016

500 -0.014 -0.002 -0.005 0.006 -0.002 -0.007 -0.012 -0.002 -0.010 -0.003 -0.009 -0.002

1000 -0.010 0.004 -0.003 0.004 -0.001 -0.002 -0.009 0.003 -0.008 0.003 -0.007 0.003

2000 -0.006 0.003 -0.003 0.003 0.000 -0.001 -0.007 0.005 -0.006 0.005 -0.006 0.005

T K=100

100

250 -0.039 -0.112 -0.012 -0.074 -0.005 -0.017 -0.019 -0.059 -0.012 -0.037 -0.010 -0.030

500 -0.022 -0.010 -0.007 0.008 -0.002 -0.006 -0.017 -0.010 -0.013 -0.009 -0.011 -0.008

1000 -0.014 0.001 -0.005 0.006 -0.001 -0.002 -0.014 0.003 -0.012 0.002 -0.011 0.003

2000 -0.010 0.001 -0.004 0.005 -0.001 -0.002 -0.014 0.003 -0.012 0.002 -0.011 0.003

T K=200

100

250 -0.050 -0.121 -0.011 0.014 -0.004 -0.015 0.000 -0.126 0.003 -0.062 0.003 -0.049

500 -0.032 -0.063 -0.009 0.011 -0.002 -0.005 -0.019 -0.039 -0.009 -0.027 -0.009 -0.022

1000 -0.021 -0.006 -0.007 0.009 -0.001 -0.003 -0.019 -0.005 -0.013 -0.005 -0.013 -0.005

2000 -0.015 0.003 -0.003 0.005 0.000 -0.001 -0.014 0.004 -0.012 0.003 -0.012 0.003
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Table 4: Results for the simulation study for the cDCC model with the true parameter

