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Abstract

A novel hierarchical classes model (RV-HICLAS) for two-way two-mode data is intro-

duced. As the other members of the HICLAS family, the new model implies simultaneous

hierarchically organized classifications of all modes involved in the data. A distinctive feature

of the novel model, however, reads that it yields continuous, real-valued reconstructed data;

this considerably broadens the potential application range of the HICLAS family. Estimates

of RV-HICLAS models are found by minimizing an Lp-norm based loss function. In order

to solve the associated optimization problem, a two-stage algorithm combining a simulated

annealing and an alternating local descent stage is proposed. This algorithm is subsequently

evaluated in a simulation study. Finally, the new RV-HICLAS model is applied to an empirical

data set on anger.
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1 Introduction

Data sets collected in many research domains can be regarded as a mapping from the Cartesian

product of N sets of entities to some value set (for example, the set of reals R or the Boolean set

B = {0, 1}). If all sets in the Cartesian product are distinct, the data set is referred to as N -way

N -mode (Carroll & Arabie, 1980).

A challenge for the data analyst is to capture the structural information that is present in

N -way N -mode data. HICLAS models try to achieve this goal by capturing this information

by means of simultaneous overlapping clusterings for several or all modes involved in the data.

These clusterings are further hierarchically organized, in terms of (generalized) if-then type rules

between partition classes that can be derived from the overlapping clusterings. Furthermore, the

whole of the clusterings, possibly together with an N -way linking array, allows for an approximate

reconstruction of the data. As such, HICLAS models always imply two- or multiway data with the

associated aim of reconstructing the actual data values, rather than of summarizing dependency

information, as implied by a two- or multiway contingency table, or of summarizing interaction

information, as implied by two- or multiway data on the value of a criterion variable associated

with all combinations of values of a number of categorical predictor variables. Finally, HICLAS

models typically go with comprehensive graphical representations.

Up to now, only HICLAS models have been developed that imply two- or three-way binary or

rating-valued reconstructed data (De Boeck & Rosenberg, 1988; Leenen, Van Mechelen, De Boeck,

& Rosenberg, 1999; Ceulemans, Van Mechelen, & Leenen, 2003; Van Mechelen, Lombardi, &

Ceulemans, in press). Yet, often it may be desirable to have models at one’s disposal that include

real-valued reconstructed data values, and this in at least two types of cases. First, in some cases

it may be desirable to allow for real-valued reconstructed data, whereas the actual data are not

real-valued; for example, modeling a binary data set with reconstructed data values in the interval
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[0, 1] may allow the reconstructed data to be interpreted in terms of probabilistic association

strength. Second, in several research domains, the observed data are not of a categorical type,

but rather are values on a continuous scale; examples include response times, intensity of brain

waves, muscle tensions and gene expression strengths; in order to deal with such data properly,

often it may be desirable to approximate them by reconstructed data that take values from the

same set, R. Although the transition from binary/rating-valued to real-valued may seem to involve

only a minor challenge, expanding the HICLAS family to real values implies the need for a new

mathematical framework and a new algorithmic approach for model estimation.

In this paper, we will propose a novel hierarchical classes model that implies real-valued re-

constructed data, the real-valued hierarchical classes model (RV-HICLAS); subsequently we will

propose and evaluate an algorithm to estimate it.

The remainder of this paper is organized as follows: In Section 2, to make this paper self-

contained, we will briefly recapitulate two important existing members of the HICLAS family. In

Section 3 we will then introduce the novel RV-HICLAS model and discuss its estimation. Section

4 presents the results of a simulation study, an illustrative application is discussed in Section 5 and

some concluding remarks are given in Section 6.

2 HICLAS and HICLAS-R

In this section, we briefly recapitulate two important representatives of the family of HICLAS

models: the original (disjunctive) hierarchical classes model (HICLAS) as introduced by De Boeck

and Rosenberg (1988) and the rating-valued hierarchical classes model (HICLAS-R) as introduced

by Van Mechelen et al. (in press).
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2.1 HICLAS

2.1.1 model

The original HICLAS model (De Boeck & Rosenberg, 1988) has been introduced as a model for

two-mode I × J binary object by attribute data matrices D. These data are approximated by an

I × J matrix M of binary reconstructed data values that can be represented by a rank R HICLAS

model. Such a model includes a binary I ×R matrix A and a binary J ×R matrix B. The columns

in A and B represent (possibly overlapping) clusters of objects and attributes, which will further

be called bundles; correspondingly, A and B will be called bundle matrices.

Three types of relations implied by M are represented by the bundle matrices: equivalence,

hierarchy and association. To illustrate, in Table 1, we will make use of the hypothetical recon-

structed data matrix M and the rank 2 HICLAS model for these reconstructed data in Table

2.

Equivalence relations are defined on both the objects and attributes as follows: Each object

(attribute) corresponds to a row (column) in M; two objects are equivalent iff they correspond to

identical rows in M, a similar definition holds for the attributes. In Table 1, objects o1 and o3

are equivalent, as are attributes a2 and a4. Equivalence relations are represented by the bundle

matrices in terms of identical binary row patterns for two equivalent objects (attributes). By

the representation of the equivalence relations and their implied equivalence classes, the HICLAS

model includes a partition of the two modes of the data.

