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FITTING THE RATCLIFF DIFFUSION MODEL 

Abstract 

Many experiments in psychology yield both reaction time and accuracy 

data. However, no off-the-shelf methods yet exist for the statistical analysis of 

such data. One particularly successful model has been the diffusion process, 

but using it is difficult in practice because ad-hoc statistical methods and 

custom-written software are needed to process specific data sets. We present a 

general method for performing diffusion model analyses on experimental data. 

By implementing design matrices, a wide range of across-condition 

restrictions can be imposed on model parameters, in a flexible way. It becomes 

possible to fit models with parameters regressed onto predictors. We present 

an easy-to-use software tool that helps perform diffusion model analyses. The 

algorithm makes use of several techniques that boost its efficiency, some of 

which we briefly discuss. 
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Introduction 

Mental chronometry, the study of psychological processes through 

observed response times, is one of the most prevalent approaches in cognitive 

psychology. As early as 1868, Donders (1868/1968) used reaction time 

measurements in order to investigate differences between mental processes. 

Since then, reaction time studies have been used in perhaps all fields of 

cognitive science. Such is the importance of reaction time data to cognitive 

psychology that methods for analyzing them have become an object of study 

in their own right (e.g., Luce, 1986; Townsend, 1990). 

Continuing this trend, considerable attention has been lent to the 

combination of reaction time and accuracy data (a ubiquitous combination 

often referred to as two-choice response time data). For the analysis of this 

type of data, several nonlinear statistical models have been developed, often 

with substantive interpretations attached to the parameters and underlying 

processes (e.g., the discrete random walk model; Laming, 1968; Link & 

Heath, 1975). A more advanced model – and the one that is at the heart of the 

present article – is the Ratcliff Diffusion Model (Ratcliff, 1978, 1981, 1985, 

1987, 1988). The latter model, which will be described in detail in the next 

section, has performed remarkably well in the analysis of two-choice response 

time data. It has successfully been applied to experiments in many different 

fields, such as memory (Ratcliff, 1978, 1988), letter matching (Ratcliff, 1981), 

lexical decision (Ratcliff, Gomez, & McKoon, 2004), signal detection (Ratcliff 
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& Rouder, 1998; Ratcliff, Thapar, & McKoon, 2001; Ratcliff, Van Zandt, & 

McKoon, 1999), visual search (Strayer & Kramer, 1994), and perceptual 

judgment (Ratcliff, 2002; Ratcliff & Rouder, 2000; Thapar, Ratcliff, & 

McKoon, 2003). In particular, the Ratcliff Diffusion Model (RDM) succeeds 

in explaining characteristic aspects of two-choice response time data such as 

the occurrence of both fast and slow errors. 

In spite of its advantages, the Ratcliff Diffusion Model has not yet 

become a popular or widely used method to analyze the numerous two-choice 

response time data. The reasons for this lack of dispersion have to do with 

numerical, statistical, and software issues. A first set of reasons concerns the 

fact that the model is prohibitively difficult to implement for applied 

researchers because of numerical difficulties. One has to deal with an infinite 

oscillating series in the expression for the cumulative distribution function 

(CDF) or probability density function (PDF; see Ratcliff & Tuerlinckx, 2002). 

Recently, Voss and Voss (2007) have proposed a method to circumvent the 

problem but their solution relies on the numerical solution of a partial 

differential equation. In addition, some of the parameters are allowed to vary 

from trial to trial and this leads to (partly) intractable integrals (Tuerlinckx & 

Ratcliff, 2002; Tuerlinckx, 2004). Once the CDF or PDF have been computed, 

the task of estimating the parameters requires some skill in the area of function 

optimization. In sum, some experience with numerical methods is needed to 

implement the model. 
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A second group of reasons that forestalled widespread use of the RDM 

is related to statistical issues. The type of data used to fit the diffusion model is 

rather complex. On each trial, there is a bivariate response, consisting of a 

reaction time and a choice. The latter is binary and the former is continuous, 

but non-normal (skewed and with a lower boundary possibly different from 

zero). The treatment of such data is not a trivial issue and traditional statistical 

methods suited for linear analysis (e.g., relying on means, computing R2, etc.) 

fail. In addition, the reaction time measure is possibly cursed with outliers and 

contaminants. 

The third category of reasons has to do with the fact that at the time of 

writing, there is no flexible or general software available for diffusion model 

analysis. In each of the studies cited above, fitting software was custom-

written. However, researchers often collect data in a design that deviates from 

designs for which the previously developed software was written.    

It is the goal of the current paper to make diffusion model analysis 

accessible to a more general public of researchers. To this end, we provide 

some general methods for fitting the Ratcliff Diffusion Model and other data-

analytical strategies useful in the same practical context. Also, we provide 

some demonstration of a MATLAB tool that implements the methods we 

present (the Diffusion Model Analysis Toolbox; Vandekerckhove & 

Tuerlinckx, 2007a). For an introduction to the practical side of working with 

“DMAT”, however, we refer the interested reader to the DMAT primer 

(Vandekerckhove & Tuerlinckx, 2007b). 
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In what follows, we start with a brief explanation of the Ratcliff 

Diffusion Model. Next, we outline a design matrix method that permits to 

impose substantive restrictions on the model's parameters. This very flexible 

technique facilitates fitting of the RDM and allows for the construction of 

models that can capture a variety of substantive hypotheses. 

Next, we will discuss techniques related to the estimation of the 

parameters of the RDM (i.e., the construction and minimization of the loss 

function, and the handling of outliers). We then briefly introduce our diffusion 

model analysis toolbox for MATLAB ("DMAT"). 

Then we will show which statistical methods are needed for testing 

substantive hypotheses and comparing different models. We present results 

from simulation studies where properties of these statistical methods are 

investigated. 

Finally, we demonstrate the use of our methods and software in two 

example applications. 

The Ratcliff Diffusion Model 

Parameters of the model 

The diffusion process (see Figure 1) has been used to describe and 

model the decision component in simple two-choice tasks. In the model, it is 

assumed that an observer has a one-dimensional internal representation of 

evidence, where the two choice options reside at the extremes. When the 

observer is presented with a stimulus, information regarding it is accumulated 
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sequentially over time until its total amount reaches the upper or lower bound, 

resulting in a response (absorbing boundaries). The decision time is defined as 

the time from the start of the process until the moment one of the absorbing 

boundaries is reached. 

 

* Figure 1 about here * 

 

The RDM has seven parameters. The first parameter is the boundary 

separation, denoted by a. If a is small, the process is expected to end sooner 

but it is more prone to error since random variability inherent to the decision 

process may cause it to end up at the wrong boundary. When a is high, both 

accuracy and expected reaction time will increase. The distance between the 

two absorbing boundaries therefore regulates the relation between speed and 

accuracy (the so-called speed-accuracy trade-off). 

A second property of the model is the starting point of the information 

accumulation process, which is denoted as z0 ( 00 z a< < ). This parameter 

introduces the possibility of response bias in the decision process because the 

process is more likely to end at the boundary closer to the starting point. We 

will assume z0 to vary from trial to trial (Laming, 1968), according to a 

uniform distribution, with mean z ( 0 z a< < ) and range  

( ). These two, z and s

zs

0 min( , )zs z a< < − z z, are the second and third 

parameters of the RDM. 
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Furthermore, the information accumulation process can have a 

tendency to drift off to one of the two absorbing boundaries, depending on the 

quality of the stimulus presented. This information accumulation rate, or drift 

rate, is assumed to vary within a trial, following a Gaussian distribution with 

mean  and standard deviation s, but also across trials (Ratcliff, 1978), such 

that  follows a Gaussian distribution with mean v and standard deviation η. 

An experimental condition with non-ambiguous stimuli will lead to a large 

positive mean drift rate v, thus a high probability of hitting the upper boundary 

(indicating a correct response) in a short time. The standard deviation s, which 

indicates the volatility in drift rate in a single trial, is a non-identified 

parameter in the model, so we fix it to the arbitrary value 0.1 (which is a 

consensus value in the literature, e.g., Ratcliff et al., 1999). Thus, with s being 

and ξ  a random variable, we add a fourth and fifth parameter to the model, 

namely the mean drift rate v and its intertrial standard deviation η. 

