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Abstract

Often problems result in the collection of coupled data, which consist of different N -

way N -mode data blocks that have one or more modes in common. To reveal the structure

underlying such data an integrated modeling strategy, with a single set of parameters for the

common mode(s), that is estimated based on the information in all data blocks, may be most

appropriate. Such a strategy implies a global model, consisting of different N -way N -mode

submodels, and a global loss function that is a (weighted) sum of the loss functions associated

with the different submodels. In this paper such a global model for an integrated analysis

of a three-way three-mode binary data array and a two-way two-mode binary data matrix

that have one mode in common is presented. A simulated annealing algorithm to estimate

the model parameters is described and evaluated in a simulation study. An application of the

model to real psychological data is discussed.

2



1 Introduction

In different fields of research, coupled data, which consist of different N -way N -mode data blocks

that have one or more modes in common, are collected. For example, in contextualized personality

psychology one often wants to investigate how individual differences in specific behaviors in specific

situations, are related to individual differences in some kind of dispositions. To study this, two

data sets are collected: (1) a three-way three-mode person by situation by behavior data array

that denotes the extent to which each member of a group of persons displays each behavior from

a set of behaviors in each situation from a set of situations and (2) a two-way two-mode person by

disposition data matrix. Note that both data blocks have one mode, that is the person mode, in

common.

To analyze coupled data two strategies can be followed. A first strategy, which may be called

a segmented one, consists of two consecutive steps: First, a multi-way model is fitted to the data

block that is of primary interest; second, the quantification of the common mode as obtained in the

first step is used in the analysis of the other data blocks. For example, first the person by situation

by behavior data array may be analyzed on the basis of a three-way three-mode decomposition

model. In a second step a two-way two-mode model may be fitted to the person by disposition

data matrix, the parameters for the common person mode being taken from the first analysis.

Note that this strategy implies different loss functions, one for each submodel, that are optimized

separately and sequentially. In a second strategy, which may be called an integrated one, a global

model, which may consist of different submodels - one for each data block - is fitted to the coupled

data set. In this global model modes that are common to the different data blocks are represented

by a common set of parameters. To estimate this common set of parameters the information in

all data blocks is used. For example, a global model consisting of a three-way three-mode and a

two-way two-mode submodel may be fitted to the person by situation by behavior data array and

the person by disposition data matrix respectively, with a common set of person parameters that
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is estimated on the basis of the information in both data blocks. Note that the use of a global

model implies the optimization of a global loss function, which optionally can be a sum of separate

loss functions, one for each submodel. Note further that also a weighted sum of separate loss

functions can be used where the weights denote the degree to which each data block is to influence

the estimation of the parameters of the common mode(s).

Depending on the research context, each of the two strategies, as explained above, may be

appropriate. As such, a segmented strategy may be preferred when the (categorical or dimensional)

structure underlying one of the data blocks is of main interest, the other data block being only

used to facilitate the interpretation of the main latent structure. For example, when the person by

situation by behavior data array is considered to be of primary importance, this data array may be

used to induce a latent structure for persons, situations, and behaviors as well as their association;

subsequently the person by disposition data matrix may be only used to further characterize the

latent person structure as obtained in the first step, with the person by disposition data matrix

not playing any role in the determination of that person structure. In general, a disadvantage of a

segmented strategy is that only information from one data block is used when the structure for the

common mode(s) is derived. As a result, error in this data block may have too large an influence on

the derived structure for the common mode (which may further also result in representation errors

for the other - non-common - modes). An integrated strategy is most appropriate when the latent

structure underlying the common mode(s) in the data is of primary interest. The information in

the different data blocks then is used to derive the latent structure for the common mode(s). In this

way different sources of information, which may possibly highlight different aspects of the common

mode(s), are integrated. For example, when in the case of the personality data the latent person

structure is of primary interest, the person by situation by behavior data array and the person by

disposition data matrix may be both used to determine the individual differences structure of the

persons. In general, an integrated strategy may compensate for the disadvantages of a segmented
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strategy and may lead to more stable and correct inferences about the structure of the common

mode.

In this paper we want to develop a global model for an integrated analysis of coupled data

sets that consist of one binary two-way two-mode data matrix and one binary three-way three-

mode data array that have one mode in common. More precisely, we want to construct a global

model that consists of two submodels, both being members of the family of hierarchical classes

(HICLAS) models (De Boeck & Rosenberg, 1988; Leenen, Van Mechelen, De Boeck, & Rosenberg,

1999; Ceulemans, Van Mechelen, & Leenen, 2003) for binary N -way N -mode data. All hierarchi-

cal classes models reduce each mode to a limited number of binary variables, called bundles (or

components), that imply an overlapping clustering of the elements of the different modes. The

new coupled HICLAS model, denoted by the acronym CHIC, represents the three-way three-mode

binary data array by an INDCLAS model (Leenen et al., 1999) and the two-way two-mode binary

data matrix by a HICLAS model (De Boeck & Rosenberg, 1988). Both submodels are linked

(coupled) to each other by imposing the restriction that the overlapping clustering for the common

mode should be the same in both submodels.

The remainder of this paper is organized in five main sections: In Section 2 first the HICLAS

and the INDCLAS model are reviewed briefly, and next the new CHIC model is presented. In

Section 3 a simulated annealing (SA) algorithm to estimate the parameters of the new model is

described. In Section 4 the performance of the SA-algorithm is evaluated in a simulation study. An

illustrative application of the CHIC model to real psychological data from the personality domain

is presented in Section 5. Section 6 finally contains some concluding remarks.
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2 Model

2.1 The HICLAS model

A two-way two-mode HICLAS model approximates an I×J object by attribute binary data matrix

D by an I×J binary model matrix M that can be decomposed into an I×P binary matrix A and a

J×P binary matrix B, where P denotes the rank of the model. The P columns of A and B define

P binary variables that are called object bundles and attribute bundles respectively; consequently,

the matrices A and B are called the object and attribute bundle matrix. The HICLAS model

represents three types of structural relations in M.