Hierarchical relations are also defined on the elements of both modes of M. These are if-then

type relations and can be considered as quasi-orders on the elements, or as partial orders on

the corresponding equivalence classes. Object i is hierarchically below object i′ if the row in M

corresponding to object i is a subset of the row corresponding to object i′, a similar definition

holds for the attributes. In Table 1, object o2 is hierarchically below object o1, and attribute
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a1 is hierarchically below attribute a3. The hierarchical relations are represented by the bundle

matrices of the HICLAS model in terms of subset-superset relations between the binary patterns

corresponding to two objects (attributes). By the representation of the hierarchical relations, the

classifications included in a HICLAS model turn into hierarchically organized partitions.

The association relation is the binary relation that links the objects and the attributes. It is

represented by the decomposition rule of the HICLAS model:

mij =

R⊕

r=1

airbjr ∀i, j (1)

where
⊕

denotes the Boolean sum, air is the entry in the i− th row and the r − th column of the

bundle matrix A and bjr is the entry in the j − th row and the r− th column of the bundle matrix

B. The decomposition rule in (1) implies that object i is associated to attribute j iff they share at

least one corresponding bundle.

Any HICLAS model goes along with a comprehensive and insightful graphic representation.

Figure 1 illustrates this for the HICLAS model in Table 2. The upper half of the figure represents

the partition of the objects, and the lower half that of the attributes. In the partition of the

objects, hierarchical relations are represented by downward paths between the boxes that denote

the equivalence classes. In the partition of the attributes, they are represented by upward paths

between the equivalence classes. The association relation between object i and attribute j is

represented by a path that includes a dashed line between that object-attribute pair.

2.1.2 data analysis

The goal of a HICLAS analysis is to find, given a data matrix D, a reconstructed data matrix M

that can be represented by a HICLAS model of a prespecified rank, such that M approximates the

data D as closely as possible. In particular, the following loss function is minimized:

f(M) =

I∑

i=1

J∑

j=1

|dij − mij | (2)
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Note that in the binary case this loss function can be considered to be both of a least squares and

of a least absolute deviations type.

To minimize loss function (2), De Boeck and Rosenberg (1988) proposed an algorithm that

consists of two routines: In the first routine, bundle matrices are looked for that combine by de-

composition rule (1) to a model matrix M for which (2) is minimal. The second routine then

transforms the bundle matrices so as to make them represent the set-theoretical relations of equiv-

alence and hierarchy in M correctly.

In particular, the first routine is of an alternating least-squares type. Assuming an initial

configuration for one of the bundle matrices, the procedure re-estimates, by means of Boolean

regressions, the rows of the companion bundle matrix, conditionally upon the other. This is

repeated until further updates do not improve the loss function (2).

In the second routine, the set-theoretical relations are added to the bundle matrices obtained

at the end of the first routine. This is accomplished by applying a closure operation (Barbut &

Monjardet, 1970; Birkhoff, 1940) to the bundle matrices, implying that all individual entries of

the bundle matrices with value 0 are changed to 1 if this modification does not alter M. As shown

by De Boeck and Rosenberg (1988), this operation ensures that the bundle matrices correctly

represent the equivalence and hierarchy relations in M.

2.2 HICLAS-R

2.2.1 model

Van Mechelen et al. (in press) introduced the HICLAS-R model for rating-valued two-mode I × J

object by attribute data matrices D. These data are approximated by an I×J matrix M of rating-

valued reconstructed data entries that can be represented by a rank (R, S, T ) HICLAS-R model.

This model includes a binary I ×R matrix A, a binary J ×S matrix B and a R×S rating-valued

linking matrix G that takes T distinct nonzero values. A and B are called object and attribute
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bundle matrices, G the core. In general one may note that in HICLAS-R, unlike in HICLAS, there

is no longer a one-to-one correspondence between object and attribute bundles, with the number

of object bundles R further possibly being different from the number of attribute bundles S.

As in the original HICLAS model, three types of relations implied by M are represented by

the HICLAS-R model: equivalence, hierarchy and association. To illustrate, we will make use of a

hypothetical reconstructed data matrix M in Table 3 and the (3, 3, 3) HICLAS-R model for these

reconstructed data in Table 4.

Equivalence relations are defined and represented in the same way as in the binary case. Again

they are represented by equivalent elements taking identical bundle patterns. In Table 3, objects

o2 and o5 are equivalent.

Hierarchical relations are in the rating-valued case generalized if-then type relations: Object i

is hierarchically below object i′ if all the entries of the row in M pertaining to object i are less than

or equal to the corresponding entries of the row in M pertaining to object i′, a similar definition

holds for the attributes. In Table 3, object o1 is hierarchically below object o3, and attribute a4 is

hierarchically below attribute a3. Hierarchical relations again can be considered as quasi-orders on

the elements, or as partial orders on the corresponding equivalence classes, and in the HICLAS-R

model they are represented by subset-superset relations between bundle patterns.

The association relation is the mapping that links each object-attribute pair to its corresponding

value in M. This relation is represented by the following decomposition rule:

mij =
R

max
r=1

S
max
s=1

airbjsgrs ∀i, j (3)

where max denotes the maximum operator, air is the entry in the i− th row and the r− th column

of the bundle matrix A, bjs is the entry in the j − th row and the s − th column of the bundle

matrix B and grs is the entry in the r − th row and the s− th column of the core matrix G. Rule

(3) implies that object i is associated to attribute j with strength grs iff grs is the largest value in
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G for which it holds that object i and attribute j belong to bundles r and s, respectively.