ξ

ξ

Finally, another component of the model is the time needed to perform 

non-decision processes such as encoding of the stimulus, response preparation 

and execution of the motor response (Luce, 1986). We denote the non-decision 

part of the observed reaction time as . This  is assumed to vary from trial 

to trial, according to a uniform distribution with mean  and range . These 

two are the sixth and seventh parameters of the RDM. 

ert ert

erT ts
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Some notational conventions 

In the preceding section, we have defined the seven key parameters of 

the diffusion model. In the remainder of the article, we will repeatedly capture 

all of these parameters in a parameter vector 

, where the bracketed subscript ( )  

refers to the c

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( , ,η , , , ,z tc c er c c c c c ca T z s s v=θ )
C

c

th condition in an experiment, and 1, ,c = . When working 

with different conditions in an experiment (and thus different parameter 

vectors), we will vertically concatenate the parameter vectors into a parameter 

matrix P . Thus, if we have C conditions, 

. A single column in 

such a parameter matrix then contains estimates of one specific parameter over 

conditions, and such a column vector will be denoted with a ψ . For example, 

the nondecision time in condition c will be denoted as , which is the c

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 1 1 1 1 1 1η

, , , , , ,
η

er z t

er z tC C C C C C C

a T z s s v

a T z s s v

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

P

( )er cT th 

element of  (the second column of ), and the second element of  (the 

c

erTψ P ( )cθ

th row of ). Figure 2 provides a graphical presentation of these matrices. P

 

* Figure 2 about here * 

 

 8



FITTING THE RATCLIFF DIFFUSION MODEL 

The design matrix method 

There are several reasons why a researcher might not be interested in 

fitting a model with all parameters free, as depicted in Figure 2. First, there is 

the issue of parsimony. Fitting the Ratcliff Diffusion Model to an experiment 

with C conditions would leave us with 7 C×  distinct parameters to estimate. 

Even if the number of conditions is moderate, for example C = 5, this leads to 

a large number of parameters to be estimated (i.c., 35 parameters to be 

estimated). Therefore, it seems that some reduction in the number of 

parameters is needed from a pragmatic point of view.  

Secondly, and more importantly, in many situations one may want to 

impose substantive restrictions on the parameters, which will in effect lead to a 

reduction in the number of parameters. An obvious example of such a 

restriction is the requirement that a certain parameter equals a known constant. 

For example, it can be hypothesized that the range of nondecision time, st, 

equals zero for all conditions ( ( ) 0t cs =  for 1, ,c C= ). In this way, st has been 

dropped from the model (below it will be shown how it can be evaluated 

whether this restriction makes sense). Another popular substantive restriction 

in the context of the diffusion model is the requirement of a symmetric 

diffusion process (z(c) = a(c)/2 for 1, ,c C= ). 

However, we can go a step further by carrying out a regression of the 

parameters onto a set of predictors. To explain this concept, assume that a 

researcher has set up a brightness discrimination task (Ratcliff & Rouder, 
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1998; see also Example 2 in this paper). Suppose furthermore that there are 33 

levels of brightness defined by increasing the number of white pixels in each 

step with an equal number. For the moment, the focus will be on the drift 

rates. Not restricting the drifts in any way will lead to 33 drift parameters to be 

estimated. However, the researcher may want to test the hypothesis that the 

drift rate varies linearly with brightness level:  

( ) ( ) ( ) ( )
* *
1 2= +c cv v B v  

where BB

v

(c) refers to the brightness level in condition c and c = 1,…, C. In this 

example we have reduced the number of parameters to be estimated from 33 to 

2. (Note also that we have introduced a new notation here: basic or design 

parameters are marked with a star.) 

 In general, we can write that drift rate in condition c can be 

decomposed into a weighted linear combination of M  known predictor values: 

       (1) 
( ) ( )

*

1

M

cjc j
j

v d
=

= ∑

where dcj is the value of the jth predictor in condition c. In the aforementioned 

example, M = 2, dc1 = 1 and dc2 = BB(c). Because we have C linear equations as 

in Equation  (one for each drift rate), we can make use of matrices and 

vectors to represent them all at once: 

(1)
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( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

*
1

* *1
1 11 1 1

* *
1

1

* *1
*

1

M

j j
j

j M

M

cj c cj cMc j c
j

C CMMC C C

Cj j
j

d v
v vv d d

v d v d d d v

d dv v v
d v

ν

=

=

=

⎡ ⎤
⎢ ⎥

*
cv

⎡ ⎤ ⎡⎡ ⎤ ⎢ ⎥ ⎡ ⎤
⎤

⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎥

⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎥

⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = × = ×
⎥

⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎥

⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎥

⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎥

⎢ ⎥ ⎢⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎥
⎣ ⎦ ⎣⎢ ⎥

⎢ ⎥⎣ ⎦

∑

∑

∑

vψ D

⎦

 

The design matrix D  is a C  matrix where each column represents a 

predictor (e.g., an intercept, an experimental treatment, a measured variable, 

etc.). The design matrix D  is then multiplied with an 

M×

1M ×  design parameter 

vector, to recover a C  model parameter vector .  1× ψ

The idea of regressing the parameters onto a set of predictors can be 

applied to all parameters in the model and is by no means restricted to the drift 

rates. Because a different design matrix can be used for each parameter, D will 

be indexed with the parameter symbol in order to make it clear to which 

parameter the design corresponds. The entire parameter matrix  can be 

described in terms of only the seven (known) design matrices  and the seven 

design parameter vectors . The result is that, when fitting the model to the 

data, only the elements of the parameter vectors (as opposed to all the 

diffusion parameters) have to be estimated. 

P

D

ψ

Two special and interesting cases of design matrices D are worth 

mentioning. The first special case is where D consists of a column of ones.  

This can be illustrated for the parameter Ter as follows: 
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(1)

*
( ) (1)

( )

1

1

1

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ×⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

er

er c er

er C

T

T T

T

 

The result of this is that the C conditions have the same Ter. In a second special 

case, D equals the C×C identity matrix such that each of the C conditions has a 

different value for a certain parameter. In the case of an identity matrix as the 

design matrix, there is no restriction of parameters across conditions. 

To illustrate the usefulness of the design matrix method, let us consider 

a final example. Suppose we want to fit a drift rate to the first condition and 

allow the drift rates of the other conditions to deviate from the first condition 

(but all in the same way: a “drift criterion change” from one condition to the 

next). This can be implemented by defining the design matrix  

1 0
1 1

1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

vD  

with ( )

( )

*
1

*
2

⎡ ⎤
⎢ ⎥= ×
⎢ ⎥⎣ ⎦

v v

v

v
ψ D , and therefore ( ) ( )

*
1 1=v v  and  and  for all 

 (see The SAS Institute, 1991, for some pointers on the construction of 

design matrices; Chapter 4). 

( ) ( ) ( )
* *
1= +cv v v 2

1≠c

In general, we formulate the parameter matrix 

{ }* * * * * *
η, , , , , ,

er z ta T z s s v= × × × × × × ×er z tP D a D T D η D z D s D s D ν* . Then, all the 
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elements of , , , , , , and  are the parameters over which we 

want to optimize the fit to data.  

*a *
erT *η *z *

zs *
ts *ν

Creative use of design matrices allows one to impose substantive 

restrictions on parameter sets, and will enable researchers to test specific 

substantive hypotheses. Extending the diffusion model with the design matrix 

methodology, it becomes possible to build a kind of “analysis of 

variance/multiple regression”-diffusion model. 

Using the design matrix method entails two restrictions, however. 

Firstly, only linear models can be represented by matrices. Secondly, only 

restrictions across conditions are possible, while restrictions across parameters 

(e.g., restricting z to be equal to a/2) requires a different strategy. Nonetheless, 

implementing restrictions using design matrices remains a very flexible and 

powerful tool. 

Techniques for fitting the RDM 

Finding the parameters of the Ratcliff Diffusion Model, given a data 

set, is something of a challenge. Before starting, several nontrivial choices 

need to be made, in particular regarding the objective function to use, how to 

deal with outliers and other contaminant reaction times, and the precise 

method of optimization. In this section, we discuss each of these choices, but 

for details we will refer the reader to Appendices A and B. 
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We will first briefly describe our outlier handling strategy. Then we 

will discuss the loss function and common difficulties encountered during 

optimization.  

A crucial part of any algorithm to fit the diffusion model is the efficient 

computation of its cumulative distribution function (CDF). For this, we rely 

heavily on the methods described in Tuerlinckx (2004). 

Outlier handling strategies 

An important issue to consider when applying a statistical model to 

reaction time data is that of contaminants – data points that appear in the data 

sets but that are somehow not germane to the research question. A well-known 

class of contaminants is outliers (data points that are outside the range of 

normal observations), but other examples are random guesses (data from trials 

where the participant somehow missed the stimulus and guessed), delayed 

start-ups (where the participant was somehow inappropriately delayed in 

responding), and fast guesses (where the participant executed a response 

before having actually inspected the stimulus).  

Each of these types of contaminants can severely muddy the data 

(Ratcliff, 1979; Ratcliff & Tuerlinckx, 2002; Ulrich & Miller, 1994), possibly 

resulting in biased parameter estimates and incorrect standard errors of 

estimation. A fitting procedure for a model such as this one should therefore 

always be equipped with a proper strategy for handling these contaminants. 

We opt for a combination of two methods: First, the data are preprocessed 

with an exponentially weighted moving average (EWMA) control method that 
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gives the minimal reaction time necessary for inclusion in the data analysis 

and second, a mixture model is fitted to the data.  