Association. The association relation is the binary relation between the objects and the at-

tributes as defined by the 1-entries in the model matrix M. An object i is associated with an

attribute j iff mij = 1. The HICLAS model represents the association relation between the objects

and the attributes by the following decomposition rule:

mij =
P⊕

p=1

aipbjp, (1)

where
⊕

denotes a Boolean sum. Note that (1) implies a one-to-one correspondence between the

respective object and attribute bundles.

Equivalence. Two equivalence relations are defined on M: one for the object mode and one

for the attribute mode. In particular, object i is equivalent to object i′ in M iff both objects are

associated with the same set of attributes. Equivalent objects constitute an object class, with those

classes implying a partition of the objects. The HICLAS model represents the equivalence relation

among the objects by assigning in A the same set of bundles (i.e., identical bundle patterns) to

equivalent objects. The equivalence relation among the attributes, represented in B, is defined

similarly.

Hierarchy. Two hierarchical relations are defined, one on each mode of M. An object i is

hierarchically below an object i′ in M iff the set of attributes associated with object i is a strict

6



subset of the set of attributes associated with object i′. Note that the hierarchical relation among

the objects implies a hierarchical relation among the object classes. The HICLAS model represents

the hierarchical relation among the objects by strict subset-superset relations among their bundle

patterns in A. The hierarchical relation among the attributes is defined similarly and is represented

in B.

2.2 The INDCLAS model

A three-way three-mode INDCLAS model approximates an I×J×K object by attribute by source

binary data array D by an I×J×K binary model array M that can be decomposed into an I×P

binary object bundle matrix A, a J × P binary attribute bundle matrix B and a K × P binary

source bundle matrix C, where P denotes the rank of the model. The P columns of A, B and

C define P (possibly overlapping) bundles of objects, attributes and sources, respectively. As the

HICLAS model, the INDCLAS model represents three types of structural relations in M.

Association. An INDCLAS model represents the ternary relation among the objects, attributes

and sources, as defined by the 1-entries in M, by the following decomposition rule:

mijk =
P⊕

p=1

aipbjpckp. (2)

Note that (2) implies a one-to-one correspondence among the respective object, attribute and

source bundles.

Equivalence. Three equivalence relations are defined; one on each mode of M. An element i

is equivalent to an element i′ in M iff both elements are associated with the same set of pairs of

elements of the other two modes. The INDCLAS model represents the equivalence relation in that

equivalent elements have an identical bundle pattern in the respective bundle matrices.

Hierarchy. A hierarchical relation is defined on each of the three modes of M. An ele-

ment(class) i is hierarchically below an element(class) i′ in M iff the set of pairs of elements of

the other two modes that is associated with the first element(class) is a strict subset of the set of
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pairs of elements of the other two modes that is associated with the second element(class). The

INDCLAS model represents the hierarchical relation among the elements of one mode in terms of

strict subset-superset relations among the associated bundle patterns.

2.3 A global hierarchical classes model for coupled binary data: CHIC

2.3.1 Model

The combined HICLAS-INDCLAS model for coupled binary data (CHIC) approximates an I×J×

K object by attribute by source binary data array D1 and an I×L object by covariate binary data

matrix D2 by an I × J ×K binary model array M1 and an I ×L binary model matrix M2, where

(1) M1 and M2 can be decomposed into an INDCLAS model and a HICLAS model of rank P ,

respectively, and (2) the common object bundle matrix A is the same in both models. Note that,

without loss of generality, the object mode is considered the common mode. Note further that the

term ’covariate’, which denotes the distinct mode of M2, is not to be understood as exogenous, as

in the CHIC model both data blocks D1 and D2 are used to derive the structure underlying the

common mode. An important feature of the CHIC model is that it includes a single structure for

the common mode in terms of bundles, which makes it possible to relate the underlying structure

for D1 to the underlying structure for D2. This implies that the common objects (object types) can

be characterized both in terms of (1) associated attribute-source (-type) pairs and (2) associated

covariates (covariate types).

Like the HICLAS and the INDCLAS models, the CHIC model represents three types of struc-

tural relations (i.e., association, equivalence and hierarchy) in M1 and M2. Below we will succes-

sively discuss the representation of each of these three relations more in detail. For this purpose

we will make use of the hypothetical three-way three-mode model array M1 and the hypothetical

two-way two-mode model matrix M2 in Tables 1 and 2 as a guiding example; a CHIC model in

rank 3 for M1 and M2 is presented in Table 3.
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Association. The CHIC model represents the ternary relation among the objects, attributes

and sources (as defined by the 1-entries in M1), and the binary relation between the objects and the

covariates (as defined by the 1-entries in M2), by the following decomposition rules respectively:

m1
ijk =

P⊕
p=1

aipb
1
jpckp, (3)

m2
il =

P⊕
p=1

aipb
2
lp, (4)

where P denotes the rank of the CHIC model. These decomposition rules are equivalent to:

m1
ijk = 1 ⇔ ∃p : aip = 1 ∧ b1

jp = 1 ∧ ckp = 1, (5)

m2
il = 1 ⇔ ∃p : aip = 1 ∧ b2

lp = 1. (6)

The CHIC decomposition rules imply that (1) an object i is associated with an attribute j and a

source k in M1 (m1
ijk = 1) iff there is at least one bundle to which object i, attribute j and source

k belong, and (2) an object i is associated with a covariate l in M2 (m2
il = 1) iff there exists at

least one bundle to which object i and covariate l belong. For example, one can derive from the

CHIC model in Table 3 that Object 8, Attribute 4 and Source 1 are associated in M1, because

all three elements belong to the second bundle (i.e., OB2, AB2 and SB2). Further, Object 8 and

Covariate 5 are associated in M2, because both elements belong to the third bundle (i.e., OB3 and

CB3). Note that (3)-(6) imply a one-to-one correspondence among the respective object, attribute,

source and covariate bundles.