Figure 2 is a graphic representation of the HICLAS-R model in Table 4. Equivalence and

hierarchy relations may be read from this figure in the same way as in Figure 1. The association

relation between object i and attribute j is represented by the largest value contained in the

hexagons which are included in a path between that object-attribute pair. For example, the rating

value associated to object o7 and attribute a3 is the maximum of 3, 1 and 2, that associated to

object o2 and attribute a1 is simply 1. By comparing Figure 2 to Figure 1, it should stand out that

in Figure 2 one object bundle may be linked, via a hexagon, to more than one attribute bundle,

and vice versa.

2.2.2 data analysis

For a given rating-valued data matrix D, a HICLAS-R model is estimated by minimizing the

sum of absolute deviations between a rating-valued reconstructed data matrix M and D. The

mathematical expression of the loss function is again (2). Note, however, that in the rating-valued

case this loss function can no longer be considered of a least squares type as well.

To minimize the loss function, Van Mechelen et al. (in press) proposed an algorithm that consists

of three steps. In the first step, the two-way two-mode rating data matrix D is mapped into a

three-way three-mode binary array t(D) by a dummy recoding according to an ordinal coding

scheme, which preserves the relations of equivalence and hierarchy. Next, a three-mode extension

of the HICLAS algorithm, Tucker3-HICLAS (Ceulemans et al., 2003), is applied to the three-way

three-mode binary array t(D). Finally, the Tucker3-HICLAS solution is recoded back, yielding a

reconstructed matrix M of rating values that can be represented by a HICLAS-R model. Note

that the fact that in the data-analytic process the rating-valued data matrix D is recoded into a

binary three-way three-mode array underscores the inherently discrete nature of the HICLAS-R

model.
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3 RV-HICLAS

3.1 model

In this section, we propose a novel HICLAS model, RV-HICLAS, for positive real-valued two-mode

I×J object by attribute data matrices D. These data (which include binary and rating-vlued data

as special cases) are approximated by an I×J matrix M of positive real-valued reconstructed data

entries that can be represented by a rank (R, S) RV-HICLAS model. This model includes a binary

I ×R matrix A, a binary J ×S matrix B and a R×S positive real-valued linking matrix G, which

are called the object and attribute bundle matrices, and the core, respectively.

Equivalence relations are defined and represented in the same way as in the rating-valued case.

Hierarchical relations are again generalized if-then type relations that in the real-valued case

are defined and represented in the same way as in the rating-valued case.

The association relation is the mapping that links each object-attribute pair to its corresponding

value in M. This relation is represented by the decomposition rule:

mij =
R

max
r=1

S
max
s=1

airbjsgrs ∀i, j (4)

A graphic representation of the RV-HICLAS model is analogous to that of HICLAS-R, except

for the fact that the hexagons linking the bundles may contain real values. This implies that the

relations of equivalence, hierarchy and association can be read from a RV-HICLAS graphic in the

same way as for HICLAS-R. An example of such a graphic representation may be found in Section

5 for an empirical anger data set (Figure 4).

Note that grs is now positive real-valued, which implies that decomposition (4) takes place

in the mathematical structure (R+, max,×). This tropical semiring and its isomorphic algebraic

structure, the max-plus algebra, have recently been the subject of intensive study (see, e.g., Baccelli,

Cohen, Olsder, & Quadrat, 1993; Gaubert & Max Plus, 1997; De Schutter, Blondel, De Vries, &
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De Moor, 1998). Note further that the rank of the RV-HICLAS model is indicated by the couple

(R, S), implying that the restriction to only T distinct nonzero values in the core as in HICLAS-R

is relaxed.

The novel RV-HICLAS implies several mathematical questions and challenges. Below, we dis-

cuss three of these more in detail: (1) the fact that only positive real-valued data are reconstructed,

(2) existence of the RV-HICLAS model and (3) uniqueness.

(1) Positive-valued reconstructed data.

The RV-HICLAS model implies reconstructed data entries that take values from the set of positive

reals R
+ including 0. As we will explain, this is desirable both from a data-analytical and as from

a set-theoretical point of view.

From a data-analytical perspective, negative values could be considered on the level of the

reconstructed data as well as on the level of the core entries. In this regard, if there would be

negative values in G only and not in M, it is easy to see that these negative core values may

always be increased to zero, without affecting the reconstructed data entries. On the other hand,

if some mij < 0, then this implies that the bundle patterns of object i and attribute j contain 1’s

only and that all entries in the core are necessarily negative. It is straightforward then to derive

that M contains only two possible values: 0 and the largest entry in G, which is undesirable from

a data-analytical perspective, since in general D contains many more than two values.

From a set-theoretical perspective, the restriction to positive values is necessary. Indeed, in case

some mij < 0 it can be deduced that the subset-superset relation between the bundle pattern of

object i and any other object i′ with a different bundle pattern does not represent the hierarchical

relation between i and i′ in M correctly. This follows immediately from the fact that the bundle

pattern for object i necessarily contains all 1’s, and that the bundle pattern for object i′ therefore

is a subset of that for object i, although mi′j ≥ 0 and hence mi′j > mij .