The EWMA method is used in a preprocessing step in order to filter 

out reaction times that are suspected of being fast guesses. The idea behind 

this method is that the identification of fast guesses is made possible because 

they tend to have a specific signature, being responses with a very short RT 

and chance level performance (whereas 'real' observations with low accuracy 

tend to be slow rather than fast). Working from these assumptions, we can 

formulate a statistical expectation for guesses, and then we can find the 

minimal response time at which the data begin to deviate from this 

expectation. This minimal response time is used as a lower cut-off value such 

that all observations with shorter RTs are censored. More technical detail 

regarding the method is provided in Appendix A. 

The basic idea behind the mixture model (Ratcliff & Tuerlinckx, 2002) 

is that each trial has a probability (1 π)γ−  of being a guess, a probability 

 of being a 'delayed startup', and a remaining probability (1 π)(1 γ)− − π  of 

being an actual instance of a diffusion process. A trial can then be represented 

by the decision tree shown in Figure 3. The first step leads to either the 

diffusion process (with probability ) or to a contamination process (with 

probability 1 ). A contamination process can in turn be a 'guess' (with 

probability ) or a 'delayed startup' response (with probability 1

π

π−

γ γ− ). Note 

that this treatment adds two free parameters to the model (  and ). Details π γ
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concerning the component distributions and the mixture distribution are 

provided in Appendix A.  

 

 * Figure 3 about here * 

 

The loss function 

To estimate the best fitting parameters of the RDM (or the extended 

RDM), given a data set, we have to find the maximum of a likelihood 

function, or the minimum of some deviance function. For our loss function, we 

use a negative multinomial log-likelihood function (MLF). We opt for the 

MLF for several reasons, chiefly among them its computational tractability 

compared to continuous likelihood and robustness in the face of small 

measurement errors. Briefly, the loss is defined as -2 times the natural 

logarithm of the joint likelihood of observing the observed number of data 

points in each of a set of predefined "reaction time bins". We call this statistic 

. Λ

Details regarding and its optimization are provided in Appendix B. Λ

The Diffusion Model Analysis Toolbox 

In one paper concerning the RDM, Wagenmakers, van der Maas, and 

Grasman (in press) note that for many experimental psychologists, the 

difficulty associated with fitting a diffusion model is "rather prohibitive." In an 

attempt to further popularize the diffusion model, we have developed a 

 16
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MATLAB (version 2006a; ©1994 The MathWorks, Inc.) application, which 

should allow researchers with less technical background to use the diffusion 

model in practice. The program, which is called DMAT (for Diffusion Model 

Analysis Toolbox) can be freely downloaded from the website of the 

K.U.Leuven Research Group for Quantitative and Personality Psychology 

(http://ppw.kuleuven.be/okp/dmatoolbox). 

Performance. In creating DMAT, we had two main goals in mind. The 

program should be (1) accurate and efficient and (2) user-friendly. We believe 

that we have achieved both goals to a satisfactory degree. Regarding accuracy 

and efficiency, DMAT performs well in simulations (see below) testing the 

recovery of model and design parameters from simulated data (biases are 

generally low and standard errors small), and on our desktop PCs, the 

algorithm typically converges in less than one minute's time. The program is 

developed to make use of all fitting and modeling strategies we have discussed 

above (and more). 

Ease of use. Regarding flexibility and ease of use, we have added a 

graphical user interface (GUI) to accommodate users who are not familiar with 

MATLAB's text-based interface (though of course text mode is also available 

and offers more flexibility). Also, wherever we could, we have provided 

default settings that we believe will perform well in most cases, and we have 

written an instructional primer to the use of the toolbox (Vandekerckhove & 

Tuerlinckx, 2007b). 
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Statistical framework 

Of course, finding the best fitting parameter set for the diffusion model 

given a dataset is more than a mere academic problem. At some point, end 

users of DMAT will want to draw substantive conclusions from their data. 

This is the realm of statistical inference or model selection. We distinguish 

between three types of tests: testing a point estimate, comparing two nested 

models, and comparing non-nested models. 

Testing a point estimate 

The simplest procedure that can be used tests whether a point estimate 

 of a parameter θ  significantly deviates from some a-priori value . Under 

the null hypothesis that , and under some regularity conditions, the Wald 

statistic 

θ̂ 0θ

0θ θ=

0θ

θ̂

θ̂
se

Z −
=  (with  the standard error of estimation) follows a 

standard normal distribution (Bishop, Fienberg, & Holland, 1975). One of the 

regularity conditions – the boundary condition – is noteworthy however. The 

Wald statistic should not be used if the test value  is at the boundary of the 

parameter space (Bishop et al., 1975, but see also Stram & Lee, 1994, 1995, 

for an adaptation of the reference distribution). As a consequence, it cannot be 

used to test the null hypothesis that, for example η

θ̂
se

0θ

0= , since  is bounded at 

0. 

η
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Testing the difference between two nested diffusion models 

In many cases, however, it is more desirable to directly compare two 

model formulations against one another. For example, a researcher might want 

to test whether an experimental manipulation has some influence on drift rate. 

To that end, one could compare a model in which all drift rates are constrained 

to be equal to a model where they are free to vary over conditions (this would 

be analogous to an analysis-of-variance design). The former model – the null 

model – could be formulated as 

{ }* * * * * *
0 , , , , , ,= × × × × × × ×C C er C C C z C t CP 1 a 1 T 1 η 1 z 1 s 1 s 1 ν* , 

where  indicates a  vector with all elements equal to 1 (C still being 

the number of conditions in the experiment). This model restricts all 

parameters to be equal across conditions, while the latter model – the effect 

model – could be this: 

C1 1C ×

{ }* * * * * *, , , , , , ×= × × × × × × ×E C C er C C C z C t C CP 1 a 1 T 1 η 1 z 1 s 1 s I ν* , where the drift 

rates are now determined by the multiplication of the C C×  identity matrix 

 and the design parameter matrix . Thus, the restriction on drift rate v is 

now released and  parameters have been added to the model (because  

now contains C elements instead of 1). 

×C CI *v

1C − *v

If these two models are nested (i.e., the null model can be reached by 

implementing restrictions in the effect model, which is the case in this 

example), the resulting fit measures, Λ
0P  and Λ

EP , can be directly compared. 

Their difference follows a chi-square distribution with a number of degrees of 
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freedom equal to the difference in number of parameters between the effect 

model and the null model: ~ΔΛ = Λ − Λ
0 EP P

2χ dfΔ , with in the case of this 

example . 1df CΔ = −

Note, however, that the same boundary condition applies here as for 

the Wald statistic: if the parameter set P0 is at an edge of the parameter space 

where PE is not, this statistic should not be used. Also, as always in null 

hypothesis significance testing, researchers should take care that their null 

model is a credible model – wildly inaccurate null models will always yield 

significant  statistics. ΔΛ

Finally, it should be remarked that the distribution of ΔΛ  assumes that 

fixed reaction time bins were used (see Appendix B). In the case where 

percentile-based bins were used, the chi-square assumption may not hold1. 

Comparing non-nested models 

If two models are not nested, then their fit can still be compared by 

assessing the difference in information criteria such as the Small Sample 

Akaike Information Criterion (AICc; Hurvich & Tsai, 1989; Sugiura, 1978) or 

the Bayesian Information Criterion (BIC; Hoeting, Madigan, Raftery, & 

Volinski, 1999; Schwarz, 1978). In both cases, the model with lower value on 

the criterion is preferred. The two measures are defined as 

( )AICc 2 1d N N d= Λ + − −⎡ ⎤⎣ ⎦  and BIC log( )d N= Λ + , where N is the total 

number of data points and d  indicates the number of free parameters in the 
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model in question. Of course, these criteria can equally validly be applied to 

nested models. 

DMAT is specifically built for comparisons across models like we 

describe here. From the start, the user is asked to provide a queue of models, 

each of which can then be fit to the data set and then compared. 

Simulations 

To test our algorithm, we performed many Monte Carlo simulations, of 

which we report only a selected few. Throughout, we use six standard 

parameter sets (A through F), which are reported in Table 1. Note that in these 

parameter sets, there are four conditions, across which all parameters are 

identical, except for drift rate, which systematically varies (there are ten 

columns; six with the parameters that are constant, and one for each 

condition's drift rate). We borrow these parameter sets from Ratcliff and 

Tuerlinckx (2002). Our simulation method was based on the rejection method 

described in Tuerlinckx, Maris, Ratcliff, and De Boeck (2001). 

 

* Table 1 about here * 

 

Asymptotic parameter recovery 

As a first test of our algorithm, we used it to estimate RDM 

parameters, given exactly the expected distributions under many different 
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parameter sets, including the ones in Table 1 (that is, we input the exact 

numbers of observations that each reaction time bin would have, given a 

certain parameter set). In each case, and for each objective function DMAT 

allows, the algorithm returned the exact parameter values to the requested 

accuracy. 

