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Abstract

We propose a new method to estimate the distribution function of the random

effects in a generalized linear mixed model of the logistic type. The method is the

smoothed kernel method. The distribution estimate based on a nonparametric max-

imum likelihood approach is discrete, and the kernel method is used to smooth this

density estimate. Simulation results are shown for Rasch model. The new approach is

compared with the parametric model assuming either the normal distribution or the

parametric model with a mixture of two normals for the random effects.
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1 Introduction

Generalized linear mixed models have become a powerful parametric tool in psychometrics. A

common type of psychometric model for binary data, such as the Rasch model, has a random

intercept or person parameter θ, and a number of fixed effects, each corresponding to an

item difficulty β as indicated in (2.1) and (2.2). Estimation is based on maximum likelihood

theory which assumes that the underlying probability model determining the behavior of

the event investigated is correctly specified. There are different ways for the estimation

and inference one can make depending on how the person specific effect is seen. The first

approach is to suppose that the person parameters θ are fixed and have the same status

as the item parameter β. To estimate the item and person parameters, the likelihood is

maximized jointly. This method is called joint maximum likelihood estimation. However,

the JML estimators for item parameters are not consistent see Neyman and Scott (1948).

This is due to the fact that the number of parameters increases at the same rate as the

sample size increases because each new person implies a new parameter. An alternative

is the conditional maximum likelihood (CML) approach based on sufficient statistics. The

CML is applied only for models with sufficient statistics for person parameters. For the

Rasch model, the sufficient statistic for the person-specific parameter is the sum score. The

item parameters are estimated by maximizing the so-called conditional likelihood. The

CML estimators are consistent and asymptotically normally distributed (Andersen (1970));

see also the biostatistical literature on CML in Chapter 4 of McCulloch and Searle (2001).

However, there are some disadvantages associated to CML. First, no inferences are possible

on persons since the probability of observing the response patterns depend only on the

sufficient statistics and not on the person effect. Second, CML is not the most efficient

method, because the conditional likelihood is maximized rather than the full likelihood,

although the loss of efficiency may be minor; see Molenaar (1995).

Another way is to consider the person parameters as independent random draws from a

density defined over the population of persons denoted by gp. This approach is widely used.

The item parameters are estimated by maximizing the so-called marginal likelihood:

LMML(φ) =
P

∏

p=1

∫

+∞

−∞

[

I
∏

i=1

Pr(Ypi = ypi|θp)

]

gp(θp)dθp (1.1)

To maximize the MML quantity, we need to specify the density gp. We can distinguish
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three cases of the MML approach: nonparametric, semiparametric and parametric (Heinen

(1996)). Each method depends on the assumptions one makes about the unobserved popu-

lation density of the random effects. In the nonparametric maximum likelihood estimation

method, no assumptions are made about the density gp. Laird (1978) has shown that in

this case the estimate of the cumulative distribution function Gp is a step function with a

finite number of steps. In the semi-parametric estimation method, see Heinen (1996) for the

description of the nonparametric and semiparametric approaches), the location of steps are

assumed to be known but the probability masses at these fixed nodes have to be estimated.

In the parametric estimation method, the population density is taken to be a parametric

density for which the parameters have to be estimated. The normal density and a mixture

of normal densities are the two models used in a parametric approach in general. However,

since random effects are unmeasurable (latent factors), this is an assumption that cannot

be checked in a direct way. In linear mixed models, we assume often that random effects

have a normal density. Verbeke and Lesaffre (1996,1997) studied the impact of the normality

assumption for random effects. They showed the robustness of the inference on the fixed ef-

fects to the nonnormality of the random effects. However, inference on the random effects is

sensitive indeed to the normality assumption. A widely used method to relax the normality

assumption is to use a mixture of normals model, see Verbeke and Lesaffre (1996). Recently,

the B-spline smoothing approach is proposed for the linear model by Wendimagegn et al,