RV-HICLAS 12

One may note that the restriction to positive real values is linked to the existence of a neutral

and absorbing element. In particular, 0, which is one of the binary values being used in the bundle

matrices, is neutral with respect to max and absorbing with respect to × in (R+, max,×). It is

easy to see that if we include negative values, as in (R, max,×), 0 is no longer neutral with respect

to the maximum operator. Moreover, a null element in this case does not exist.

(2) Existence.

Given an n × m positive real-valued matrix D, an exact RV-HICLAS decomposition of D always

exists. To clarify this, we first rewrite decomposition (4) in an equivalent matrix notation:

M = A⊗ G ⊗ B′ (5)

where ′ denotes matrix transpose and ⊗ denotes the max-× matrix product (which is similar

to the normal matrix product in linear algebra except for the fact that addition is replaced by

max). Then, it is easy to see that an exact RV-HICLAS decomposition exists under the form of

D = Ĩn ⊗ D ⊗ Ĩ
′

m, where Ĩx denotes the closure of the x × x identity matrix.

(3) Uniqueness.

HICLAS models do not suffer from a general type of nonuniqueness, except for permutations of

the bundles. For particular reconstructed data matrices M, however, decomposition (4) may be

nonunique. To be sure that this is not the case it is of interest to identify those characteristics

of the reconstructed values that yield such a unique decomposition. For the binary HICLAS

models, sufficient conditions for uniqueness have been given (Ceulemans & Van Mechelen, 2003).

In Schepers and Van Mechelen (2007) these sufficient uniqueness conditions are generalized to RV-

HICLAS. We recapitulate here the central result and refer to Schepers and Van Mechelen (2007)

for a proof.
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Theorem. If a (R, S) RV-HICLAS decomposition of an I × J real-valued matrix M exists, such

that (1) all bundle specific object (resp. attribute) classes are non-empty, and (2) no object (at-

tribute) plane of G ≤ the elementwise maximum of the other object (attribute) planes of G, this

decomposition is unique upon a permutation of the object and attribute bundles.

If a solution violates this uniqueness condition, nonidentifiability may exist in the binary as

well as in the real-valued part of the model. With respect to the latter, part of this nonuniqueness

is removed by retaining only the maximal solution, Gmax. Note that this is related to the closure

operation applied to the bundle matrices (as explained in 2.1.2) and can also be considered a case

of finding the largest subsolution, a topic in residuation theory in max-plus algebra (see Baccelli

et al., 1993).

3.2 data analysis

3.2.1 Loss function

The aim of a RV-HICLAS analysis is to look for a model matrix M, that can be represented by an

RV-HICLAS model of rank (R, S), and that minimizes the following Lp-norm based loss function:

f(M) = (
I∑

i=1

J∑

j=1

|dij − mij |
p)1/p (6)

In particular, we will focus on the cases p = 1 (least absolute deviations) and p = 2 (least

squares). Note that the estimation of HICLAS-R exclusively relied on a least absolute deviations

loss function. This relates to the fact that the estimation in question relies on an equivalent

reformulation of the HICLAS-R model into a binary Tucker3-HICLAS model (Ceulemans et al.,

2003). For RV-HICLAS, we will consider the more familiar least squares loss function as well,

allowing for better comparisons with other data-analytic methods.
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3.2.2 Algorithm

Within the HICLAS family the optimization of (6) implies a new kind of problem: Whereas

the estimation of all existing HICLAS models comes down to a discrete optimization problem, the

estimation of the RV-HICLAS model involves a mixed-integer optimization problem. In particular,

the estimation of A and B involves an optimization over the Boolean spaces B
I×R and B

J×S ,

respectively, whereas the estimation of G involves an optimization over the real space (RR×S).

In order to find the solution that minimizes (6) for p = 1 or p = 2, we propose an algorithm

consisting of two stages. The first stage is a simulated annealing (SA) step and the second one a

deterministic local descent (LD) that starts from the solution returned by the SA stage. Using such

a two-stage procedure ensures that at least a locally optimal solution is obtained (Aarts & Lenstra,

1997) since the LD stage may act as a (quick) local optimum check in case no improvement was

reached, or it may improve the value of the loss function to a (local) minimum. In the study of

a different model Brusco (2001) found in this regard that the combination of SA and LD showed

good results.

Every run of the two-stage algorithm proposed here starts from a randomly chosen initial solu-

tion. As discussed above, the algorithm may end up in a local optimum. Therefore, it is desirable

to run it multiple times, each time starting from a different initial solution. In particular, we

used 50 independently drawn initial solutions in such a multistart strategy, retaining only the best

outcome as the estimated solution.

First stage: Simulated annealing.

For a general introduction, see Aarts and Lenstra (1997). The basic architecture of the SA stage

is the following: Given a current solution for (6), a trial solution is generated and evaluated to see

whether its loss function value is smaller than that of the current solution. If this is the case, the
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current solution is always replaced by the trial solution; if the trial solution does not improve the

loss function value the current solution is replaced by it with probability

P = e
ft−fc

τ (7)

with τ denoting the current temperature of the annealing process, and fc and ft the values of the

loss function corresponding to the current and trial solutions, respectively. During the annealing

process, the temperature τ is gradually decreased in a series of steps (chains), resulting in an

expected decrease of the probability parameter (7) during the annealing process. Within each

chain, τ is kept constant.