vector (α, β) = (0.05, 0.93). The estimated models are: cDCC, cDCCT, cDCC CL,

cDCCI, cDCCM and cDCCE. Number of replications M = 100.
RMSE

cDCC cDCCT cDCC CL cDCCI cDCCM cDCCE

K=5

T α β α β α β α β α β α β

100 0.030 0.102 0.047 0.224 0.032 0.095 0.026 0.086 0.029 0.102 0.025 0.078

250 0.012 0.038 0.017 0.041 0.014 0.040 0.011 0.035 0.012 0.038 0.011 0.031

500 0.008 0.013 0.012 0.020 0.010 0.018 0.008 0.013 0.008 0.013 0.008 0.013

1000 0.005 0.008 0.008 0.014 0.006 0.010 0.005 0.008 0.005 0.008 0.005 0.008

2000 0.004 0.006 0.005 0.008 0.004 0.075 0.004 0.006 0.004 0.006 0.004 0.006

T K=10

100 0.031 0.109 0.009 0.017 0.029 0.091 0.022 0.094 0.026 0.102 0.018 0.078

250 0.010 0.021 0.006 0.009 0.011 0.042 0.009 0.020 0.009 0.021 0.008 0.018

500 0.006 0.006 0.004 0.007 0.008 0.014 0.006 0.007 0.006 0.007 0.005 0.006

1000 0.003 0.004 0.003 0.004 0.006 0.009 0.003 0.004 0.003 0.004 0.003 0.004

2000 0.002 0.003 0.002 0.003 0.004 0.006 0.002 0.003 0.002 0.003 0.002 0.003

T K=50

100 0.050 0.118 0.008 0.011 0.025 0.100 0.026 0.125 0.017 0.110 0.012 0.079

250 0.025 0.032 0.007 0.008 0.009 0.024 0.018 0.026 0.014 0.021 0.012 0.017

500 0.015 0.003 0.005 0.006 0.005 0.010 0.012 0.004 0.010 0.004 0.009 0.004

1000 0.010 0.004 0.004 0.004 0.004 0.005 0.009 0.004 0.008 0.003 0.007 0.003

2000 0.006 0.003 0.003 0.003 0.002 0.004 0.007 0.005 0.006 0.005 0.006 0.005

T K=100

100

250 0.039 0.113 0.017 0.279 0.008 0.020 0.020 0.061 0.013 0.038 0.011 0.031

500 0.022 0.011 0.007 0.008 0.005 0.008 0.017 0.011 0.013 0.010 0.012 0.009

1000 0.014 0.001 0.005 0.006 0.003 0.004 0.014 0.004 0.012 0.003 0.011 0.003

2000 0.010 0.001 0.004 0.005 0.003 0.004 0.014 0.004 0.012 0.003 0.011 0.003

T K=200

100

250 0.050 0.121 0.011 0.014 0.007 0.018 0.005 0.126 0.007 0.064 0.006 0.050

500 0.032 0.090 0.009 0.011 0.005 0.007 0.019 0.040 0.012 0.032 0.009 0.022

1000 0.021 0.006 0.007 0.009 0.001 0.004 0.019 0.005 0.014 0.005 0.013 0.005

2000 0.015 0.003 0.003 0.005 0.001 0.002 0.015 0.004 0.012 0.003 0.012 0.003

15



Table 5: The average shrinkage intensity, estimated for the models: DCCI, DCCM,

DCCE, cDCCI, cDCCM and cDCCE.
Shrinkage intensity

DCCI DCCM DCCE cDCCI cDCCM cDCCE

T K=5

100 0.093 0.086 0.229 0.090 0.089 0.264

250 0.038 0.045 0.143 0.038 0.044 0.151

500 0.021 0.025 0.083 0.019 0.024 0.081

1000 0.010 0.014 0.050 0.010 0.013 0.047

2000 0.005 0.008 0.027 0.005 0.007 0.027

T K=10

100 0.090 0.165 0.226 0.088 0.180 0.246

250 0.043 0.099 0.131 0.040 0.094 0.129

500 0.023 0.066 0.088 0.022 0.065 0.087

1000 0.012 0.045 0.060 0.012 0.043 0.057

2000 0.006 0.028 0.036 0.006 0.027 0.035

T K=50

100 0.081 0.170 0.205 0.079 0.187 0.224

250 0.037 0.114 0.128 0.035 0.120 0.137

500 0.020 0.089 0.097 0.018 0.088 0.093

1000 0.011 0.067 0.068 0.010 0.061 0.064

2000 0.005 0.046 0.044 0.006 0.045 0.042

T K=100

100

250 0.036 0.111 0.126 0.035 0.115 0.130

500 0.020 0.087 0.094 0.018 0.084 0.093

1000 0.010 0.065 0.066 0.009 0.067 0.065

2000 0.005 0.043 0.041 0.005 0.040 0.041

T K=200

100

250 0.036 0.108 0.123 0.035 0.116 0.131

500 0.019 0.085 0.093 0.019 0.083 0.094

1000 0.010 0.068 0.070 0.010 0.060 0.063

2000 0.005 0.042 0.044 0.005 0.044 0.043
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4 Empirical example

The S&P 500 is an index based on the 500 largest stocks in terms of market capitalization,

traded in the NYSE. In this section the methods discussed above are applied to the equities

which were components of the S&P500 between 8 December 1999 and 7 December 2009.

Here we consider weekly log-returns. Thus, the number of observations is T = 521. Only

those series which are available over the entire period of time are included in the data

set. The series are arranged according to the market capitalisation on the last day of

the observation period. The data set also includes the index itself. The models were

estimated for different sizes of cross-section: K = {5, 10, 25, 50, 75, 100}. Before fitting

the DCC and related models, the data series are tested for the presence of autocorrelation.

We used the BIC criterion to select the order m of an AR(m) process. The residuals of

the estimated AR(m) are then used to model the volatilities and correlations.

At the first step of the QML, we estimate the univariate volatilities. We fit GARCH(p, q)

models and select orders p and q by Engle’s LM test. Then the standardized residuals ε̂t

are used to estimate the time-varying correlation.

The estimates of the DCC and cDCC type of models are presented in Table 6 and

Table 7 respectively. The estimates of α and β of the DCC and cDCC model is decreasing

considerably with the increase of the size of the cross-sections K, which corresponds to

the findings of Engle and Sheppard (2001) and Engle et al. (2008). On the contrary, the

estimates obtained from the composite likelihood method (DCC CL and cDCC CL) of

Engle et al. (2008) do not suffer from the typical problem of negative bias and stay on

the relatively stable level. The estimates of α and β for the DCC and cDCC models with

shrinkage (DCCI, DCCM, DCCE, cDCCI, cDCCM, cDCCE) also decrease with increasing

dimension K, but less than the standard estimates. In general, the estimated parameters

of the cDCC type models are slightly larger than those of the DCC.