Preasymptotic parameter recovery 

As a second test of our algorithm, we performed a series of simple 

simulations to investigate biases and standard errors of the parameter 

estimates. We define the relative bias of each parameter as θ̂ θ 100%
θ
−

× , and 

the standard error as ( )2
1

1
ˆ ˆθ θ

R

jR
j

− −∑ , with R the number of replications, and 

 and θ̂ θ̂  respectively the estimate and the mean estimate of some parameter 

. θ

From each of the six parameter sets shown in Table 1, we generated 

100 datasets with 250 data points in each condition (without outliers). We used 

DMAT to find parameter estimates and calculated relative biases and standard 

errors within each parameter set. As can be seen from Table 2, the simulation 

parameters are generally well recovered. The a, Ter, and z estimates tend to be 

within 10% of their simulation values. The relative bias of the v estimates are 

slightly larger for large values of the "true" v. As already seen in Ratcliff and 

Tuerlinckx (2002), the variance parameters tend to be slightly more difficult to 

estimate, in particular when they are small. The mixture model parameter π  is 
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very well estimated, but with only 250 data points per data set and only 5% of 

them in the contaminant distribution, estimates for γ are unavoidably unstable. 

 

 * Table 2 about here * 

 

Outlier handling strategies 

To test the outlier treatment procedure applied by our algorithm (see 

Appendix A), we performed four more series of simple simulations to evaluate 

the combined EWMA / mixture model approach. In each series of simulations, 

we again generated 100 datasets from each of the six parameter sets shown in 

Table 1, with 250 data points in each condition. 

We employed a simple two-by-two design: we either added outliers to 

the simulated data or did not, and we either enabled the outlier treatment or did 

not. When we did add outliers, 2.5% were fast guesses (RT were draws from a 

uniform distribution between 200 and 400ms and accuracy was about 50%) 

and an additional 2.5% were delayed startups (RT draws from a uniform 

distribution between 500 and 3000ms, but with accuracy as expected under the 

diffusion model). We then estimated the parameters for each dataset with 

DMAT and compared parameter recovery. In Table 3, the results are shown 

for parameter set A. As can be seen, if the data set did contain outliers, and 

they are not treated by the algorithm, estimation biases increase dramatically, 

to over 100% for some drift values. When the combined EWMA / mixture 

 23



VANDEKERCKHOVE AND TUERLINCKX 

model method is applied, relative biases return to the same magnitude as in the 

condition where no outliers existed.  

To conserve space, we do not report results for the other parameter sets 

here, but as it turns out, our outlier treatment succeeds in alleviating the 

influence of outliers and contaminants on parameter estimates: biases and 

standard errors of the parameters that the adapted algorithm returned from the 

contaminated data set are closer to those of the parameters that the original 

algorithm returns from a "clean" data set, and they are lower than those from 

the original algorithm on the contaminated data set. 

 

* Table 3 about here * 

 

Power analyses 

Power analysis 1. In another series of simulations, we evaluated the 

sensitivity (statistical rejection power) of our algorithm and associated 

inferential statistics. From each of the six parameter sets shown in Table 1, we 

again generated 100 datasets with 250 data points in each condition. Then we 

allowed DMAT to find the best parameter estimates, imposing two different 

design models. In the first design, we allowed for no parameter changes across 

conditions: 

{ }* * * * * * * *, , , , , , , ,= × × × × × × × × ×1 C C er C C C z C t C C CP 1 a 1 T 1 η 1 z 1 s 1 s 1 ν 1 π 1 γ*  (note 

that we apply a design matrix to the mixture model parameters here). 
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In the second design, we allowed drift rates to vary across conditions. 

{ }* * * * * * * *, , , , , , , ,×= × × × × × × × × ×2 C C er C C C z C t C C C CP 1 a 1 T 1 η 1 z 1 s 1 s I ν 1 π 1 γ* . 

Then, we computed the test statistic 
1 2

ΔΛ = Λ − ΛP P ~ 2
3χdf =  and its 

significance level. If our algorithm has sufficient sensitivity (statistical power), 

a large proportion of these statistics should be larger than the critical chi-

square value. Failing to reject a null hypothesis that is truly false would be a 

Type II error. In fact, as it turns out, in 99% of these cases did a significant 

result emerge at all significance levels (down to α = 10-6). In only four cases 

(once in parameter set B and thrice in C) was the null hypothesis not rejected 

at the α = .01 level. It can be concluded that, at least for these parameter sets 

and this sample size, this analysis has very high power – it is not overly 

conservative. 

Type I error. However, the previous result begs the question of 

selectivity: Is it possible that the analysis would yield significant results, even 

where none were really present? To test this possibility, we repeated the same 

simulations, but now we changed the simulation parameters such that all drift 

rates were now constant across conditions. The drift rates were -.25, -.15, -.05, 

.05, .15, and .25 for parameter sets A through F, respectively. We repeated the 

same analyses as before, but now we would expect few of the test statistics to 

reach significance (under the null hypothesis, the p-values should follow a 

uniform distribution between 0 and 1). However, depending on the 

significance level α we select, sometimes the null hypothesis will be falsely 
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rejected (Type I error). Figure 4 shows the proportion of such false rejections 

as a function of the threshold value α. As we can see, the proportion of false 

rejections is indeed approximately equal to α. However, a small trend upward 

of the diagonal is visible, indicating that our algorithm might be slightly too 

liberal in testing, and that it may be prudent to test at more restrictive 

significance levels in practical settings. 

 

* Figure 4 about here * 

 

Power analysis 2. Following up on the previous simulations, we set up 

a new series to determine how well DMAT is able to detect small differences 

in parameters. To that end, we simulated data sets with 250 data points in each 

of two conditions. In both conditions, all parameters were equal (and taken 

from parameter set A in Table 1), except for drift rate. Drift rate was always 

zero in the first condition, and in the second condition it was either also 0, or 

.02, .04, .06, .08, or .10. With each of those values for drift rate in the second 

condition, we generated 10,000 data sets and allowed DMAT to recover the 

parameter estimates, once with a model allowing no differences across the two 

conditions and once allowing drift rate to differ between the conditions. Then 

we calculated the ΔΛ  statistic and computed associated p-values (under a -

distribution with one degree of freedom). Figure 5 shows the proportion of 

rejected null hypotheses as a function of the threshold value α. There it can be 

seen that if the true drift rate in the second condition is 0.1, there are very 

2χ
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many rejections of H0, even with very conservative (small) values for α. Table 

4 shows the proportion of rejections of H0 for traditional values of α. At the 

traditional value of α = .05, a drift rate of 0.1 is detected more than 96.3% of 

the time, but at a 6.1% risk of getting a "false alarm". If α is very conservative, 

there are no false alarms, but the test becomes much less sensitive, detecting a 

drift rate difference of 0.1 in only 18.5% of cases. 

 

* Figure 5 about here * 

 

* Table 4 about here* 

Application examples 

To demonstrate the use of DMAT, we obtained two data sets 

containing both accuracy and reaction time data (Experiment 3 in 

Vandekerckhove, Panis, & Wagemans, 2007, and Experiment 1 from Ratcliff 

& Rouder, 1998; used with permission). We will briefly describe the variables 

of interest, but for substantive details, the interested reader is referred to 

Vandekerckhove et al. (2007) and Ratcliff and Rouder (1998). 

Example 1: An incomplete factorial ANOVA design 

The experiment by Vandekerckhove et al. (2007) is in the domain of 

visual shape perception and change detection in particular. The basic effect of 

interest is that if observers are shown a succession of two 2D shapes which are 
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different in only one vertex (an angle or curvature extreme), this difference is 

easier to detect if it is adding or removing a concavity than if it is adding or 

removing a convexity (Barenholtz, Cohen, Feldman, & Singh, 2003). The 

substantive research question in this experiment is: does the effect occur when 

the change is not adding or removing a new vertex, but increasing or 

decreasing an existing one? The paradigm was a two-interval forced choice 

(2IFC) task. 

In the experiment, three variables are manipulated: (a) change: was 

there any difference between the two shapes? (b) quality: did the number of 

vertices change? (c) type: if there was a change, was it in a concavity 

(curvature with negative sign) or in a convexity (positive sign). As is obvious 

from variables (b) and (c), this is not a fully crossed design (properties of the 

change cannot be manipulated if there was none; as a result each 'change' 

condition had 24 data points, but each 'no-change' condition had 192). Table 5 

lists all the conditions between which we would want to differentiate. Because 

the manipulations are all intended to affect the quality of the stimulus, we 

expect changes in drift rate, but not in any other variable. Writing the design 

as we do in Table 5 simplifies construction of a design matrix: The complete 

design matrix is simply the last three columns in the table, plus one column 

with ones for a grand mean (intercept). 