To estimate the RV-HICLAS model, the following specifications and metaparameters have been

chosen for the SA stage of the algorithm. First, the initial solution is generated by drawing the

entries of the bundle matrices A and B iid from a Bernoulli distribution with parameter π = .5,

subject to the restriction that no empty bundles are present. The entries in the initial core matrix

G are further drawn iid from a uniform distribution with lower and upper bound equal to dmin

and dmax, respectively, as those can be easily shown to be the theoretical minimum and maximum

for the core values. To generate trial solutions the following stochastic mechanism is used given a

current solution (A,B,G)c. A trial solution (A,B,G)t is generated by altering the value of one

arbitrarily selected single entry of G, or one arbitrarily selected row pattern in A or B, making

use of a discrete uniform distribution. For the binary bundle matrices, altering the value of an

object (resp. attribute) row pattern implies that it is replaced by a pattern drawn uniformly

from the set of all 2R (resp. 2S) binary row patterns, whereas for the real-valued core matrix G,

altering an entry implies that its current value is replaced by a value drawn uniformly from the

real interval [dmin, dmax]. Third, an initial temperature is chosen such that the annealing process

accepts a high number of trial solutions in the early stages of the process. For this purpose, one

chain is generated in which all trial solutions are accepted. For every pair of successive solutions,
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the difference △f = fn−1 − fn between the corresponding loss function values is stored if this

difference is smaller than zero (or, in other words, if the new solution is worse). After a complete

pass through this initial chain, the estimated initial temperature τinit is calculated as:

τinit =
average△ f

ln(0.8)
(8)

resulting in an average acceptance probability for worse solutions of .8 at τinit (see, e.g., Murillo,

Fernando Vera, & Heiser, 2005). Fourth, the chain length, that is, the number of generated

solutions within one chain, was set equal to I × 2R + J × 2S. Fifth, with regard to the cooling

scheme, each time the algorithm has passed through one complete chain, the current temperature

of the annealing process (τc) is lowered to τnew = .975 × τc. Finally, the final temperature τfinal

was set equal to 10−6. This implies that

TD =
log(τfinal) − log(τinit)

log(.975)
(9)

chains will be passed through during the whole annealing process (Brusco, 2001), after which the

algorithm stops. The best overall solution encountered during the whole process is finally retained

and returned as the estimated solution after completion of the SA algorithm. Note that in most

cases, the last generated trial solution is the same as the best overall solution.

Second stage: Alternating local descent.

In the second stage of the algorithm, trial solutions worse than the current solution are no longer

accepted. In particular, starting with initial values (A0,B0,G0), which are provided by the simu-

lated annealing stage, alternatingly, the best fitting Gw, given Aw−1 and Bw−1, the best fitting

Aw, given Bw−1 and Gw, and the best fitting Bw, given Aw and Gw are looked for (w = 1, 2, ...),

until no more improvement in the value of the loss function is observed.

The conditional estimation of, for example, the object bundle matrix A, given B and the core
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G, comes down to the following optimization problem:

min
air∈{0,1}

(
I∑

i=1

J∑

j=1

|dij −
R

max
r=1

S
max
s=1

airbjsgrs|
p)1/p, (10)

Since (10) satisfies a separability property, conditionally optimal estimates for A can be obtained

by optimizing the individual rows of A separately. To this end, for each row separately, an

enumerative evaluation of all binary patterns is performed; in case of ties, the solution with the

largest number of ones is retained, such that the set-theoretical relations in M are necessarily

represented correctly by the bundle matrices. A conditionally optimal estimate of the attribute

bundle matrix B is obtained similarly.

The conditional estimation of the real-valued core matrix G comes down to the following

continuous optimization problem:

min
grs∈R+

(

I∑

i=1

J∑

j=1

|dij −
R

max
r=1

S
max
s=1

airbjsgrs|
p)1/p (11)

Locally optimal estimates of (11) can be obtained by applying multivariate continuous optimization

procedures such as Quasi-Newton, Levenberg-Marquardt or Sequential Quadratic Programming

(SQP) (see Nocedal and Wright (1999) for detailed information on these optimization procedures).

We propose to use a quasi-Newton line-search SQP approach, which also allows to provide the

algorithm with the theoretical lower and upper bounds for the core entries, i.e., dmin and dmax,

respectively. Note that as an initial value the previous estimate Gw−1 is used. This implies that

the algorithm (Aw−1Bw−1Gw−1AwBwGwAw+1Bw+1...) converges monotonically to a (possibly

local) minimum.
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4 Simulation study

In this section, we present a simulation study to examine the performance of the proposed algorithm

with respect to the minimization of the loss function (4.2.1) and with respect to the extent to which

the optimal solutions recover the truth underlying the data (4.2.2).

4.1 Design

In our simulation study three different types of real-valued I × J matrices must be distinguished:

a true matrix T, which can be represented by an RV-HICLAS model of a prespecified rank; a data

matrix D, which is T perturbed with error; and the model matrix M yielded by the algorithm,

which can be represented by a RV-HICLAS model of the same rank as the true matrix T.