Equivalence. On each mode of M1 and M2 an equivalence relation is defined. An attribute j is

equivalent to an attribute j′ iff both attributes are associated with the same set of pairs of objects

and sources in M1. Similar equivalence relations are defined for the sources and the covariates.

Furthermore, an object i is equivalent to an object i′ iff both objects are associated with the same
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set of pairs of attributes and sources in M1 and with the same set of covariates in M2. Note

that, as in the HICLAS and INDCLAS models, equivalent elements constitute an element class,

with such classes implying a partition of the elements in question. The CHIC model represents

the equivalence relation among the attributes, sources, covariates and objects in terms of identical

bundle patterns in B1, C, B2 and A, respectively. For example, in Table 1 (Table 2) one can see

that Attribute 2 (Covariate 1) is equivalent to Attribute 5 (Covariate 6) in M1 (M2); hence both

attributes (covariates) have an identical bundle pattern in Table 3. Further, one can see in Table

1 and Table 2 that Object 1 is equivalent to Object 2 both in M1 and M2; hence, both objects

have an identical bundle pattern in Table 3.

Hierarchy. On each mode of M1 and M2 a hierarchical relation is defined. An attribute

j is hierarchically below an attribute j′ iff in M1 the set of pairs of objects and sources that

is associated with attribute j, is a strict subset of the set of pairs of objects and sources that

is associated with attribute j′. Similar hierarchical relations are defined for the sources and the

covariates. Furthermore, an object i is hierarchically below an object i′ iff (1) in M1 the set of

pairs of attributes and sources that is associated with object i, is a subset of the set of pairs of

attributes and sources that is associated with object i′, (2) in M2 the set of covariates that is

associated with object i, is a subset of the set of covariates that is associated with object i′, and

(3) at least one of the two subset-superset relations as mentioned above is a strict one. Note that

the hierarchical relation among the elements of one mode implies a hierarchical relation among

the element classes of that mode. The CHIC model represents the hierarchical relation among the

attributes, sources, covariates and objects (classes) by strict subset-superset relations among the

bundle patterns in the bundle matrices B1, C, B2 and A, respectively. For example, one can see

in Table 1 (Table 2) that Attribute 3 (Covariate 2) is hierarchically below Attribute 4 (Covariate

8) in M1 (M2); hence, the bundle pattern of Attribute 3 (Covariate 2) is a strict subset of the

bundle pattern of Attribute 4 (Covariate 8) in Table 3. Further, one can see in Table 1 and Table
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2 that Object 3 is hierarchically below Object 7 both in M1 and M2; hence, the bundle pattern

of Object 3 is a strict subset of the bundle pattern of Object 7 in Table 3.

2.3.2 Graphical representation

An overall graphical representation of the CHIC model can be given that links the graphical rep-

resentation of the INDCLAS model for M1 (in the lower part of the figure) to the graphical repre-

sentation of the HICLAS model for M2 (in the upper part of the figure) by the representation of

the underlying bundles of the common (object) mode. As a consequence, a double characterization

of the common objects is obtained in terms of (1) attribute-source pairs, and (2) covariates. Fur-

ther, the overall graphical representation of the CHIC model also accounts for the three structural

relations in the model.

As an example, in Figure 1 one may consider the overall graphical representation of the CHIC

model in Table 3. The hierarchical classifications of the covariates and the attributes are pre-

sented at the top and the bottom of Figure 1 respectively, the hierarchical classification of the

attributes being displayed upside down. Classes of equivalent elements are indicated by boxes

that enclose the labels of the elements belonging to that class. The hierarchical relation among

the element(classe)s of one mode is represented by straight lines that connect the corresponding

boxes. Both classifications are linked to each other by the graphical representation of the object

bundles, represented by rectangles (i.e., each rectangle corresponds to one object bundle), and the

source bundles, represented by hexagons (i.e., each hexagon corresponds to one source bundle);

each rectangle (hexagon) further contains the labels of the objects (sources) that belong to the

corresponding object (source) bundle.

The association relation between the objects and the covariates is indicated by zigzags that

connect corresponding bundle-specific object and covariate classes (i.e., classes of elements that

belong to one bundle only). The association relation among the objects, attributes and sources
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is indicated by zigzags that connect corresponding bundle-specific object and attribute classes,

and that include a hexagon, containing the (classes of) sources that belong to the corresponding

bundle. The double characterization of the objects in terms of attribute-source pairs and covariates

then can be derived immediately from Figure 1 as follows: An object i can be characterized in

terms of (1) an attribute-source pair (j − k), and (2) a covariate l, iff there is a path, consisting of

straight lines and zigzags, that connects covariate l with attribute j and that contains object i in

a rectangle and source k in a hexagon.

For example, in Figure 1 one can see that Object 2 can be characterized in terms of (1)

Attribute-Source pair (5 − 3), and (2) Covariate 7, because there is a path between Covariate 7

and Attribute 5 that contains Object 2 and Source 3. Object 3, however, can not be characterized

in terms of (1) Attribute-Source pair (3− 1), and (2) Covariate 4, because no path exists between

Covariate 4 and Attribute 3 that contains Object 3 and Source 1. Note that the equivalence and

hierarchical relations between the objects and the sources cannot be readily derived from Figure

1; as such they are displayed separately in Figure 2 and Figure 3, respectively.

3 Data analysis

3.1 Aim

The aim of a CHIC analysis in rank P of an I × J ×K binary data array D1 and an I ×L binary

data matrix D2 is to estimate an I × J ×K binary model array M1 and an I × L binary model

matrix M2 such that (1) the value of the loss function

f(M1,M2) =
I∑

i=1

J∑

j=1

K∑

k=1

(d1
ijk −m1

ijk)2 +
I∑

i=1

L∑

l=1

(d2
il −m2

il)
2 (7)

is minimized, and (2) M1 and M2 can be represented by a rank P INDCLAS model and a rank

P HICLAS model with a common object bundle matrix A.
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3.2 Algorithm

Given an I × J × K binary data array D1, an I × L binary data matrix D2 and a rank P , the

CHIC algorithm goes through two consecutive phases. In the first phase the bundle matrices A,

B1, C and B2 are estimated such as to minimize loss function (7). In the second phase the bundle

matrices are adjusted such as to represent the equivalence and hierarchical relations; this can be

done without altering the loss function.