(2004). For the generalized linear mixed model, the normality and mixture of normals of the

random effects are also frequently assumed. The effects of misspecification of the random

effect distribution was the subject of many studies ( Neuhaus et al, (1992); Heagerty et al.,

(2001); Chen et al (2002); and Agresti et al., (2004)). Recently, for longitudinal data, Litière

et al. (2004) have studied through simulations the effect of misspecifying the random effects

distribution on the estimation of the fixed effects in the case of a logistic mixed effects model

with treatment and time covariates, and with a random intercept. They found that the esti-

mates tend to converge to values different from the true ones, this deviation being the largest

for the estimation of the variance components. Asymptotic normality of the estimates holds,

but not convergence to the true effects.

It seems then that the semi-parametric and the nonparametric approach Laird (1978) are

good alternatives to relax the parametric assumption on the density of the random effects.

But the estimators of the random effect density using such maximum likelihoods are discrete,
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which is not ideal. To overcome this problem and to relax the normality assumption of the

random effect, Magder and Zeger (1996) proposed a mixture of Gaussians to smooth the

nonparametric maximum likelihood estimate. Zhang and Davidian (2001) suggested the

semi-nonparametric, called SNP, method. They maximize the marginal likelihood over a

class of smooth densities which may be approximated by a truncated series expansion. The

two methods are proposed for linear mixed models. The latter technique is applied by Chen

et al (2002) for a more general class of clustered-data GLMMs. In this article, we propose the

”smoothed kernel approach” to estimate the density of the random effects in GLMMs based

on the smoothed kernel method. This method can be used to decide how many components

are needed if a finite mixture is assumed, and it can be used as well for inference on the fixed

and random effects. Note that the smoothed kernel approach can be also used for the linear

mixed model. This paper will be devoted to the Rasch model, implying that the density of

one random effect will be estimated. However, the results of this paper can be extended to

other models, such as the 2PL model and multidimensional models.

The paper is organized as follows. In Section 2, we outline the framework and present

the Rasch model and the smoothed kernel estimators. The new method to estimate the

density of the random effects is described and the estimation of the bandwidth parameter

is developed in Section 3. In Section 4, we investigate the finite sample properties of the

smoothed kernel method. Section 5 concludes.

2 Rasch model and smoothed kernel

2.1 Rasch model

The Rasch models is a random intercept model for binary repeated measurements. The

measurements concern the responses of persons to items. The covariates of the measurements

are dummy item indicators. The Rasch model is an item response model with one parameter

for each person, called the item ability, see van der Linden and Hambleton (1997). The Rasch

model is one of the prominent models for binary items (e.g. success/failure on test items) in

psychometrics, and it is a special case of the generalized linear mixed model if one assumes

that the ability is a random effect. In the Rasch model the log odds of subject p giving a
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correct response to item i are modeled using a simple additive formula:

ηpi = θp − βi, (2.1)

where βi is a fixed effect and represents the difficulty of item i, and θp is a random effect

and represents the ability of the person p. In terms of probability, the model is:

πpi = exp(ηpi)/(1 + exp(ηpi)) (2.2)

where πpi is the probability of a 1-response.

The Rasch model will be the central example for which the various estimation methods

will be explained. The generalization of the method presented to more complex GLMMs is

straightforward.

2.2 Smoothed kernel

The most popular and the well documented nonparametric estimator of an unknown prob-

ability density function f is the standard kernel estimator; see Silverman (1986). Given a

random sample, X1, · · · , Xn, from a probability distribution F with an unknown density

function f , the smoothed kernel estimator is defined as follows:

fh(x) =
1

nh

n
∑

i=1

K((x − Xi)/h), (2.3)

where the kernel K is a symmetric density function and h is a smoothing parameter, called

the bandwidth. Without loss of generality, assume that K is the standard normal density.

The standard kernel estimate is a sum of ”bumps”. The shape of the bumps is determined

by the kernel K and it is the same for all the points where the density is estimated. The

bandwidth parameter controls the width of the bumps.