The design of the simulation study was fully crossed, the factors being as follows:

(1) the Size, I × J , of T, D, and M, at 4 levels: 20 × 20, 40 × 40, 80 × 40, 150 × 20;

(2) the Rank, (R, S) of the two-mode RV-HICLAS model for T and M, at 4 levels: (2, 2), (3, 3),

(4, 2), (4, 4);

(3) the Error, ε, which is the expected proportion of variance in D due to error, at 4 levels: .00,

.05, .15, .30;

For each combination of these three independent variables, 20 replicates were studied, yielding 20

× 4 (Size) × 4 (Rank) × 4(Error) = 1280 simulated data sets.

For each combination of the levels of Size, Rank and Error, the 20 true matrices T corresponding

to the 20 replicates were constructed as follows: Bundle matrices A and B were randomly generated

with entries that were independent realizations of a Bernoulli variable with probability parameter

equal to .5, subject to the restriction that no empty columns were present. The entries in the core
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matrix G were independent realizations of a uniformly distributed variable on the real interval

[0,1]. The true matrix T resulted from combining A, B and G by (4). Subsequently, a data

matrix D was constructed by adding error to each true matrix T using the following expression:

dij =
R

max
r=1

S
max
s=1

airbjsgrs + eij ∀i, j (12)

where eij was sampled from N(0, σ2
ǫ ) with σ2

ǫ = ǫ
1−ǫσ

2
T, (σ2

T denoting the variance across all matrix

entries of T).

Finally, all data matrices D were analyzed in the true rank (P, Q) with a loss function based on

the L2-norm by the RV-HICLAS algorithm. Each analysis of a data matrix D yielded one model

matrix M; therefore, in total 20 (replicates) × 4 (Size) × 4 (Rank) × 4 (Error) different triplets

(T,D,M) were obtained.

4.2 Results

4.2.1 Local Optima

In absence of knowledge about the global optimum, for each solution M we evaluated whether the

loss value of M was less than or equal to the loss value of the truth. Note that the loss value of

the truth equals

f(T) = (

I∑

i=1

J∑

j=1

|dij − tij |
2)1/2 (13)

A loss value of M greater than that of the truth implies certainty that the obtained solution is

a local optimum. This, however, happened in only one case, in particular, for a data set in the

condition in which Size equalled 150 × 20, Rank 4 × 2 and Error .30. Therefore, in general the

algorithm appears to succeed in minimizing the loss function (6), or, at least, does not yield suspect

solutions.
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4.2.2 Recovery of underlying truth

In order to assess how well the estimated models recover the underlying truth we calculated the

relative badness-of-recovery (RBOR) of the returned solution for each simulated data set:

RBOR =

I∑
i=1

J∑
j=1

(mij − tij)
2

I∑
i=1

J∑
j=1

t2ij

(14)

On average, RBOR equalled .004 with a standard deviation of .007 and a range of [0, .088]. We

further analyzed the effect of the independent variables on RBOR by means of an analysis of vari-

ance, retaining only effects with η > .15. Only for Error a sizeable effect was observed (η = .41).

Figure 3 shows that the value of RBOR increases with increasing amounts of error in the data,

implying that the estimates get further away from the underlying truth when the proportion of

noise in the data increases.

insert Figure 3 somewhere here

Note that, taking into account the values of the overall mean and the range of RBOR, the overall

discrepancy between the estimated model matrix M and the underlying true matrix T is always

relatively small; this implies an excellent recovery of the underlying truth by the RV-HICLAS

algorithm.

5 Illustrative application

In this section, we apply the RV-HICLAS model to a problem in the domain of componential

emotion theory. In this domain, emotions are not treated as monolithic unities but rather as

sets of components, including situational appraisals (e.g., ”I feel attacked by someone else”) and

emotional meta-experiences (e.g., ”I feel angry”). A challenge for researchers in this area is to
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understand the interrelations (including implicational if-then relations) between these emotional

components (see, e.g., Kuppens, Van Mechelen, Smits, & De Boeck, 2003).

To study these relations with regard to the emotion of anger, we will make use of a data set

in which 357 participants were asked to what degree they experienced a collection of 14 different

emotion components in a set of 24 possibly anger-eliciting situations (Kuppens & Van Mechelen,

2007) (see Tables 5 and 6 for the full lists of emotion components and situations, respectively).

In the present reanalysis of these data we will only focus on the general psychological question:

How does the average person react in different situations? We therefore will proceed with the

24× 14 situation by emotion component matrix D as obtained after averaging the raw data across

participants.

RV-HICLAS models were fitted to D, in ranks ranging from (1, 1) to (5, 5), yielding a set of 25

solutions. Based on a generalized scree-plot (Ceulemans & Kiers, 2006) and on the interpretability

of the different solutions, the solution in rank (3, 3) was selected; this solution accounted for 65.89%

of the variance in D. Figure 4 shows the corresponding graphic representation.

In order to gain insight in the anger-eliciting process, we first focus on the hierarchy of the sit-

uation classes. To build an interpretation we consecutively examine the bottom classes along with

all hierarchically higher situated classes, and look for distinctive characteristics for the correspond-

ing sets of classes. For example, the empty leftmost bottom class along with its two hierarchically

higher classes, contains situations such as CD-PLAYER and LET DOWN that all seem to indicate

the presence of a deliberate infliction of harm (INTENTIONALLY ). The middle bottom class

(including situations such as SWIM) along with its hierarchically higher classes (including CD-

PLAYER, LET DOWN and COMA) contains situations that all involve the presence of someone

else rather than the participant under study (OTHER INVOLVED). Finally, the rightmost bottom

class (including situations such as FAIL EXAM) along with its two hierarchically higher classes

(including COMA and LET DOWN) involves situations with a large negative impact (LARGE
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DAMAGE ). Note that the empty bottom class in the INTENTIONALLY set reflects the logical

relation that intentionality requires the presence of someone else.