First phase. To estimate the optimal bundle matrices A, B1, C and B2, a simulated annealing

(SA) algorithm is used (for a general introduction of SA, see Aarts & Lenstra, 1997). SA is a local

search technique that implies a walk through the solution space. The general principle is as

follows: Starting from an initial configuration and an initial temperature, a chain of solutions is

generated, consisting of a number of subchains. In particular, a subchain is generated by repeating

the following procedure until a prespecified subchain stop criterion is satisfied: A new solution is

generated from the current solution, with the first current solution of each subchain being the last

accepted solution of the previous subchain. If this new solution, in comparison with the current

solution, leads to an improvement of the loss function f , this new solution is accepted, which implies

that the current solution is replaced by this new solution. To escape from local minima worse new

solutions are accepted with a probability that depends on the relative quality of the new solution

(i.e., the difference in loss function value f between the current solution and the new solution) and

the current temperature. At the end of each subchain the temperature is decreased. Subchains are

generated until a prespecified chain stop criterion is met. Finally, the best encountered solution is

retained.

In the CHIC algorithm, a SA chain is implemented as follows: First, an initial configuration is

generated by replacing the columns of the bundle matrices A, B1, C and B2 by randomly chosen

object, attribute, source and covariate data vectors, respectively. Second, the initial temperature

is obtained by running a subchain of solutions and accepting all solutions, and by subsequently
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dividing the average increase in the loss function f across those links in which worse solutions are

accepted, by ln(0.8):

Tinitial =
Average loss function increase of the worse solutions

ln(0.8)
, (8)

Third, a new solution is obtained from the current solution by changing the value of one randomly

chosen parameter, with each parameter of the CHIC model having an equal probability of being

changed. Fourth, a new worse solution is accepted if:

p < exp((fcurrent − fnew)/Tcurrent). (9)

where p is a number generated from a uniform(0,1) distribution, Tcurrent is the current temperature

and fcurrent and fnew are the loss function values of the current and the new solution, respectively.

Fifth, a subchain stops (1) if a maximum number of ((I + J + K + L) × 2P ) × 5 solutions have

been generated, or (2) if 10% of this maximum number have been accepted. Sixth, at the end of

each subchain the temperature is decreased as follows:

Tcurrent = 0.9× Tcurrent. (10)

Seven, a SA chain stops when (1) the current temperature becomes smaller than 0.000001 or (2) for

the last five subchains there is no change in the loss function value f of the last accepted solution

in each subchain.

Second phase. In the second phase, the bundle matrices obtained at the end of the first phase

are transformed so as to represent the equivalence and hierarchical relations in M1 and M2. This

is accomplished by performing a closure operation (Barbut & Monjardet, 1970; Birkhoff, 1940).

More in particular, each 0-entry in A, B1, C and B2 is changed to 1 iff this modification does not

alter M1 and M2.
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4 Simulation study

4.1 Problem

In this section a simulation study is presented to evaluate the performance of the CHIC algorithm.

Two aspects of the algorithm are of main interest: (1) goodness-of-fit, and (2) goodness-of-recovery

of the true association, equivalence and hierarchical relations. With respect to the second aspect,

the primary interest lies in the common mode, with focus on the performance of the integrated

modeling strategy relative to the segmented one. To clarify this, three types of binary I × J ×K

and I × L array-matrix couples must be distinguished: (1) the true array-matrix couple (T1,T2)

that can be represented by a CHIC model of rank P , (2) the data array-matrix couple (D1,D2)

that is obtained by adding noise to (T1,T2), and (3) the model array-matrix couple (M1,M2) that

is obtained by applying the CHIC algorithm to the data array-matrix couple (D1,D2) and that

can be represented by a CHIC model of rank P .

Goodness-of -fit. To address the question whether the CHIC algorithm succeeds in finding the

global optimum of the loss function (7), the data (D1,D2) are compared to the model (M1,M2) as

obtained from the algorithm. To this end, a badness-of-fit-statistic, denoted as BOF , is used that

is defined as the proportion of discrepancies between (D1,D2) and (M1,M2). Because (T1,T2),

like (M1,M2), can be represented by a CHIC model of rank P , the proportion of discrepancies

between (T1,T2) and (D1,D2) (denoted as badness-of-data, or BOD) can be considered an upper

bound for the BOF of the global optimum in rank P . Therefore, BOF exceeding BOD implies

that the algorithm ended in a suboptimal solution. This, however, does not mean that BOD

exceeding BOF implies that the algorithm found the global optimum, since there may exist a

couple (M∗1,M∗2) that is closer to (D1,D2) than (M1,M2) is to (D1,D2). Note that when no

error is added to (T1,T2), and, hence, (D1,D2) equals (T1,T2), BOD, which then equals zero,

cannot exceed BOF . Moreover, in this case, unlike in the case in which error is added, the global
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optimum is known and equals the CHIC model that represents (T1,T2). As a consequence, for

data sets without error, BOF also denotes the degree to which (M1,M2) differs from the global

optimum, whereas in general BOF only measures the degree to which (M1,M2) differs from

(D1,D2). This implies that BOF -values for data sets with error cannot be readily compared with

their counterparts for errorfree data sets.