In this paper we will use the standard kernel to estimate the density of the random effect,

but for grouped data, as will be explained next. Suppose that the sample of size n can be

subdivided into G distinct subsamples with respective sizes n1, n2, ..., nG and representatives

X∗

1 , X
∗

2 , ..., X
∗

G . For such grouped data, the kernel estimator is adapted:

f̂h(x) =
1

h

G
∑

g=1

ng

n
K((x − X∗

g )/h)

=
G

∑

i=1

πgKh((x − X∗

g )) (2.4)
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where πg = ng

n
and Kh(t) = 1

h
K( t

h
), g = 1, · · · , G.

This adaptation is needed because the density estimator does not concern an observed con-

tinuous variable, but a latent one, which has to be approached in a discrete form. This is

explained in the next section.

3 Smoothed kernel for the Rasch model

In linear and generalized linear mixed models, the most common approach to estimate the

distribution G of the random effect is to assume that G is a Gaussian distribution and use

the maximum likelihood method to estimate the parameters of the distribution. For the

linear mixed model, the normality assumption is mathematically convenient, because under

this assumption, both the marginal distribution and the posterior distribution of the random

effects are Gaussian. This simplifies the maximization of the likelihood and the estimation

of the random effects. Although in generalized linear mixed models this property no longer

applies, the normality assumption is still used. The disadvantage of the Gaussian approach

is that it depends on a strong assumption about the shape of this distribution, while the

assumption may not be valid, in particular if we know that the population comes from several

subgroups.

Here, the nonparametric approach is used. No assumptions at all are made about the

shape of the distribution of the random effects, i.e., let the data speak for themselves and

select the distribution with the highest likelihood. Lindsay (1983) showed that under general

conditions, the nonparametric approach is discrete and has a limited number of points of

support, which is a disadvantage of this estimator in particular if the shape of the density

is of interest. To overcome this problem, Magder and Zeger (1996), in order to control the

smoothness of the estimate, proposed to maximize the likelihood not over all distributions but

over the class of arbitrary mixtures of Gaussian subject to the constraint that the variances

of the Gaussian must be greater than or equal to specific minimum value. As an alternative

to the discrete estimator of the nonparametric approach, the smoothed kernel method is

presented here. However, a complication arises because the kernel estimation method needs

observable data, whereas the random effects are not observed. The solution for this issue

is to use the points of the discrete nonparametric estimator as the data, in other words, we

smooth the discrete nonparametric estimator. In this section we present the method for the
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generalized linear mixed model.

3.1 Description of the method

We first describe how the density of the random effect is estimated by the kernel method.

Let ypi denote the ith observation for person p and Yp = (Yp1, ..., YpI). Conditionally on

the random effects θp (J × 1 vector), the elements Ypi of Yp are assumed to be independent,

with density function of an exponential family form fp(ypi|θp). The density is replaced by

probabilities in the case of discrete outcomes Pr(Ypi = ypi), for example for the Rasch model.

The marginal joint distribution of Yp is then

fp(yp) =

∫

fp(yp|θp)g(θp)dθp, (3.1)

where for the Rasch model

fp(yp|θp) = Pr(Yp = yp) =
I

∏

i=1

exp[(θp − βi)ypi]

1 + exp(θp − βi)

We denote by θ1, ..., θG the limited number of points of the simple nonparametric maximum

likelihood estimate and π1, ..., πG the corresponding probabilities (see (3.2)). The number

G is estimated but can also be fixed in advance. Let us first consider that G is fixed. To

estimate the random-effects density the following adapted kernel estimator will be used (see

the previous section):

gh(θ) =
G

∑

g=1

πg Kh(θ − θg) (3.2)

where Kh(θ − θg) = h−1/2K(h−1/2(θ − θg)). K is a kernel function, and h is a positive value

called the smoothing parameter. For the multidimensional case, we take a multidimensional

kernel.