Second, we consider the hierarchy of the emotion component classes. This hierarchy contains

three non-empty bottom classes, and one class that spans these three. The top class mainly

consists of emotional meta-experiences such as ”I feel angry”. The three bottom classes in their

turn represent channels through which the emotion of anger can be triggered. Specifically, a

person may feel angry because he/she is being attacked (ATTACK ), because his/her goal is being

obstructed (GOAL BLOCKING), and/or because someone else is to blame (BLAME ).

Third, we may consider the link between the situation and emotion component hierarchies.

For this purpose, we look at the hexagons that link the two hierarchies, and that contain linkage

strength values. In Figure 4, to facilitate the interpretation, the values in the hexagons are also

visualized in terms of grayscale levels (with higher values corresponding to darker gray levels).

It can be seen that LARGE DAMAGE is almost exclusively linked to GOAL BLOCKING, and

OTHER INVOLVED almost exclusively to BLAME, whereas INTENTIONALLY is linked to

GOAL BLOCKING, BLAME as well as ATTACK. It can further be deduced that the highest

levels of anger are elicited on the one hand by LARGE DAMAGE (which triggers anger through

the GOAL BLOCKING channel) and on the other hand by INTENTIONALLY (which triggers

anger primarily through BLAME but also to some lesser extent through the other two channels).

6 Conclusion and discussion

In this paper, a novel hierarchical classes model has been proposed that includes positively real-

valued reconstructed data. As such it implied the need for a new mathematical framework and

a new algorithmic estimation approach. With respect to the latter, unlike for the other members

of the HICLAS family, the corresponding optimization problem is no longer purely discrete but
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mixed discrete-continuous. In order to solve it, a two-stage algorithm, consisting of a simulated

annealing and an alternating local descent stage, was proposed. In a simulation study, this algo-

rithm showed excellent performance with respect to both minimizing the loss function and recovery

of the underlying truth. Finally, the application of RV-HICLAS to data from a study within the

componential emotion domain made clear that the novel HICLAS model may yield meaningful and

well interpretable results.

The model proposed in this paper is an unconstrained real-valued hierarchical classes model.

It may, however, be sensible to develop constrained versions of the model. In this regard, a partic-

ularly interesting constraint could be to enforce G to be diagonal. Linking up with a framework

developed by Ceulemans, Van Mechelen, and Kuppens (2004), this may be classified as a value

constraint. It can be included in a straightforward way in the estimation approach as proposed in

this paper. Note that a diagonal RV-HICLAS core implies a one-to-one correspondence between

object and attribute bundles, such as in the original disjunctive binary HICLAS model for binary

data (De Boeck & Rosenberg, 1988). An example in which such a constrained model may be

particularly useful is in the case of a person by item data matrix on the quality of the solution

that each person arrives at for each item. The bundles as yielded by a diagonal core RV-HICLAS

analysis could be interpreted as underlying solution strategies. In particular, on the person side the

bundles then indicate, for each individual, whether he or she masters the corresponding strategies

or not; whereas on the item side, the bundles denote whether a particular strategy is appropriate to

solve each item or not. The diagonal elements of the core then represent the quality of the solutions

associated with each of the solution strategies. Furthermore, if a certain person then masters two

or more solution strategies through each of which a particular item can be solved, then the quality

of the ultimate solution arrived at will be that associated to the best of all strategies in question.

Several further extensions of the RV-HICLAS model can be considered; three of these will

be discussed here somewhat more in detail. First, real-valued HICLAS models for three-way
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three-mode data can be developed. Such models could be considered real-valued counterparts

for Tucker3-HICLAS (Ceulemans et al., 2003), Tucker2-HICLAS (Ceulemans & Van Mechelen,

2004) and INDCLAS (Leenen et al., 1999), in which the core is allowed to contain positively real-

valued entries (with in the INDCLAS case, the core further being forced to take a superdiagonal

form). One field of application in which such models could be useful is the contextualized study of

personality (Mischel & Shoda, 1998; Vansteelandt & Van Mechelen, 1998; Kuppens, Van Mechelen,

Smits, De Boeck, & Ceulemans, in press), in which three-mode person by situation by behavior

data are a key object of research. Second, the model as described in the present paper is based

on the maximum operator and, as such, belongs to the class of (generalized) disjunctive HICLAS

models. It is possible, however, to formulate a dual, conjunctive variant of the model. Such a

variant would rely on the Min- rather than on the Max-operator and its decomposition rule would

take place in the mathematical structure (R−, min,×). Third, it is possible to include offset terms

to the model. Such terms could be estimated simultaneously with the other part of the model, in

line with the approach taken by Kiers (2006) for the family of three-way component models.
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Table 1: Hypothetical reconstructed binary data matrix M

attributes

objects a1 a2 a3 a4

o1 1 1 1 1

o2 1 0 1 0

o3 1 1 1 1

o4 0 0 0 0

o5 0 1 1 1

o6 0 1 1 1

o7 0 0 0 0
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Table 2: HICLAS model for M in Table 1