 

* Table 5 about here* 
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The goal of this experiment (and thus the data-analysis) is twofold. 

Primarily, it was to find out whether the type variable contributes anything 

above and beyond the quality variable. Additionally, if type has an effect, we 

would want to know whether it is independent of quality (i.e., is there an 

interaction?). To this end, we defined a queue of five models, each an 

extended version of the former. In Model 1, we allowed for no effects of 

condition on any parameter: 

{ }* * * * * * * *
5 5 5 5 5 5 5 5 5, , , , , , , ,= × × × × × × × × ×1 er z tP 1 a 1 T 1 η 1 z 1 s 1 s 1 ν 1 π 1 γ* . 

In Model 2, we let drift rates vary according to the design of the 

experiment, without the type variable, and in Model 3, we let drift rates vary 

according to the complete design of the experiment. These design matrices 

were  and 

1 1 1
1 1 1
1 1 1
1 1 1
1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

v2D

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 0 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= − −
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

v3D , respectively. In Model 

4, we allowed drift rates to vary freely across conditions: =v4 5×5D I , and 

finally, in Model 5, we allowed all diffusion parameters to vary freely across 

all five conditions: 

{ }* * * * * * * *
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5, , , , , , , ,× × × × × × ×= × × × × × × × × ×4 er z tP I a I T I η I z I s I s I ν 1 π 1 γ*

. 

Note that Model 1 has 9 free parameters, Model 2 has 11, Model 3 has 

12, and Model 4 has 13, while Model 5 has 37. Note also that each model is 

nested in the previous. We ran this analysis for one participant in the 
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experiment. Table 6 displays the fit statistics of each model in the queue, and 

shows the  and -statistics with their degrees of freedom. Λ ΔΛ

 

* Table 6 about here* 

 

From the table, we can conclude that the increase in model freedom 

from Model 1 to Model 2 was a success – the badness-of-fit measure 

significantly decreases (p = .0002). Going from Model 2 to Model 3 (adding 

the variable type) also significantly improved model fit (p = .0001). However, 

going to Model 4 (allowing deviation from the experimental design) was not a 

worthwhile step: allowing drift rates to vary freely does not significantly 

improve the fit of the model (p = .5434). Finally, while the step from Model 4 

to Model 5 decreased the chi-square value, this decrease was again not 

significant when we take into consideration that 24 parameters had been added 

to the model (p = .9665). Considering this, and inspecting the AICc and BIC 

values, Model 3 earns our preference. 

As for the substantive hypotheses, the finding that adding the type 

variable to the analysis significantly increased model fitness indicates that it 

influences drift rate, above and beyond the effect of the quality variable. 

Additionally, allowing for a more complex pattern than the experimental 

design (e.g., with interactions) did not lead to a better fit, indicating that for 

this participant, the experimental variables did not interact. All recovered 
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parameters and their standard errors of estimation under Model 3 are given in 

Table 7.  

 

* Table 7 about here * 

 

However, results were not identical for all participants. Five out of ten 

showed the pattern discussed above. In two other cases, Model 3 did not 

provide a significantly better fit than Model 2, indicating no significant effect 

of type. In a further two cases, Model 4 did provide a significant improvement 

relative to Model 3, indicating interactions between experimental variables. In 

one final case, Model 4 performed better than Model 3, but Model 5 also 

performed better than Model 4, indicating influences on other parameters 

beside drift rate (with this participant, there seemed to be a large across-

condition difference in boundary separation). 

Example 2: A linear regression design 

The experiment by Ratcliff and Rouder (1998) is a psychophysical 

study somewhat similar to the one in Example 1; in this case a brightness 

discrimination experiment. There were two manipulations of interest. Firstly, 

there was a speed-accuracy instruction (participants were either instructed to 

be fast or accurate) and secondly there was a manipulation of brightness, 

which increased with equal steps over 33 levels. However, because not all 

levels of the brightness variable had the same number of observations and in 

order to ensure a sufficient number of trials in each cell, we collected the five 
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darkest and five brightest levels into one bigger level each, leaving 25 levels 

of the brightness variable. These two variables were completely crossed in a 

2x25 design, yielding 50 conditions (we will say that conditions 1-25 have an 

'accuracy' instruction and 26-50 have a 'speed' instruction). The task was a 

2AFC procedure, whereby each subject was shown a stimulus and had to 

judge whether this stimulus was one from a 'bright' distribution or one from a 

'dark' distribution. The number of trials varied across conditions from 61 to 

more than 200, with an average of about 150. 

From the manipulations, we can expect two things. Firstly, we expect 

that the speed-accuracy instruction will have an effect on boundary separation. 

Secondly, we expect that as brightness of the stimulus increases, the drift 

towards the 'bright' response increases. Note that for this analysis, we change 

the interpretation of the model's upper and lower boundary. We will now say 

that a hit on the upper boundary leads to a 'bright' response, and on the lower 

leads to a 'dark' response. The drift rate is hence no longer a measure of ability 

to respond correctly, but of a tendency to respond 'bright' (and a negative drift 

rate can now reasonably occur, indicating a tendency to respond 'dark'). 

This new interpretation of participants' replies has an important 

consequence. Considering that the responses are not classified as 'correct' or 

'incorrect', the assumption for the EWMA method that guesses are equally 

distributed across responses no longer holds. Accordingly, we switched off the 

EWMA preprocessing. For the same reason, the 'fast guesses' component of 
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the mixture model is no longer a valid representation, thus we will assume that 

the weight  is equal to zero. γ

To perform the analysis, we again defined a queue, again of five 

models, each a more complex version of the former. In Model 1, we allowed 

for no changes of parameters across conditions. In Model 2, we defined that 

there should be two different levels of the parameters a, z, and sz: one for the 

conditions with accuracy instruction and one for those with speed instruction. 

To do this, we constructed the following design matrix for these parameters: 

, which has two columns with 25 ones and 25 zeros 

each. Additionally, we will allow v and η in this model to evolve linearly with 

the brightness manipulation, while allowing different regression slopes and 

intercepts for different speed-accuracy instructions: 

, where 

⎡ ⎤
= = = ⎢

⎣ ⎦z

25 25
a z s

25 25

1 0
D D D

0 1 ⎥

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
25 25 25

η v
25 25 25

1 L 0 0
D D

0 0 1 L

3
6
7

27
28
31

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L  represents the 25 brightness 

levels (with the first and last values adapted to reflect the average of the five 

groups that were pooled there). The other design matrices allow for no change 

across conditions: 

{ }= × × × × × × × × ×
z

* * * * * * * *
2 a 50 er η z s z 50 t v 50 50P D a ,1 T ,D η , D z ,D s ,1 s ,D ν ,1 π , 0 γ*

. 
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However, the restriction that drift rates should increase linearly with 

the brightness manipulation is hardly tenable, both on theoretical grounds 

(because performance has to be bounded somewhere) and due to opportunistic 

inspection of Ratcliff and Rouder's (1998) results. In fact, in their article, drift 

rate increases with brightness according to a sigmoid function. Thus, in Model 

3, we add a quadratic, cubic and quartic component to the design, to emulate 

an s-shaped function. Now, 

, where the exponents 

indicate the element-wise power function (i.e., each element of the vector L is 

taken to that power), which replaces the previous in the model construction: 

2 3 4

2 3 4

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
25 25 25 25 25 25

η v
25 25 25 25 25 25

1 L L L L 0 0 0 0 0
D D

0 0 0 0 0 1 L L L L

{ }= × × × × × × × × ×
z

* * * * * * * *
3 a 50 er η z s z 50 t v 50 50P D a ,1 T ,D η , D z ,D s ,1 s ,D ν ,1 π , 0 γ*

. 

In Model 4, we allowed drift rates and their intertrial variances to vary 

freely across conditions: 

{ }× × × × × × × × ×
z

* * * * * * * *
4 a 50 er 50×50 z s z 50 t 50×50 50 50P = D a ,1 T ,I η , D z , D s ,1 s , I ν ,1 π , 0 γ*

. 

Finally, in Model 5, we allowed all parameters to vary freely across 

conditions. 

These models have 8, 14, 20, 60, and 400 free parameters, respectively, 

and each model is again nested in the previous. As before, we ran these 

models for one participant. Table 8 displays the fit statistics of each model in 

the queue, and shows the Λ  and ΔΛ -statistics with their degrees of freedom. 
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Figure 6 shows the drift rates according to models 2, 3, and 5 in function of 

brightness. 