As was shown in the simulation study, the estimates of the DCC model with shrinkage

also possess a negative bias. However, it is not as large as the bias of the DCC esti-

mates. The estimation results confirm the results of the simulation study, namely that

the parameter estimates of the DCC and cDCC models are of comparable magnitude.
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Table 6: Estimated parameters for the DCC, DCC CL and DCC models with shrinkage

to Identity (I), Market (M) and Equicorrelation (E). Data: S&P500 weekly returns from

8 December 1999 until 2 December 2009. Number of observations T = 521. Data are

arranged according to the capitalization on the last day of the observation period.

DCC DCC CL DCCI DCCM DCCE

T α β α β α β α β α β

5 0.015 0.948 0.037 0.939 0.017 0.975 0.015 0.951 0.016 0.963

10 0.007 0.954 0.025 0.951 0.008 0.989 0.008 0.959 0.009 0.978

25 0.005 0.919 0.024 0.936 0.007 0.990 0.007 0.949 0.007 0.973

50 0.001 0.833 0.018 0.930 0.006 0.979 0.004 0.929 0.004 0.946

75 0.000 0.757 0.018 0.935 0.006 0.965 0.003 0.867 0.003 0.887

100 0.000 0.835 0.018 0.943 0.008 0.935 0.003 0.813 0.003 0.830

Table 7: Estimated parameters for the cDCC, cDCC CL and cDCC models with shrinkage

to Identity (I), Market (M) and Equicorrelation (E). Data: S&P500 weekly returns from

8 December 1999 until 2 December 2009. Number of observations T = 521. Data are

arranged according to the capitalization on the last day of the observation period.

cDCC DCC CL cDCCI cDCCM cDCCE

T α β α β α β α β α β

5 0.017 0.942 0.040 0.938 0.018 0.975 0.018 0.946 0.019 0.956

10 0.007 0.953 0.025 0.952 0.009 0.988 0.008 0.958 0.010 0.973

25 0.005 0.919 0.022 0.940 0.007 0.988 0.008 0.948 0.008 0.970

50 0.001 0.832 0.017 0.933 0.007 0.975 0.004 0.926 0.004 0.944

75 0.000 0.838 0.018 0.937 0.007 0.959 0.004 0.862 0.004 0.884

100 0.000 0.836 0.018 0.945 0.006 0.917 0.004 0.798 0.004 0.818

Table 8: Shrinkage intensity δx, x = I,M,E for DCC and cDCC models with shrinkage

to Identity (I), Market (M) and Equicorrelation (E).

K DCCI DCCM DCCE cDCCI cDCCM cDCCE

5 0.070 0.028 0.121 0.073 0.028 0.111

10 0.044 0.100 0.136 0.044 0.100 0.131

25 0.031 0.100 0.115 0.031 0.100 0.115

50 0.035 0.142 0.153 0.035 0.142 0.153

75 0.034 0.145 0.155 0.034 0.145 0.155

100 0.035 0.148 0.159 0.035 0.148 0.159
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To compare the results discussed above we plot the pointwise median, 5% and 95%

quantiles of the estimated correlation paths for the case of 50 cross-sections (1225 paths).

As it was expected, the DCC and cDCC models in Figures 3(a) and 4(a) do not show any

variation in the correlation. On the other hand, the DCC CL and cDCC CL models in

Figures 3(b) and 4(b) are quite volatile. The correlation paths for DCCI, DCCE, cDCCI

and cDCCE models in Figures 3(c,d) and 4(c,d) are much smoother than those for DCC

CL and cDCC CL.

Figure 3: The pointwise median, 5% and 95% quantiles of estimated correlation of the

DCC, DCC CL, DCCI and DCCE models. Data: S&P500 weekly returns from 8 Decem-

ber 1999 until 2 December 2009. Number of observations T = 521. Data are arranged

according to the capitalization on the last day of the observation period.
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Figure 4: The pointwise median, 5% and 95% quantiles of estimated correlation of the

cDCC, cDCC CL, cDCCI and cDCCE models. Data: S&P500 weekly returns from 8

December 1999 until 2 December 2009. Number of observations T = 521. Data are

arranged according to the capitalization on the last day of the observation period.