The kernel method to estimate the density of the random function is a two-steps procedure:

Step 1. Estimate θ∗ = (θ1, ..., θG) and π∗ = (π1, ..., πG) using the nonparametric maximum

likelihood approach.

Step 1. The modified version of the kernel density estimator gh in (3.2) of the random effects

is:

ĝh(θ) =
G

∑

g=1

πg Kh(θ − θg) (3.3)
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If the kernel is the standard normal density, the smoothed kernel estimator can be viewed as

a mixture of G normals with the same variance h2. The present approach is different from the

parametric approach using a mixture of two or more normals. The means and the weights of

the components in the kernel approach are determined by the simple nonparametric method.

Also the number of components G is selected in the first step by the simple nonparametric

maximum likelihood method.

The smoothed kernel can be reduced to be a one-step approach, maximizing the marginal

likelihood over the class of densities that can be expressed as (3.3). This is equivalent to

maximizing the marginal likelihood over the class of mixtures of normals with the same

variance h2. Then, the smoothed kernel method is similar to the smoothed nonparametric

estimate of Magder and Zeger (1996) proposed for linear mixed models.

3.2 Illustration

We will illustrate the discrete nonparametric maximum likelihood estimator and the smoothed

kernel estimator, with different examples. Ten random samples of size n = 500 are generated

from the Rasch model, one per type of density: normal with zero mean and variance equal

to 16, a symmetric mixture given by 0.5N(−4, 3) + 0.5N(4, 3); a chi-square density with

16 degrees of freedom, and a lognormal distribution with parameters µ = 2 and σ = 0.5.

The distributions were shifted back over their mean to satisfy the mean zero condition of

the random effects. Two methods are considered: the simple nonparametric method and the

smoothed kernel method. The fixed effects are chosen on the basis of the range of the density

of the random effect, for example for βi the range [−5, 5] was chosen, so that the fixed effects

are within the range covered by the body of the random effect, excluding the tails of the

distribution. For each sample, eleven item parameters were used. We fixed the number of

points for the nonparametric method to G=5, with respective representatives X∗

1 , X
∗

2 , ..., X
∗

5

and sizes n1, n2, ..., n5; but note that implicitly we use n = n1 + n2 + ... + n5 observations for

the smoothed kernel estimator. Note that in principle the nonparametric method can select

this number. We use the standard normal density as a kernel. The value of the smoothing

parameter is chosen by the maximum likelihood method, as will be explained in Section 3.3.

Figure 3.1 shows the results of the simulations, for a representative sample. The other

samples look very similar. The first column is the histogram of the random effect as gener-

ated, the second column is the simple nonparametric estimator. The five bars in the second

8



column are the first step of the procedure. We can see that based on the simple nonpara-

metric estimator it is difficult to detect the underlying model of the random effects. The last

column of the figures shows the density estimated by the kernel method, in comparison to

the true density. One can see that the smoothed kernel estimator performs as expected and

approaches the true density quite well. The full line of the figure represents the true density

of the random effect: the normal followed by a mixture of two normals, a chi-square and a

lognormal density. With densities such as in these simulations, the problem of the bias at

the boundary is not present. Boundary kernels ( Jones and Foster, 1993; and Bouezmarni

and Scaillet, 2005) are recommended if a boundary bias is present, for example if the random

effect would follow an exponential density.
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Figure 3.1: The histogram of the random effect generated, the simple nonparametric esti-

mator and the smoothed kernel estimator. The full line represents the true density.

3.3 Choice of h

Nonparametric density estimation requires the specification of the smoothing parameter.