 

* Table 8 about here * 

 

* Figure 6 about here * 

 

As can be seen from the table, Model 2 outperforms Model 1 greatly, 

indicating significant deviations from the nil model. Model 3 also outperforms 

Model 2, indicating deviations from linearity (as is obvious from the figure as 

well). Moreover, Model 4 performs better than Model 3, indicating that the 

obtained fit to the drift rates still leaves to be desired (this, too, can be seen in 

the figure). Finally, Model 5 does not perform better than Model 4, indicating 

that across-condition trends in the diffusion parameters were sufficiently 

described by the design applied in Model 4. The AICc statistic (in Table 8) 

shows the same pattern. The BIC values, on the other hand, show a slight 

preference for Model 3. 

All recovered parameters and their standard errors of estimation under 

Model 4 are given in Table 9. 

 

* Table 9 about here * 
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Conclusions and recommendations 

In the present paper, we investigated and further enhanced the practical 

applicability of the diffusion model for reaction time and accuracy data. For 

this, we explored four avenues of improvement. Regarding high numbers of 

parameters and interpretation of experimental effects, we suggested the use of 

design matrices in order to regress diffusion model parameters onto covariates 

from an experiment. Regarding the treatment of contaminant data points, we 

presented a compound method to curb their influence in the estimation of 

diffusion model parameters. This method proved a satisfactory remedy in our 

Monte Carlo simulations. We provided some details regarding the fitting 

algorithm. Simulation studies indicated good performance of this algorithm.  

Regarding statistical inference, we propose ΔΛ as a generally 

applicable statistic. Simulations demonstrated proper small-sample behavior 

from this statistic. 

We have succeeded in implementing the above techniques and present 

DMAT, a software tool that allows the methods to be applied in practice. 

Finally, we gave two examples where we demonstrated the use of DMAT and 

the associated statistical analyses in practice. 
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Tables  

Table 1 

Standard parameter sets used in the simulations. See text for details. 

Parameter 

Set 
a Ter η z sz st v1 v2 v3 v4

A 0.08 0.30 0.08 0.04 0.02 0.02 0.40 0.25 0.10 0.00 

B 0.08 0.30 0.16 0.04 0.02 0.02 0.40 0.25 0.10 0.00 

C 0.16 0.30 0.08 0.08 0.02 0.02 0.30 0.20 0.10 0.00 

D 0.16 0.30 0.16 0.08 0.02 0.02 0.30 0.20 0.10 0.00 

E 0.16 0.30 0.08 0.08 0.10 0.10 0.30 0.20 0.10 0.00 

F 0.16 0.30 0.16 0.08 0.10 0.10 0.30 0.20 0.10 0.00 
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Table 2 

Recovery of simulation parameters by DMAT. Relative biases are in the upper 

half, standard errors (multiplied by 1,000) in the lower half 

Parameter 

Set 
a Ter η z sz st v1 v2 v3 v4

† π‡ γ‡

A -5 3 -60 -3 12 14 15 3 0 0 1 -55 

B -7 2 -48 -5 -38 -37 0 -7 -9 0 1 -13 

C -1 6 0 1 90 -10 20 10 6 0 2 -17 

D -3 9 9 -2 108 -1 25 15 11 0 0 8 

E 3 2 4 3 4 -31 15 8 8 0 3 -21 

F -1 3 0 0 -2 -26 8 5 3 0 2 -4 

A 4 8 46 2 18 16 72 32 18 16 29 347 

B 4 6 70 2 17 13 51 34 26 22 24 407 

C 11 29 48 5 31 51 113 61 31 6 61 472 

D 19 28 91 9 45 46 191 89 47 18 52 418 

E 13 21 48 7 29 42 71 45 24 8 29 464 

F 20 23 80 10 44 42 90 61 33 12 38 436 

†: Biases for v4 are actual recovered values, not relative biases (since the true 

values were 0); ‡: True values for π and γ were .95 and .50, respectively. 
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Table 3 

DMAT's recovery of simulation parameters from either "clean" or outlier-

contaminated data (generated from parameter set A in Table 1), with our 

outlier correction method either enabled or disabled. Relative biases are in the 

upper half, standard errors (multiplied by 1,000) in the lower half 

Outliers 

added 

Outliers 

treated 
a Ter η z sz st v1 v2 v3 v4

† π† γ†

No No 2 1 4 3 25 -40 10 4 4 0   

Yes No 62 3 513 55 471 191 112 110 166 0   

No Yes -5 3 -60 -3 12 14 15 3 0 0 0.96 0.22 

Yes Yes 0 2 -14 1 44 -3 6 2 0 0 0.94 0.05 

No No 4 7 64 2 21 13 71 40 23 21   

Yes No 6 8 24 4 18 11 49 116 35 47   

No Yes 4 8 46 2 18 16 72 32 18 16 29 347

Yes Yes 3 8 63 2 20 23 60 37 25 16 6 90 

†: Bias values for this parameter are actual recovered values, not relative 

biases. 
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Table 4 

Proportion of rejected null hypotheses for different levels of the α criterion, 

and with different 'real' effects in the data. Real differences in drift rate of 0.1 

are detected in 96.28% of cases at the .05 significance level, but at that α-level 

there are also 6.07% false alarms 

 Simulated difference in drift rate 

α 0 0.02 0.04 0.06 0.08 0.1 

0.05 0.0607 0.1454 0.3778 0.6649 0.8769 0.9628 

0.01 0.0151 0.0503 0.1848 0.4452 0.7297 0.9062 

0.0001 0.0002 0.0023 0.0153 0.0819 0.2586 0.5388 

0.00001 0 0.0009 0.0044 0.0285 0.1244 0.336 

0.000001 0 0.0005 0.0007 0.0091 0.0536 0.1848 
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Table 5 

Design of Experiment 3 in Vandekerckhove et al. (2007) 

Condition Change Quality Type

1 1 1 -1 

2 1 1 1 

3 1 -1 -1 

4 1 -1 1 

5 -1 0 0 
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Table 6 

Fit statistics from the model queue for one participant (Example 1) 

Model Λ  df ΔΛ  dfΔ p AICc BIC 

1 2414.32 9    2432.57 2471.64 

2 2401.96 11 12.36 2 0.0002 2424.34 2472.03 

3 2387.49 12 14.46 1 0.0001 2411.96 2463.93 

4 2387.13 13 0.37 1 0.5434 2413.67 2469.93 

5 2374.15 37 12.98 24 0.9665 2453.02 2609.83 

 

 51



VANDEKERCKHOVE AND TUERLINCKX 

Table 7 

Recovered model parameters and associated standard errors (SEs) for Example 

2, under Model 3, for one participant. 

 a Ter η z sz st

Values 0.1712 0.3160 0.2315 0.0863 0.0003 0.0001 

SEs 0.0277 0.0131 0.0582 0.0139 0.0538 0.0318 
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Table 8 

Fit statistics from the model queue for one participant (Example 2) 

Model Λ  df  ΔΛ  df p AICc BIC 

1 35089.6 8    35105.6 35161.4 

2 22764.5 14 12325.1 6 0.000 22792.5 22890.1 

3 22467.1 20 297.37 6 0.000 22507.2 22646.6 

4 22339.3 60 127.81 40 0.000 22460.2 22877.7 

5 22125.7 400 213.59 340 1.000 22968.3 25715 
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Table 9 

Recovered parameters and standard errors (SEs) for Example 2, under Model 

4. Results for the speed-stressed condition are in the top two rows, results for 

the accuracy-stressed condition are in the bottom two rows 

Condition  a Ter η z sz st

Speed Values 0.0399 0.3058 0.0382 0.0178 0.0305 0.1470 

Speed SEs 0.0011 0.0016 0.0124 0.0008 0.0024 0.0025 

Accuracy Values 0.1717 0.3058 0.0382 0.0827 0.0239 0.1470 

Accuracy SEs 0.0035 0.0016 0.0124 0.0019 0.0152 0.0025 
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Appendix A: Outlier Treatment Methods 

Because of the detrimental influence contaminants can have on the quality of 

parameter estimates, DMAT is equipped with several strategies for the 

treatment of outliers and other contaminants. Two of these treatments are 

somewhat non-standard and require some clarification. 

Exponentially weighted moving average filter 

The exponentially weighted moving average method (EWMA; Chandra, 2001; 

Roberts, 1951) is a statistical quality control method that can detect shifts in 

performance as reaction times increase. A cut-off threshold is set where the 

performance is judged to be above chance level. 

The first step in the application of the method is sorting the reaction 

times from short to long. In effect, we will then look at our data set as if it 

described a binary process that unfolds (and changes) over time. As time 

progresses (i.e., RT increases), the process will start to shift away from its 

‘control state’ (with 50% accuracy) and tend toward a biased process (with 

accuracy > 50%). The control process describes our expectation regarding fast 

guesses, which is straightforward: Guesses are draws from a Bernoulli process 

at chance level. Formally, if the sth observation (that is, the response X(s), 

corresponding to the sth sorted reaction time T(s)) is a guess, then X(s) ~ 

Bernoulli(0.5). (It should be noted that the control process should be a credible 

representation of fast guesses, otherwise this method will not work.) 
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To determine the minimal response time at which the system no longer 

follows this control process, we take the reaction times from all conditions (all 

RTs still sorted fast to slow), and then analyze their corresponding responses. 