Goodness-of -recovery. Studying the goodness-of-recovery implies the question to what extent

the data-analytic procedure is capable of uncovering the truth underlying the data. With respect

to this truth, a distinction has to be drawn between the true reconstructed data entries (i.e., the

true array-matrix couple) and the true parameters (i.e., the true bundle matrices) underlying the

data. The former is studied by comparing the entries of the obtained model array-matrix couple

(M1,M2) to the entries of the true array-matrix couple (T1,T2), while the latter is examined

by comparing the obtained model parameters to the true parameters in terms of the implied

equivalence and hierarchical relations. With respect to the latter two relations, the question

may be raised whether the structure of the common mode is better recovered than the structure

underlying the non-common modes. Special attention is further to be paid to the question which

data-analytic strategy, the integrated or the segmented one, is superior in revealing the underlying

truth. Note that this last question can be studied with respect to all three relations.

In the remainder, first, in Subsection 4.2, the design of the simulation study is outlined. Next,

the simulation results are presented in Subsection 4.3, drawing a distinction between goodness-of-

fit (4.3.1) and goodness-of-recovery of the true association, equivalence and hierarchical relations,

with special attention to the recovery of the structure of the common mode (4.3.2).

4.2 Design and procedure

Four factors were systematically manipulated in a completely randomized four-factorial design, all

factors considered random:
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(a) the Array/total ratio, r, of the size of T1 (D1,M1) to the total size T1+T2 (D1+D2,M1+M2,

respectively):

r =
I × J ×K

(I × J ×K) + (I × L)
. (11)

This factor was manipulated at four levels: .50, .90, .95, .99. Note that the absolute size of

T1 (D1,M1) was kept constant at the level of 27000 entries;

(b) the Dominance, d, of the common mode over the other modes of T1 (D1,M1), defined as the

ratio between the size of the common mode and the overall number of entries in T1 (D1,M1).

This factor was manipulated at three levels: .0019, .0011, .0007. Taking into account that the

size of T1 (D1,M1) was kept constant at 27000 entries, this implies that the size I × J ×K

of T1 (D1,M1) was manipulated at three levels: 50× 20× 27, 30× 30× 30, 20× 50× 27;

(c) the True rank, P , of the CHIC model for (T1,T2), manipulated at three levels: 3, 4, 5;

(d) the Error level, ε, defined as the expected proportion of cells of (D1,D2) differing from the

corresponding cells of (T1,T2):

ε = E




I∑
i=1

J∑
j=1

K∑
k=1

(t1ijk − d1
ijk)2 +

I∑
i=1

L∑
l=1

(t2il − d2
il)

2

IJK + IL


 . (12)

This factor was manipulated at four levels: .00, .10, .20, .30.

For each combination of an Array/total ratio, r, a Dominance, d, a True rank, P , and an Error

level, ε, bundle matrices A, B1, C and B2 were constructed by independently drawing entries from

a Bernoulli distribution with parameter value .50, under the constraint that all bundle-specific

classes (i.e., elements belonging to one bundle only) were non-empty. The constraint was imposed

to ensure that the true array-matrix couple (T1,T2), obtained by combining the true matrices A,

B1, C and B2 by the INDCLAS and the HICLAS decomposition rules (3) and (4), could not be

perfectly represented by a CHIC model of a lower rank than the true rank. Further, for each true
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array-matrix couple (T1,T2), a data array-matrix couple (D1,D2) was constructed by changing

the value in each cell of (T1,T2) with a probability ε. The whole data generation procedure was

repeated five times to obtain five replications per cell. As a consequence, 5 (replications) × 4

(Array/total ratio) × 3 (Dominance) × 3 (True rank) × 4 (Error level) = 720 different array-

matrix couples (T1,T2) and (D1,D2) were obtained. Subsequently, one CHIC analysis (with 10

SA-chains) in the true rank P was performed on each data array-matrix couple (D1,D2). In

addition, in order to compare the integrated to the segmented modeling strategy in terms of the

recovery of the true structure underlying the common mode, each data array D1 was subjected to

one INDCLAS analysis and each data matrix D2 to one HICLAS analysis, both in the true rank

P . Note that these additional analyses were performed by using the CHIC algorithm (with 10

SA-chains) in which the loss function was replaced by the INDCLAS and HICLAS loss function,

respectively.

4.3 Results

4.3.1 Goodness-of-fit

To evaluate the degree to which the CHIC algorithm succeeds in minimizing loss function (7), the

following badness-of -fit-statistic (BOF ), taking values between 0 (i.e., perfect fit) and 1 (i.e., no

fit at all), was used:

BOF = f(M1,M2) =

I∑
i=1

J∑
j=1

K∑
k=1

(d1
ijk −m1

ijk)2 +
I∑

i=1

L∑
l=1

(d2
il −m2

il)
2

IJK + IL
. (13)

Further, also the BOF −BOD-statistic was computed. Note that a negative BOF −BOD implies

that the algorithm overfits the data.

The mean BOF−BOD value across all observations equals −0.0014 (with a standard deviation

of 0.0051), implying that, on average, the CHIC algorithm slightly overfits the data. Out of the

720 analyses, 712 (98.99%) result in a solution with a BOF value smaller than or equal to the
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BOD value and 239 analyses result in a BOF − BOD value equal to 0, implying that in only

1% of the analyses it is sure that the CHIC algorithm ends in a suboptimal solution. An analysis

of variance with BOF as dependent variable shows that almost all variance in BOF is explained

by the main effect of Error level (ρ̂I = .99), with fit increasing when the Error level decreases.

From the study of BOF − BOD-statistics, calculated for the separate INDCLAS and HICLAS

parts of the CHIC model, it appears that the CHIC algorithm in a large number of cases (i.e.,

480 out of 720) overfits the HICLAS part of the model to a small degree, while in almost all cases

the INDCLAS part is neither underfitted nor overfitted. Note that these findings are in line with

earlier simulation results for the INDCLAS (see Leenen et al., 1999) and HICLAS models (see

Leenen & Van Mechelen, 2001).

4.3.2 Goodness-of-recovery

When evaluating the extent to which the CHIC algorithm is capable of uncovering the true struc-

ture underlying the data, one has to differentiate between reconstructing (1) the true association

relation, and (2) the true equivalence and hierarchical relations. Further attention is to be paid to

the recovery of the structure of the common mode in comparison with the other modes. Finally,

the integrated modeling strategy is to be compared to the segmented one.