Many theoretical and practical studies have been carried out for choosing the optimal
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smoothing parameter for the standard kernel density estimators. Indeed, the kernel esti-

mator is very sensitive to the choice of the bandwidth parameter because with a large value

of the bandwidth parameter h, the density is oversmoothed; the variance is reduced, the

kernel estimator is stable but the bias is too large, the expected density based on the kernel

estimator is too far from the true density. And for a small value of h the density is under-

smoothed; the bias is small but the kernel estimator is more variable. An optimal choice is

needed for a good estimator of the density. The effect of the bandwidth on the estimation of

the random effects density can be illustrated with a symmetric mixture of two normals. The

number of points of the simple nonparametric method is fixed to be G = 4. In panel a of

Figure 3.2, one can see the true density (mixture of two normals, full line), and the smoothed

kernel estimator for three different values of the bandwidth parameters: a small one h = 0.3,

a moderate one h = 1 and a large one h = 3. For h = 3, the smooth estimator has one mode,

for h = 1 it has two modes and for h = 0.3 it has four modes. As the bandwidth parameter

goes to zero, the smoothed kernel estimator approaches the simple nonparametric estimator

(see panel b of Figure 3.2).

To estimate the optimal bandwidth parameter we have two alternatives. The first one,

is to use existing methods, such as cross-validation, bootstrap, plugging, etc. The second,

which is better suited to the generalized linear mixed model, is to choose the bandwidth by

maximizing the marginal likelihood. Indeed, the bandwidth parameter can be considered

as a fixed parameter. As the kernel is supposed to be a normal density, the bandwidth

parameter is the standard error of the kernels. The estimation of the bandwidth parameter

is equivalent to the estimation of the variance for a mixture of normals. Unfortunately,

the maximization of the likelihood is not possible analytically. The EM algorithm can be

used to maximize the marginal likelihood and to obtain the estimator of h. The bandwidth

parameter h = 1 in Figure 3.2 is actually the result of maximizing the marginal likelihood.

We can see that the smoothed kernel estimator with this bandwidth approaches the true

density and illustrates the two modes.
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Figure 3.2: (a) The true density and the smoothed kernel estimator for three values of

the bandwidth parameter h = 0.3, h = 1, and h = 3; and (b) the first step, the simple

nonparametric method

4 Simulation results.

4.1 A comparison of the approaches based on a simulation study.

The properties of the smoothed kernel estimator will be compared with those of the paramet-

ric model assuming either the normal distribution or the parametric model with a mixture

of two normals for the random effects. We consider four true densities: three densities with

a single mode and one with two modes, two symmetric ones and two asymmetric ones.

(a) Normal density with mean zero and variance equal to 16. For this density the fixed

effects will be the vector (−4,−1, 2, 3).

(a) Mixture of two normals with equal probability: 0.5N(−4, 3) + 0.5N(4, 3). For this

density the fixed effects will be the vector (−5,−3,−2, 1, 3).
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(a) Chi-square density with 16 degrees of freedom. For this density the fixed effects will be

the vector (−4,−3, 2, 3).

(a) Lognormal density with parameters µ = 2 and σ = 0.5. For this density the fixed effects

will be the vector (−3,−2, 2, 3).

The chi-square and the lognormal distributions are shifted to obtain a mean zero condition

of the random effects and the fixed effects are chosen to cover the range of random effects.

The study is based on 100 simulations for each density. Throughout the sample is n =

1000. The EM algorithm is used to obtain the estimators. For the EM approach, the number

G in the first step of the kernel method must be specified. One method to avoid the selection

of a number of components is to use a very large number of components. The idea is then

that some of the estimated support points may coincide, or some support points will obtain

a zero weight. However, this leads to extremely slow convergence of the algorithm. From

experience with simulations, it was derived that the smoothed kernel estimator gives a good

result with G equal to 3, 4 or 5; these numbers are sufficiently large to obtain a good accuracy

and they are sufficiently small for a reasonable computing time. An objective and simple

method for the choice of the G remains an open question. Here the number of support points

of the simple nonparametric estimator is fixed to G = 5.