Bundle matrices

Object Attribute

bundle bundle

Objects OB1 OB2 Attributes AB1 AB2

o1 1 1 a1 0 1

o2 0 1 a2 1 0

o3 1 1 a3 1 1

o4 0 0 a4 1 0

o5 1 0

o6 1 0

o7 0 0
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Table 3: Hypothetical reconstructed rating-valued data matrix M

attributes

objects a1 a2 a3 a4

o1 3 2 3 1

o2 1 3 3 1

o3 3 3 3 1

o4 0 1 2 2

o5 1 3 3 1

o6 3 3 3 2

o7 3 0 3 1
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Table 4: HICLAS-R model for M in Table 3

Bundle matrices G

Object Attribute

bundle bundle

Objects OB1 OB2 OB3 Attributes AB1 AB2 AB3 AB1 AB2 AB3

o1 1 0 0 a1 1 0 0 OB1 3 1 2

o2 0 1 0 a2 0 0 1 OB2 1 1 3

o3 1 1 0 a3 1 1 1 OB3 0 2 1

o4 0 0 1 a4 0 1 0

o5 0 1 0

o6 1 1 1

o7 1 0 0
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(1) I am capable of undertaking action against it. (ACTION)
(2) I think someone else does not take enough consideration of me. (NO CONSIDERATION)
(3) I feel attacked by someone else. (ATTACKED)
(4) I think someone else is responsible. (SOMEONE ELSE RESPONSIBLE)
(5) I find the situation frustrating. (FRUSTRATION)
(6) I feel angry. (ANGRY)
(7) I am being treated unrespectfully. (NO RESPECT)
(8) I think someone has bad intentions towards me. (BAD INTENTIONS)
(9) My self-esteem is being threatened. (SELF-ESTEEM)
(10) My plans/goals are being obstructed (OBSTRUCTION)
(11) It really affects me as a person. (AFFECT PERSONALLY)
(12) It is important to me. (IMPORTANT)
(13) I think someone else is to blame. (SOMEONE ELSE TO BLAME)
(14) I feel desperate. (DESPERATE)

Table 5: Description of all fourteen emotion components.
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o1, o3

o5, o6 o2

a2, a4 a1

a3

o4, o7

Figure 1: Graphic representation of the rank 2 HICLAS solution of Table 2.
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o3

o1, o7 o2, o5 o4

a1 a4 a2

a3

3 1 1 1 2 2 3 1

o6

Figure 2: Graphic representation of the rank (3, 3, 3) HICLAS-R solution of Table 4.
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Figure 3: Box plot of relative badness-of-recovery (RBOR) for each level of Error.
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Figure 4: Graphic representation of the rank (3, 3) RV-HICLAS solution for anger data.
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(1) Your friend is in a coma after an accident. (COMA)
(2) A friend lets you down on a date, and calls you the following day to let you know that he/she

didn’t feel like meeting with you and went out with other people instead. (LET DOWN)
(3) A friend returns your CD player, claiming that everything is OK, but it turns out to be broken

afterwards. (CD-PLAYER)
(4) A swimming appointment is cancelled because one of your friends falls ill. (SWIM)
(5) The waiter in a restaurant informs you that it may take a while before you can eat because

it is a busy evenening. Finally, you are served after 50 minutes of waiting. (RESTAURANT)
(6) Upon leaving class, you notice that a police officer is removing your bike because it was

illegally parked. (POLICE REMOVES BIKE)
(7) You are hit by a car on your way to an important appointment, causing you to miss the

appointment. (CAR ACCIDENT)
(8) You arrange with a good friend to go out together, and he/she will contact you to meet each

other. You don’t hear from him/her. (NOT CALL)
(9) On holiday with friends, you arrange that each, in turn, has to carry the heavy tent gear.

One day, the tent gear is missing. (TENT)
(10) You are hit on your bike by another biker. He/she apologizes, and proposes to pay back the

damage to your bike. (BIKES HIT)
(11) You have arranged for a hotel room with sea-view. Upon arrival, you are given a room without

a sea-view. (SEA VIEW)
(12) You are in love with someone but he/she is more interested in someone else. (LOVE SOME-

ONE ELSE)
(13) You didn’t study hard enough for an exam, and you fail the exam. (FAIL EXAM)
(14) Your clock failed to wake you up in the morning and you miss the final class of a course.

(ALARM CLOCK)
(15) You arrange with your roommates that each in turn has to put out the garbage. When it is

someone else’s turn you noticed that he/she didn’t clean up. (GARBAGE)
(16) A floppy disk holding an important school assignment is destroyed by your computer.

(FLOPPY)
(17) You hear that a friend is spreading gossip about you. (GOSSIP)
(18) You miss a popular party because you fall asleep at home. (MISS PARTY)
(19) You are fired from your holiday job. (FIRED FROM HOLIDAY JOB)
(20) A fellow student fails to return your notes when you need them for studying. (COURSE

NOTES)
(21) You bump into someone on the street. (BUMP)
(22) You have a group assignment with some fellow students. They don’t work hard, and you all

get a bad grade. (GROUP ASSIGNMENT)
(23) You’re out for a drink after a hard day’s work, and you have to wait 30 minutes before you

are served. (DRINK)
(24) Your roommates went to the movies without informing you. (MOVIES)

Table 6: Description of all twenty-four situations.