Aug/01 Apr/03 Dec/04 Aug/06 Apr/08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
cDCC, K=50, T=521

 

 

5% quantile
50% quantile
95% quantile

(a) DCC

Aug/01 Apr/03 Dec/04 Aug/06 Apr/08
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
cDCC CL

 

 

5% quantile
50% quantile
95% quantile

(b) DCC CL
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Following Hafner and Franses (2009), we apply the Portmanteau test (Lütkepohl, 1993)

to check for residual autocorrelation of the standardized returns R̂
−1/2
t ε̂t. The modified

statistics for the multivariate Portmanteau test is given by

Ph = T 2

h∑

i=1

(T − i)−1tr
(
Ĉ ′

iĈ
−1
0 ĈiĈ

−1
0

)
, (34)

where

Ĉi =
1

T

T∑

t=i+1

R̂
−1/2
t ε̂t

(
R̂

−1/2

t−i ε̂t−i

)
′

. (35)

The asymptotic distribution of Ph is χ2 with hK2 degrees of freedom, where h is the

number of lags. In Table 9 and Table 10 the results of the Portmanteau test with h = 10
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for the data with different dimensions K are reported. Small values of the statistics Ph

indicate a good fit of the models to the data. For every K, the value of the statistics P10 is

in general higher for DCC than for DCC with shrinkage. P10 for DCC CL is the smallest.

Among the models with shrinkage, the best fit has the DCCI model. The cDCC type

models show similar results. In general, the values of P10 for cDCC models are smaller.

Eventually, all of the statistics have corresponding p-values smaller than 0.05.

Table 9: Results of the Portmanteau test for for the DCC, DCC CL and DCC models

with shrinkage to Identity (I), Market (M) and Equicorrelation (E). Data: S&P500 weekly

returns from 8 December 1999 until 2 December 2009. Number of observations T = 521.

Data are arranged according to the capitalization on the last day of the observation period.

The table reports the value of Ph for number of lags h = 10 and the corresponding p-value.

K h ∗ K2 DCC DCC CL DCCI DCCM DCCE

P10 Pvalue P10 Pvalue P10 Pvalue P10 Pvalue P10 Pvalue

5 250 294 0.028 290 0.041 292 0.036 294 0.028 293 0.031

10 1000 1129 0.003 1071 0.058 1097 0.017 1126 0.003 1113 0.007

25 6250 6765 0.000 6691 0.000 6709 0.000 6752 0.000 6742 0.000

50 25000 26409 0.000 26132 0.000 26267 0.000 26380 0.000 26373 0.000

75 56250 58217 0.000 57605 0.000 58096 0.000 58180 0.000 58175 0.000

100 100000 103121 0.000 102218 0.000 102982 0.000 103067 0.000 103059 0.000

Table 10: Results of the Portmanteau test for for the cDCC, cDCC CL and cDCC models

with shrinkage to Identity (I), Market (M) and Equicorrelation (E). Data: S&P500 weekly

returns from 8 December 1999 until 2 December 2009. Number of observations T = 521.

Data are arranged according to the capitalization on the last day of the observation period.

The table reports the value of Ph for number of lags h = 10 and the corresponding p-value.

K h ∗ K2 cDCC DCC CL cDCCI cDCCM cDCCE

P10 Pvalue P10 Pvalue P10 Pvalue P10 Pvalue P10 Pvalue

5 250 294 0.029 294 0.030 305 0.010 295 0.028 295 0.027

10 1000 1128 0.003 1138 0.002 1110 0.008 1125 0.004 1114 0.007

25 6250 6765 0.000 6714 0.000 6728 0.000 6751 0.000 6742 0.000

50 25000 26409 0.000 26126 0.000 26281 0.000 26375 0.000 26369 0.000

75 56250 58219 0.000 57590 0.000 58104 0.000 58173 0.000 58168 0.000

100 100000 103121 0.000 102243 0.000 102973 0.000 103053 0.000 103043 0.000
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