Global performance is assessed in terms of the mean and deviation error of the 100

simulations of an intuitively appealing global criterion

L∞(f̂ , f) = sup
I

|f̂ − f |.

where f is the true density, f̂ is either the smoothed kernel estimator, the parametric esti-

mator assuming the normal distribution, or the parametric estimator assuming a mixture of

two normals, and I is a grid of values of the support of the densities. For each simulation the

bandwidth minimizing the L∞ norm among a grid of values is chosen. Note that the results

based on the bandwidth chosen by the maximum likelihood approach are very similar. Table

3.1 lists the results.

The smoothed kernel estimator shows a smaller deviation from the true density than

the other methods for the chi-square and the lognormal densities. For the normal density

function, the parametric model with normality assumption has a smaller error than the

smoothed kernel, as may be expected because the assumption is correct, but the difference
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Densities sup |f̂ − f | Smoothed kernel
parametric

one normal

parametric

two normals

Normal
Mean

Standard deviation

0.0159

0.0054

0.0100

0.0072

0.0240

0.0250

Mixture
Mean

Standard deviation

0.0334

0.0083

0.0618

0.0022

0.0301

0.0211

Chi-square
Mean

Standard deviation

0.0121

0.0026

0.0607

0.0112

0.0195

0.0101

Lognormal
Mean

Standard deviation

0.0295

0.0070

0.1830

0.0232

0.0305

1.1.10−16

Table 4.1: Mean and standard deviation of L∞ error of the 100 estimations with the smoothed

kernel estimator, the parametric model assuming the normality, and the parametric model

assuming mixture of two normals.

is very small. For the mixture of two normals, the parametric method with two normals has

a smaller error than the smoothed kernel method as may expected because the assumption

is correct, but the difference is extremely small.

The standard deviation of the error is rather small for the smoothed kernel estimator in

comparison with the other two methods. For two densities (normal, chi-square) the standard

deviation of the smoothed kernel is the smallest, and for the two other densities(mixture,

the lognormal) it is the second smallest. This means that the method yields stable results.

It may be concluded that the smoothed kernel estimator is the better estimator unless the

alternative estimator corresponds with the true model, but also then the smoothed kernel

estimator performs quite well. As far as stability is concerned, the smoothed kernel estimator

has good qualities as well, and in general performs better than the other estimators. For the

mixture density, the parametric model estimator based on one normal seems more stable,

but it is much more biased at the same time; and the lognormal is more stable when a

mixture of two normals is used.
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4.2 Fixed effects estimation

The estimation of the fixed parameters constitutes an important point in the generalized

linear mixed model. The smoothed kernel estimator can be used also to estimate the fixed

parameters. For this, we replace the true density in (1.1) by the smoothed kernel estimator

and the result is:

LMML(φ) =
P

∏

p=1

∫

+∞

−∞

[

I
∏

i=1

Pr(Ypi = ypi|θp)

]

ĝp(θp)dθp (4.1)

The fixed parameters to be estimated are the bandwidth parameter h and the item parame-

ters β. We maximize the marginal likelihood to obtain the estimators. Unfortunately, we can

not obtain an explicit form for the parameter estimates since a direct maximization is not

possible analytically. The EM algorithm can be used to maximize the marginal likelihood

and to obtain the estimators of the fixed parameters β and h. Here we concentrate on the

item parameters β. The smoothed kernel method can be a good alternative for the paramet-

ric model using the normality assumption to estimate the item parameters of the model. In

this section, we apply this method to estimate the fixed parameters in the Rasch model with

the four models of the random effects considered in Section 4.1 and compare the results with

those obtained by the parametric model assuming normality of the random effects, which

is the common approach. Note that the fixed parameters of the mixture density and the

chi-square model are changed. Table 3.2 reports the mean, the standard deviation and the

Kolmogorov-Smirnov test (KS-test) of normality of the fixed parameter estimators. For a

normal density of the random effects, the two methods provide good results; but as expected,

the parametric method gives better results, in terms of mean and standard deviation, than

those of using smooth kernel approach. When the random effects are supposed to be mixture

of two normals, we remark some bias in the estimation with the parametric method which

not the case in the estimation with the kernel method. The latter dominates also in term

of variance. For the chi-square and the lognormal model, the parametric approach provides

clearly biased estimators of the fixed parameters. These poor results must be attributed to

the asymmetric shape of the two densities. The smoothed kernel method does provide quite

good results for the two asymmetric densities.