Association relation. To evaluate the recovery of the true association relation of the CHIC

model, the following goodness-of -recovery-statistic (GOR) was computed:

GOR = 1−

I∑
i=1

J∑
j=1

K∑
k=1

(t1ijk −m1
ijk)2 +

I∑
i=1

L∑
l=1

(t2il −m2
il)

2

IJK + IL
. (14)

This statistic yields a value between 1 (i.e., perfect recovery) and 0 (i.e., no recovery at all).

The mean GOR across all observations equals 0.9928 (the standard deviation equals 0.0155),

which means that the model array-matrix couple (M1,M2) differs on average 0.72% from the true

array-matrix couple (T1,T2). The association relation is perfectly recovered in 221 analyses. Note
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that perfect recovery is only possible for these data sets in which BOF equals BOD (i.e., 239 out of

720; see Goodness-of -fit). An analysis of variance with GOR as the dependent variable (in which

only effects with ρ̂I ≥ .10 are considered) shows that recovery increases when the Array/total

ratio increases (ρ̂I = .17) and the Error level decreases (ρ̂I = .12). Both main effects, however,

are qualified by a strong Array/total ratio-Error level interaction (ρ̂I = .45): The increase in

recovery with increasing Array/total ratio is more pronounced for large Error levels than for small

Error levels, while in the errorfree conditions recovery decreases with increasing Array/total ratio.

The main effects of True rank and Dominance can be neglected (ρ̂I ≤ .02). Studying GOR for

the INDCLAS and the HICLAS parts of the CHIC model separately further shows that the true

INDCLAS association relation is far better recovered than the true HICLAS association relation.

Equivalence and hierarchical relation. To quantify the degree to which the equivalence re-

lation is recovered, the corrected Rand index (Hubert & Arabie, 1985) between the partition of

the set of objects (resp., attributes, sources, covariates) in the CHIC model for (T1,T2) and its

counterpart in the CHIC model for (M1,M2) was computed (CRI). This index takes a value

between 1 (indicating that both partitions are identical) and 0 (indicating that both partitions

do not correspond more than expected by chance). The performance of the CHIC algorithm with

respect to the recovery of the true hierarchical relation, was measured by computing the object

hierarchy matrix associated with (M1,M2) (respectively (T1,T2)), defined as the I × I binary

matrix U(M1,M2) (resp. U(T1,T2)) with u
(M1,M2)

ii′ = 1 (resp. u
(T1,T2)

ii′ = 1) iff object i is hierarchi-

cally below object i′ in (M1,M2) (respectively (T1,T2)); subsequently, a goodness-of -hierarchy

recovery-statistic (GOHR) was calculated for the objects, defined as the proportion of concordan-

cies between U(M1,M2) and U(T1,T2):

GOHR = 1−

I∑
i=1

I∑
i′=1

(
u

(M1,M2)

ii′ − u
(T1,T2)

ii′

)2

I2
. (15)

GOHR yields a value between 1 (i.e., perfect recovery) and 0 (i.e., no recovery at all). Similarly,
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a GOHR-statistic for the attributes, sources and covariates was computed. Finally, a combined

CRI-statistic (cCRI) and a combined GOHR-statistic (cGOHR) were computed by, respectively,

averaging the CRI and GOHR for the object, attribute, source and covariate equivalence and

hierarchical relation, weighted by the number of elements in the respective modes.

The mean cCRI equals 0.8317 (standard deviation of 0.2061) and the mean cGOHR equals

0.9556 (standard deviation of 0.0585), implying a very good recovery of the true equivalence and

hierarchical relations. The true equivalence relation is recovered perfectly in 229 analyses, while

221 analyses resulted in perfect recovery of the true hierarchical relation. Note again that perfect

recovery is only possible in 239 analyses. Separate analyses of variance with cCRI and cGOHR

as dependent variables show similar results: The recovery of the true equivalence and hierarchical

relations increases when the Error level decreases (ρ̂I = .36), when the Array/total ratio increases

(ρ̂I = .18) and when the Dominance of the common bundle matrix increases (ρ̂I = .09), the

main effect of True rank being very small (ρ̂I = .02). The main effects of Error level and Ar-

ray/total ratio, however, are qualified by an Error level by Array/total ratio interaction (ρ̂I = .22):

The increase in recovery when the Array/total ratio increases is more pronounced for large Error

levels than for small Error levels, while in conditions without error recovery decreases when the

Array/total ratio increases.

The common mode. When comparing the recovery of the common bundle matrix (in terms of

the implied equivalence and hierarchical relations) to the recovery of the other bundle matrices, it

appears that, on average, the structure of the common mode is better recovered than the structure

of the other modes (see Table 4 in which the mean CRI and GOHR for A, B1, C and B2 are

displayed). As an aside, one may note the poor recovery of the structure of the non-common mode

of D2 that can be attributed to the overfitting of the HICLAS part of the CHIC model by the

CHIC algorithm.

To evaluate the performance of the integrated modeling strategy relative to the segmented one,
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the recovery of the true association (GOR), equivalence (CRI) and hierarchical relations (GOHR)

for the CHIC model is compared to the recovery of these relations for separate INDCLAS and

HICLAS models, as obtained from a segmented modeling strategy. In Table 5 mean recovery

values are presented both for the CHIC model and for separate INDCLAS and HICLAS models.

It appears that the integrated modeling strategy outperforms the segmented one: When using the

integrated strategy the recovery of all three relations is increased. Note that using the integrated

modeling strategy leads to a better recovery of the structure of both the common and the non-

common modes.