Of these responses, we iteratively compute the EWMA statistic 

( ) 1λ 1 λs sc x c −= + − s , where 1sx =  if the response corresponding to the sth 

sorted reaction time was correct and 0 otherwise, and λ (0,1]∈  is a weight 

parameter which controls how many of the last observations are used. If  is 

1 only the s

λ

th observation is used and if  approaches 0, all observations from 

the first to the s

λ

th are weighted equally. We will then, at each iteration, 

calculate the upper control limit (UCL) of this process, and check if the 

EWMA statistic sc  exceeds this value. 

In practice, some constants need to be defined. The first is the in-

control mean of the process, which in this context represents the expected 

average performance of a fast guess. We denote this parameter , and 

initialize it to 0.5. Second is the in-control standard deviation  (standard 

deviation of X), which is also equal to 0.5 (this follows from the properties of 

the Bernoulli distribution). A third constant for EWMA is the weight 

parameter . We choose , thereby accounting for many previous data 

points. The final constant is the width of the control limits (in standard 

deviations). To ensure a sensitive test, we set L to 1.5 (a relatively low value). 

0c

0σ

λ λ 0.01=
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Given these parameters, we now compute sc  and check if it is smaller 

than the upper control limit: ( )2
0 0

λσ 1 1 λ
2 λ

s
s sc UCL c L ⎡ ⎤< = + − −⎣ ⎦−

. If this 

inequality is true, then the process is judged to be within the limits of the 

control model, and we label observation s as a 'fast guess'. When the upper 

control limit is exceeded, we decide that the probability of giving a correct 

response significantly exceeds 0.5 from this reaction time on, and stop the 

iteration process. The reaction time at which the UCL was breached is then 

taken as the threshold, and all reaction times below it are censored.  

The EWMA method is commonly illustrated with a control chart, 

which depicts the evolution of sc  in function of increasing reaction time. 

Figure A1 shows an example control chart, with the EWMA statistic indicated 

by a full line, the control state by a dotted line and the control limits by a 

shaded region around the control state. This control chart is based on data that 

were generated from the parameters shown in Table 1 (set A), with 250 data 

points in each condition, and 5% fast outliers added to the 200-400ms domain, 

uniformly distributed and with 50% accuracy. The EWMA algorithm returns a 

cut-off value of 322ms, which is reasonable considering that the diffusion 

process with these parameters starts around 300ms, but there are contaminants 

between 200 and 400ms. 

 

* Figure A1 about here * 
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Mixture model approach 

Ratcliff and Tuerlinckx (2002) use a mixture model approach to explicitly 

model contaminant reaction times. In that extended model, any observation 

has a probability  of having originated from a diffusion model, and a 

complementary probability 1

π

π−  of having originated from a contaminant 

distribution, which is uniform between the minimal and maximal reaction time 

recorded. A further extension of this mixture model can be made in which a 

distinction is made between a 'guesses' and a 'delayed startup' distribution.  

The mixture distribution then consists of three components, which are 

easily represented as a decision tree with two levels (see Figure 3 in the main 

text). The 'guess' component, with total probability (1 π)γ− , contains 

uniformly distributed response times with a 50% accuracy rate, thus 

representing guesses. The 'delayed startup' component, with total probability 

, represents trials of an experiment in which a participant has in 

fact responded according to his or her ability, but due to some external 

circumstance (e.g., momentary distraction or pushing a wrong button) is 

slowed down in responding. Under this component distribution, the probability 

of a correct response is equal to that under the diffusion model, . 

Reaction times for these contaminant components, however, are uniformly 

distributed over the entire observed range.  

(1 π)(1 γ)− −

Pr( | )X x= θ

The CDF of this extended diffusion model is:  
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,

1
2

( , , ) πDiff ( , , )
                  (1 π)γ ( , , )
                  (1 π)(1 γ)Pr( | ) ( , , )

X TF x t x t
U t T T

X x U t T T
− +

− +

=

+ −

+ − − =

θ θ

θ
, 

where ( ), ,U t A B  indicates the cumulative density function of a 

uniform distribution from A to B, evaluated at t. ,Diff ( , , )X T x t θ  is the joint 

probability that the response equals x (x = 0 for an error and x = 1 for a correct 

response) and that the response is given at time t or before, under a Ratcliff 

Diffusion Model with parameter vector θ  (thus, 

,Diff ( , , )X T x t =θ Pr( , | )X x T t= ≤ θ ). The exact formula for this joint 

probability is given in Ratcliff and Tuerlinckx (2002). If t becomes very large, 

then ,Diff ( , , )X T x t θ  approaches Pr( |X x )= θ , which is the marginal 

probability of the response x. Further, T−  and T+  are the minimum and 

maximum of the assumed response time distributions for contaminants. 

Technically, T−  and T  are parameters, but in the remainder of this paper we 

will not treat them as such. They are not included in the parameter estimation 

routine, but are directly estimated with the observed minimum and maximum 

response times (for each condition and each participant), respectively. 

+

The parameter  is the probability of observing a 'good' data point 

(one that is a realization of a Ratcliff diffusion process) and 

π

γ  is the 

probability that a given contaminant is a guess (as opposed to a delayed 

startup). 
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Appendix B: Minimizing the Multinomial Log-Likelihood Function 

Loss function 

DMAT uses a multinomial likelihood function (MLF), which expresses the 

likelihood of observing a certain proportion of responses in a given number of 

reaction time bins, and should therefore be maximized in order to find good 

parameter estimates. 

To define B reaction time bins, we select B-1 monotonically increasing 

bin edges  and define 1,..., Bq q −1 0 0q =  and Bq = +∞ . The observed frequency 

in bin b, in condition c, for response x, is then simply 

, with 1,…,j,…,n1
1

(
cxn

cxb b cxj b
j

O I q t−
=

= < ≤∑ )q cx data points with response x in 

condition c, 1  bins, and ,..., ...,b B ( )I ⋅  the indicator function (which takes the 

value 1 if its argument is true and 0 otherwise). The predicted (or expected) 

proportions in bin b of condition c, for response x, are given by 

, where  indicates the parameter vector 

for condition c, and  is the CDF of the RDM (or of the extended diffusion 

model, as defined in Appendix A). 

, ,( , , ) ( , , )cxb X T b c X T b cP F x q F x q −= −θ 1 θ cθ

,X TF

The MLF that needs to be maximized, for C conditions, is then defined 

as 
1

1 0 1

cxb

C B
O

cxb
c x b

L P
= = =

= ∏∏∏ , or, equivalently, as 

( )
1

1 0 1
2 log( ) 2 log

C B

cxb cxb
c x b

L O P
= = =

Λ = − ⋅ = − ⋅∑∑∑ ,    (B1) 
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which has an optimum (in this case a minimum) at the same point in the 

parameter space as L , but is computationally more attractive. Note that as the 

number of bins B increases (to the point where each bin has at most one 

observation), Λ  becomes equal to the continuous log-likelihood function 

(Heathcote & Brown, 2004). We will hereafter refer to Equation (B1) as 'the' 

multinomial (log)likelihood function (MLF). During parameter estimation this 

will be the loss function we will be minimizing. 

An alternative to the MLF described above is the more common chi-

square loss function (as described by Ratcliff & Tuerlinckx, 2002), which 

expresses a weighted discrepancy between predicted and observed frequencies 

of observations in a given number of data bins. Using the same notation as 

above, the chi-square loss function that needs to be minimized is defined as 

( )21

1 0 1

X
C B

cxb cx cxb

c x b cx cxb

O n P
n P= = =

− ⋅
=

⋅∑∑∑2 . DMAT allows the user to choose between 

these two, but the MLF is the default option. 

Fixed bins versus percentiles. 

Speckman and Rouder (2004), commenting on the grouped maximum 

likelihood method as implemented by Heathcote, Brown, and Mewhort (2002; 

these authors call it quantile maximum likelihood estimation [QMLE] or 

quantile probability products [QPP]; see Brown & Heathcote, 2003; 

Heathcote & Brown, 2004; Speckman & Rouder, 2004), highlighted another 

important consideration that we need to make. Speckman and Rouder note that 

Heathcote et al. (2002) made use of data-dependent bin edges (they selected as 

 61



VANDEKERCKHOVE AND TUERLINCKX 

bin edges a series of order statistics: the 10th, 30th, 50th, 70th, and 90th 

percentiles, thus making the actual values of the bin edges dependent on the 

observed data). As a result of this, the observed frequencies in each of the six 

bins are fixed (to 10N , 5N , 5N , 5N , 5N , and 10N , respectively), 

and the locations of the bin boundaries are random variables. However, the 

true multinomial likelihood distribution (from which (B1) derives) is only 

appropriate if the boundaries are fixed and the frequencies are random. Even 

though Speckman and Rouder (2004) note that the percentile-based method 

seems to have good pre-asymptotic properties, it remains, in their words, 

"estimation without a safety net" (p.576). 