Using the Kolmogorov-Smirnov test for the normality of the fixed effect estimators, the

normality assumption is never rejected when the parametric approach is followed, which is
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in line with the results obtained by Litière et al. (2004). When the smooth kernel approach

is followed, the normality is rejected in three cases for α = .05, but never for α = .1.

A comparison of the kernel method with other methods for the estimation of the item

parameters should be a topic of further research, but thus for the kernel method is shown

to be a reasonable approach. Also, the bandwidth parameter deserves further investigation.

Here we adopt the likelihood method presented in Section 3.3.

5 Discussion and conclusion

A new method was proposed to estimate the random effect density in a GLMM such as the

Rasch model. This method is the smoothed kernel estimator. Through simulations it was

shown that the smoothed kernel estimator has a good performance, in comparison with the

parametric method assuming normality or a mixture of two normals. With the smoothed

kernel method one can avoid the normality assumption which is often too restrictive, and

at the same time more accurate information on the random effect is provided, including

multimodality and skewness. The maximum likelihood estimators based on a normal density

or a mixture of normal densities have a poor performance than the smoothed kernel estimator

when the density assumption is not correct. The smoothed kernel approach seems to be a

reasonable one for the estimation of the fixed effects, and it performs clearly better the normal

density approach when the density is asymmetric. A comparison with other approaches such

as the conditional maximum likelihood need to be a subject of further research. Although

the method seems to work well, further simulations are needed to investigate the consistency

of the maximum likelihood estimator based on the smoothed kernel approach. To select the

bandwidth parameter we proposed here the maximum likelihood approach. The results were

similar to those obtained with minimizing the deviation from a known true density. However,

a comparison of the maximum likelihood with the classical methods such as cross-validation,

bootstrap, plugging is an interesting topic for further investigation.
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Table 4.2: Fixed parameters estimates (means, SEs, p-value of normality) for four different

density based models using a kernel approach and a normality approach (based on 100

replications).

kernel normal

Model Parameter Mean SE p-value1 Mean SE p-value1

Normal -4 -4.0234 0.2287 0.2254 -4.0069 0.2089 0.5000

-1 -1.0300 0.2097 0.0173 -1.0077 0.1065 0.3758

2 2.0292 0.1590 0.1094 1.9970 0.1347 0.1008

3 3.0242 0.2013 0.1595 3.0176 0.1674 0.2133

Mixture -3 -2.9762 0.1351 0.1025 -3.0985 0.3128 0.2023

-1 -0.9446 0.1375 0.4118 -1.0960 0.2333 0.0911

1 0.9415 0.1127 0.5000 1.0920 0.2218 0.2079

3 2.9793 0.1726 0.5000 3.1025 0.3253 0.1138

Chi-square -4 -3.9537 0.1344 0.1130 -4.1508 0.2123 0.1624

-1 -1.0375 0.2406 0.0442 -1.2272 0.1518 0.0779

2 2.0165 0.1296 0.5000 2.1870 0.1760 0.2456

3 2.9747 0.1881 0.3416 3.1911 0.1839 0.5000

Lognormal -3 -2.9780 0.1222 0.0144 -2.8188 0.1136 0.1548

-2 -2.0430 0.1424 0.1580 -2.0014 0.1116 0.5000

2 1.9859 0.1329 0.5000 1.8427 0.1128 0.2091

3 3.0351 0.1160 0.5000 2.9776 0.1223 0.1806

1 The p-value is based on the Kolmogorov-Smirnov test of normality for the fixed parameter effects estimates.
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