5 Illustrative application

In this section, the CHIC model is applied to a coupled data set, gathered by Vansteelandt and

Van Mechelen (1998), in a study from the domain of contextualized personality psychology. Within

this domain one tries to capture individual differences beyond differences in general dispositions

(e.g., traits). A key concept in this regard is that of a behavioral signature, which is the profile

across situations of the extent to which a specific behavior is displayed in each situation. A major

challenge is to capture the structure of individual differences in behavioral signatures, and to relate

this structure to individual differences in dispositional variables that reflect cognitive-affective

processes underlying the signatures in question. In their study, Vansteelandt and Van Mechelen

(1998) asked 54 persons to indicate on a 3-point scale the degree to which they would display 15

hostile behaviors in each of 23 frustrating situations (0=you would not display this behavior in this

situation, 1=to a limited extent, 2=to a strong extent). Further, they asked the same persons to

rate themselves on 7 dispositional process variables making use of a 7-point scale (1=not applicable

at all, 7=applicable to a strong extent). The 54 × 15 × 23 person by behavior by situation data

array D1 was dichotomized by recoding scores of 1 and 2 to 1 and 0 to 0, while the 54 × 7 person
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by dispositional variable data matrix D2 was dichotomized by performing a median split on each

variable (with a score on and above the median being recoded to 1 and a score under the median

to 0).

CHIC analyses in rank one to six (with 1000 SA-chains for each rank) were performed on

the dichotomized data (D1,D2). Based on a scree plot of the number of discrepancies between

(D1,D2) and (M1,M2), rank three was retained. The CHIC algorithm, however, yielded a large

number of optimal solutions in this rank. When comparing these solutions to each other, it

appeared that almost all differences pertained to the dispositional variables. More in particular,

these solutions included identical bundle matrices for the situations and responses, and almost

identical bundle matrices for the persons; with regard to the dispositional variables, however,

considerable differences showed up. This implies that the structure for the person by behavior by

situation data array is univocal, while a large amount of uncertainty exists about (at least part of)

the structure for the person by dispositional variable data matrix. To handle this problem, only

dispositional variables will further be taken into account that belong to the same class across all

different optimal solutions, as shown in Figure 4, which displays the overall graphical representation

of the retained CHIC model for the hostility data. Note that in this figure the situations and the

responses are represented by their respective classes, with the number of situations and responses

belonging to each class denoted between parentheses.

Clearly, the three situation classes form a Guttman scale; as such, they can be conceived as

points on an underlying quantitative dimension (Gati & Tversky, 1982). This dimension can be

interpreted as a frustration dimension, varying from lowly frustrating (e.g., accidently banging your

shins against a park bench), over moderately frustrating (e.g., talking to someone who does not

answer you) to highly frustrating (e.g., being unfairly accused of cheating). With respect to the

responses, five classes can be distinguished, varying from weak (e.g., grimace and turning away)

to strong responses (e.g., enragement). With regard to the persons, almost all of them belong
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to one of three person types P1, P2 and P3 (that contain respectively 22, 13, and 43 % of the

persons); therefore, only these three person types will be further discussed and displayed in Figure

4. From Figure 4 one may derive that all three person types do not display hostile behaviors in

lowly frustrating situations. Further, persons belonging to P1 differ from persons belonging to

P2 and P3 in that the former react only to highly frustrating situations in terms of tension and

enragement, while the latter display hostile behaviors in both moderately and highly frustrating

situations. The latter two person types, however, differ from one another in that persons belonging

to P3, unlike those belonging to P2, differentiate in terms of their behaviors between moderately

and highly frustrating situations, with enragement being displayed by them in highly frustrating

situations only. These differences in behavioral signatures can, at least in part, be explained by

individual differences in dispositions. For example, Persons from P1 and P3 differ from persons

from P2 in that the former, unlike the latter, find it important to react to frustration in an assertive

way. In this way standing for one’s rights may be a source of enragement.

6 Concluding remarks

In this paper the CHIC model, a global model for an integrated analysis of coupled data, has

been proposed. More in particular, CHIC can be used to simultaneously model a binary three-

way three-mode data array and a binary two-way two-mode data matrix that have one mode in

common. This type of data is often encountered in psychology, for example, when subjects rate a

set of objects with respect to a set of attributes and when at the same time the same objects are

characterized in terms of objective features or when dispositional information is available about the

raters. In the context of psychiatric diagnoses, for example, psychiatrists may be asked to rate a set

of patient vignettes on a list of symptoms, while at the same time information on the psychiatric

diagnoses of the patients under study (in terms of a list of syndromes) is available. In this paper
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the gain of CHIC as an integrated modeling strategy, as compared to a segmented one, has been

demonstrated by means of a simulation study and by means of an illustrative application. More in

particular, the results of our simulation study revealed that the CHIC algorithm succeeds well in

minimizing the CHIC loss function. Further, it was shown that the true structure underlying the

different modes is recovered well, with the structure of the common mode being recovered best.

Moreover, the integrated modeling strategy was shown to outperform a segmented one in terms of

(1) the recovery of the true association relation of the separate INDCLAS and HICLAS parts of

the CHIC model, and of (2) the recovery of the true equivalence and hierarchical relation of the

common as well as the non-common modes. In the illustrative application, it has been shown that

an integrated modeling strategy may lead to a deeper insight into a phenomenon under study in

terms of how its different parts are connected to one another. More in particular, in the application

the CHIC model revealed how the structure of individual differences in situation-specific hostile

behavior relates to individual differences in process-based dispositional variables.