For this reason, we have adapted the loss function to operate not on 

percentile-based bins, but on fixed bins. To find bin boundaries that would be 

appropriate, we calculated the 10th, 30th, 50th, 70th, and 90th percentiles of 

1,000 simulated datasets, based on each of six typical parameter sets (see 

Table 1). We found that these percentiles were generally centered around 

300ms, 360ms, 420ms, 520ms, and 800ms for correct responses, and 380ms, 

470ms, 560ms, 700ms, and 1,000ms for error reaction times. Throughout, we 

use these values as bin boundaries when calculating the MLF. This resolves 

the issue of the "strange multinomial likelihood" that Speckman and Rouder 

(2004) reported. 

Here, too, DMAT allows users to choose between the default fixed 

bins, user-supplied fixed bins, or "data-snooped" percentile-based bins (for 

both the chi-square and the MLF loss functions). 
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Parameter space 

A final choice that has to be made concerns the boundaries of the parameter 

space. Considering that some parameters of our diffusion model cannot take 

all possible real values, we may run into numerical difficulties during 

optimization. There are several possible strategies to avoid these problems, but 

in our algorithm we simply define that  if the parameter set  is 

outside the allowable parameter space. This high penalty value ensures that 

our optimization algorithm will not stray outside the parameter space. 

However, it does introduce large discontinuities in the objective function, 

which we will need to take into account during the optimization phase. 

1010Λ =θ θ

Optimization 

Minimizing the MLF as a function of the design parameters requires the use of 

an iterative optimization algorithm. Equation (B1) is a complicated nonlinear 

function of the data and the diffusion model parameters and it is not possible 

to find explicit formulas to obtain optimal parameter estimates from the data in 

one step. 

To improve the optimization process, we make use of three strategies. 

First, we use a method of moments to produce a good initial estimate of the 

parameters (the EZ-diff algorithm; Wagenmakers et al., in press). Second, we 

have developed a defensive generative algorithm that is both efficient and 

accurate. Third, we incorporate a strategy for identifying and escaping 

suspected local minima. 
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Starting guesses. Starting an iterative optimization algorithm near to 

the optimum will decrease time to convergence. If the user of DMAT did not 

provide the algorithm with a starting guess, DMAT uses the EZ-diff algorithm 

(see below) to generate a plausible starting point for the first model in the 

queue. For subsequent models in a queue, DMAT uses the final estimates of 

the previous model as starting point (if necessary, a linear transformation or 

regression will be applied to ensure that this initial guess does not violate any 

restrictions of the present model). 

The EZ-diff algorithm was introduced by Wagenmakers et al. (in 

press). Under the assumptions of no trial-to-trial variability (η 0t zs s= = = ) 

and no participant bias (z = a/2)), they derived the following system of 

equations: 

1
4

2

2

2

2

logit( )1 1sign( ) logit( ) logit( )
2 2

logit( )

1 exp( )
2 1 exp( )

corr
corr c corr corr corr corr

RT

corr

er RT

Pv P s P P P P P
V

sa P
v

a va sT M
v va s

⎧
⎧ ⎫⎡ ⎤⎪ = − × × × × − × + −⎨ ⎬⎢ ⎥⎪ ⎣ ⎦⎩ ⎭⎪

⎪
= ×⎨

⎪
⎪ − −

= − ×⎪ + −⎪
⎩
, 

where MRT and VRT are, respectively, the mean and variance of the correct 

responses' reaction time distribution,  is the proportion correct answers, 

and 

corrP

( ) ( )logit log 1corr corr corrP P P= −⎡⎣ ⎤⎦ . By convention, s is equal to 0.1. Given 

this system of equations, we are able to make reasonable guesses regarding the 

estimates for v, a, and Ter, separately for each condition. For the remaining 
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parameters, we make the following (arbitrary) guesses: η 0.2= , 1
2z a= , 

9
20zs = a , and 9

10ts T= er . As before, if necessary linear regression techniques 

will be applied to ensure that the starting point does not violate model 

restrictions (e.g., if the model is formulated such that a parameter should be in 

a linear relation with a covariate, the least-squares regression estimates of the 

parameter will be used as starting point). 

Optimization algorithm. To locate the minimum of the MLF, we use an 

iterative optimization algorithm with several phases, each of which brings the 

process closer to the global minimum. The algorithm is based on the Nelder-

Mead Simplex algorithm (NMS algorithm; Nelder & Mead, 1965), with a few 

adaptations. 

The main part of the algorithm is a series of runs of the NMS 

algorithm. This algorithm has several interesting properties that we can use to 

our advantage. In particular, it is considered robust against discontinuities in 

the objective function, and it does not require that we provide analytical 

derivatives of the MLF (which would be time-intensive to compute). The 

NMS algorithm involves creating a so-called simplex (a shape with N+1 

vertices enclosing an N-dimensional subspace), which is moved across the 

objective function in a "downward" direction. As the algorithm progresses and 

draws near to the minimum, the simplex shrinks more and more, until its 

vertices are sufficiently close to each other to be said to occupy a single point 

in the parameter space. In our algorithm, we allow a single NMS run to 

proceed for 200 steps, after which the size of the simplex shape is reset to its 
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original size (the shrinkage is undone). We do this because we have observed 

that (due to numerical issues) our objective function sometimes converges in a 

local minimum. Resetting the simplex size allows the algorithm to escape 

from local minima. 

Normally, we reset the simplex size three times, thus performing four 

runs with maximally 200 steps. When these are finished, we start a fifth, 

longer, NMS run with maximally 5,000 iterations. Usually, however, the last 

NMS run converges before that. DMAT users can change the number of NMS 

runs, as well as the maximum number of iterations allowed. 

The final phase of the algorithm is a single quasi-Newton step, where 

the first and second derivatives of the objective are numerically approximated 

and used to find the local minimum near the point where the NMS run 

converged. If the NMS algorithm converged, this final phase does little to 

improve the accuracy of the parameter estimations. However, it is a 

convenient procedure that provides us with a numerical approximation to the 

Hessian matrix (the matrix of second derivatives) at the minimum, which is 

then used to verify that the solution point is in fact a minimum, and to 

calculate estimates of parameter standard errors. 

Known local minima. The fact that the algorithm has converged to a 

minimum is still no guarantee that we have in fact found optimal parameter 

estimates. A better parameter set might still exist in a region that our algorithm 

has not visited. This is a very difficult problem and it is not possible in general 

to give strong guarantees about the optimality of a set of estimated parameters. 
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However, the authors have had much experience with fitting diffusion models 

and certain regularities in recovered local minima have presented themselves. 

In particular, local minima seem to exist near those boundaries of the 

parameter space where any of the variability parameters , sη t, or sz are zero 

(although it is of course possible that this is a true minimum for some data 

sets). 

To handle these known local minima, we equip the generative 

algorithm with a strategy to identify these suspect parameter estimates, and let 

it perform a 'jump' from the edge of the parameter space to somewhere nearer 

the middle (in particular, sz and st will be changed to half of their maximal 

value, and η  will be, arbitrarily, reset to 0.2). After making this jump, the 

generative algorithm restarts from the NMS phase. We have experienced that 

with this identify-and-jump strategy the algorithm often succeeds in locating a 

better point in the parameter space. 
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List of figure captions 

Figure 1. An illustration of the Ratcliff diffusion model. 

Figure 2. An example parameter matrix. See text for details. 

Figure 3. A decision tree structure illustrating the mixture model.  

Figure 4. The selectivity of the DMAT algorithm is illustrated. Different 

lines indicate different parameter sets. The full black line on the 

diagonal is the statistical expectation of rejected nil hypotheses in 

function of the significance criterion. Lines above the diagonal 

indicate a liberal decision, while lines under it indicate a 

conservative decision. In general, DMAT produces selectivity 

curves that are close to the diagonal. 

Figure 5. The sensitivity of DMAT is illustrated. Different lines indicate 

data sets with larger or smaller simulated differences in drift rate. 

As the simulated difference increases, sensitivity curves depart 

from the diagonal. 

Figure 6. Drift rates of one participant in Experiment 1 of Ratcliff and 

Rouder (1998). Drifts recovered by Model 2 are shown as dashed 

lines, with the steeper line indicating the Speed condition. Drifts 

from Model 3 are full curves, and drifts from Model 5 are stars. 

As can be seen, Model 2 provides a poor fit, while Model 3 is 
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much closer to the separate drift rates, though with still some 

deviations left. 

Figure A1. An EWMA control chart showing guessing for reaction times 

lower than approximately 322ms. See text for details. 
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