The proposed CHIC model is a novel model, but it bears interesting relationships to several

existing models both inside and outside the hierarchical classes family. Inside the hierarchical

classes family, the CHIC model can be conceived as an integrated model that includes two members

of this family as component models (viz., the INDCLAS and the HICLAS model). On the other

hand, the CHIC model can also be considered a hierarchical classes counterpart of an integrated

multiway covariate regression model consisting of a CANDECOMP/PARAFAC submodel for a

three-way three-mode (real-valued) data array and a PCA submodel for a two-way two-mode

(real-valued) data matrix, with the two data blocks having one mode in common (see Smilde

& Kiers, 1999) 1. In both models a three-mode/two-mode coupled data structure (D1,D2) is

1Note that a distinction can be drawn between two variants of the multiway covariate regression model: A

symmetric variant in which both data blocks play an identical role, and an asymmetric variant in which the three-

way data block is being considered a predictor block and the two-way block a block of criterion variables, with the

CHIC model being closer related to the former variant.
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represented by a coupled model structure (M1,M2) where: (1) each mode of (M1,M2) is reduced

to a limited number of components, with the common mode having the same component scores

in each submodel, and (2) (M1,M2) can be fully reconstructed on the basis of the different sets

of component scores and a linking rule. Both models, however, differ in the following aspects:

(1) the CHIC model includes binary component matrices, and as such implies a categorical rather

than a dimensional reduction of the modes involved in the data; (2) the CHIC model is based

on a Boolean decomposition of (M1,M2), while the multiway covariate regression model is based

on a standard real-valued decomposition; and (3) in the CHIC model the component matrices

are restricted to represent the quasi-order relations ≤ between the elements of the corresponding

modes of (M1,M2).

Finally, the CHIC model, as proposed in the present paper, can be extended in various ways. In

this regard, one may first note that the INDCLAS-model, which is included in CHIC to represent

the binary three-way three-mode data block, is a rather restrictive model, because (1) each mode is

reduced to the same number of bundles, and (2) the linking structure among the object, attribute

and source bundles is restricted to a one-to-one correspondence. From a substantive point of view,

indeed, in several cases there may be no a priori reason for the object, attribute and source bundle

matrices to have the same rank, let alone for a one-to-one correspondence among the respective

bundles. As a way out, the CHIC model may be extended to a global model in which the three-way

three-mode binary data block is represented by a more general (i.e., less restrictive) model than

INDCLAS, like, for example, the TUCKER3-HICLAS (Ceulemans et al., 2003) or the TUCKER2-

HICLAS model (Ceulemans & Van Mechelen, 2004). The latter two models can be considered

generalizations of the INDCLAS-model in that the relation between the different bundle matrices

is allowed to be more complex than a one-to-one correspondence and in that the numbers of bundles

for the different modes are allowed to differ. With regard to a second possible generalization one

may note that in its present form CHIC is a model for binary data. In psychology, however, often
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rating-valued data show up (e.g., as obtained from ratings on Likert-scales). The CHIC model

could be extended to accommodate such data, by making use of HICLAS models for rating-valued

data that have been developed recently (see Van Mechelen, Lombardi, & Ceulemans, in press).

Otherwise CHIC extensions could also be developed to accommodate coupled data sets in which

one data block is binary and the other one rating-valued.
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Table 1: Hypothetical three-way three-mode model matrix M1

Source 1 Source 2 Source 3
Attributes Attributes Attributes

Objects A1 A2 A3 A4 A5 Objects A1 A2 A3 A4 A5 Objects A1 A2 A3 A4 A5

O1 1 1 1 1 1 O1 1 1 0 1 1 O1 1 1 1 1 1
O2 1 1 1 1 1 O2 1 1 0 1 1 O2 1 1 1 1 1
O3 0 0 0 0 0 O3 1 0 0 0 0 O3 1 0 0 0 0
O4 1 1 0 1 1 O4 1 1 0 1 1 O4 1 1 0 1 1
O5 0 0 1 1 0 O5 0 0 0 0 0 O5 0 0 1 1 0
O6 1 1 1 1 1 O6 1 1 0 1 1 O6 1 1 1 1 1
O7 0 0 1 1 0 O7 1 0 0 0 0 O7 1 0 1 1 0
O8 1 1 0 1 1 O8 1 1 0 1 1 O8 1 1 0 1 1

Table 2: Hypothetical two-way two-mode model matrix M2

Covariates
Objects C1 C2 C3 C4 C5 C6 C7 C8

O1 1 1 1 1 0 1 1 1
O2 1 1 1 1 0 1 1 1
O3 0 1 0 0 1 0 1 1
O4 0 0 1 1 0 0 1 1
O5 1 1 1 0 0 1 0 1
O6 1 1 1 1 1 1 1 1
O7 1 1 1 0 1 1 1 1
O8 0 1 1 1 1 0 1 1

Table 3: CHIC model in rank 3 for the model matrices M1 and M2 in Table 1 and Table 2

A B1 C B2

OB1 OB2 OB3 AB1 AB2 AB3 SB1 SB2 SB3 CB1 CB2 CB3

O1 1 1 0 A1 0 1 1 S1 1 1 0 C1 1 0 0
O2 1 1 0 A2 0 1 0 S2 0 1 1 C2 1 0 1
O3 0 0 1 A3 1 0 0 S3 1 1 1 C3 1 1 0
O4 0 1 0 A4 1 1 0 C4 0 1 0
O5 1 0 0 A5 0 1 0 C5 0 0 1
O6 1 1 1 C6 1 0 0
O7 1 0 1 C7 0 1 1
O8 0 1 1 C8 1 1 1

29



Table 4: mean CRI and GOHR value for A, B1, C and B2

CRI GOHR
A 0.9973 0.9993
B1 0.9932 0.9983
C 0.9945 0.9987
B2 0.6612 0.9122

Table 5: Mean GOR, CRI and GOHR for the CHIC model and separate INDCLAS and HICLAS
models

CHIC separate
GOR INDCLAS 0.9996 0.9992

HICLAS 0.9593 0.9135
CRI AIND 0.9973 0.9896

B1 0.9932 0.9895
C 0.9945 0.9877

AHI 0.9973 0.6945
B2 0.6612 0.5925

GOHR AIND 0.9993 0.9972
B1 0.9983 0.9971
C 0.9987 0.9972

AHI 0.9993 0.9108
B2 0.9122 0.8892
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Figure 1: Overall graphical representation of the CHIC model in Table 3.
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Figure 3: Source hierarchy of the CHIC model in Table 3.
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Figure 4: Overall graphical representation of the CHIC model for the hostility data.
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