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Abstract 

 

Multi-mode partitioning models for N-way N-mode data reduce each of the N modes in the 

data to a small number of clusters that are mutually exclusive. Given a specific N-mode data 

set, one may wonder which multi-mode partitioning model (i.e., with which numbers of 

clusters for each mode) yields the most useful description of this data set and should 

therefore be selected. In this paper, we address this issue by investigating four possible model 

selection heuristics: multi-mode extensions of Calinski and Harabasz’s (1974) and Kaufman 

and Rousseeuw’s (1990) indices for one-mode k-means clustering and multi-mode 

partitioning versions of Timmerman and Kiers’s (2000) DIFFIT and Ceulemans and Kiers’s 

(2006) numerical convex hull based model selection heuristic for three-mode principal 

component analysis. The performance of these four heuristics is systematically compared in a 

simulation study, which shows that the DIFFIT and numerical convex hull heuristics perform 

satisfactory in the two-mode partitioning case and almost perfectly in the three-mode 

partitioning case. 
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1. Introduction 

 

Multi-mode partitioning models for N-way N-mode data reduce each of the N modes to a 

small number of clusters that are mutually exclusive. In particular, the two-mode partitioning 

model (Baier, Gaul & Schader, 1997; Gaul & Schader, 1996; Vichi, 2001) simultaneously 

partitions the rows and columns of a two-way two-mode data matrix, whereas the three-mode 

partitioning model (Kiers, 2004; Rocci & Vichi, 2005; Schepers, Van Mechelen & 

Ceulemans, 2006) simultaneously partitions the rows, columns, and slices of a three-way 

three-mode data array. As such, two-mode partitioning is an extension of the well-known k-

means clustering method (e.g., Hartigan, 1975), which reduces one mode of a two-way two-

mode data matrix to k non-overlapping clusters. Moreover, three-mode partitioning, apart 

from being a straightforward generalization of two-mode partitioning, is closely related to 

three-mode principal component analysis (3MCA; Tucker, 1966), which reduces each mode 

of a three-way three-mode data array to a small number of components. In particular, 3MCA 

reduces to three-mode partitioning if the component matrices for the three modes are 

constrained to take the form of partition matrices. 

Up to now, most research in the domain of multi-mode partitioning has focused on the design 

and evaluation of algorithms for estimating multi-mode partitioning models (Castillo & 

Trejos, 2002; Schepers et al., 2006; van Rosmalen, Groenen, Trejos & Castillo, 2005). 

A problem that has not yet received much attention is that of model selection: Given a 

two- or three-way data set, which multi-mode partitioning model (in terms of the number of 

clusters for each mode) yields the most useful description of the data set? In this paper we 

will address this model selection issue by discussing four possible model selection heuristics 

and by systematically comparing their performance in a simulation study. Given the close 

relation of multi-mode partitioning to traditional k-means clustering on the one hand and to 
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3MCA analysis on the other hand, two of the four considered model selection heuristics are 

multi-mode extensions of established criteria in traditional k-means clustering whereas the 

other two heuristics have originally been proposed to select among 3MCA models of different 

complexities. 

The remainder of the paper is organized as follows: Section 2 recapitulates both two- 

and three-mode partitioning. Section 3 proposes the four model selection heuristics under 

consideration in the present paper in detail. In Section 4, a simulation study is presented in 

which the four considered heuristics are evaluated in terms of their capability of indicating the 

true complexity of two- and three-mode data sets. In Section 5 we applied each of these 

heuristics to set of mixed empirical-artificial data sets. Section 6 contains a few concluding 

remarks. 

 

2. Multi-mode partitioning 

 

2.1 Models 

2.1.1 The two-mode partitioning model 

The two-mode partitioning model approximates a real-valued I × J object by attribute data 

matrix D by a real-valued model or reconstructed data matrix M of the same size. Defining a 

partition matrix as a binary matrix of which each row sums to 1, M can be further 

decomposed into an I × P object partition matrix A, a J × Q attribute partition matrix B and a 

real-valued P × Q weight matrix W, with (P,Q) being the complexity of the model:  

1 1

.
QP

ij ip jq pq
p q

m a b
= =

= ∑∑ w      (1) 

In (1),  aip and bjq indicate whether or not object i and attribute j belong to object cluster p and 

attribute cluster q, respectively, and wpq represents the strength of the relation between 
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clusters p and q. As such, (1) implies that mij equals wpq iff object i and attribute j belong to 

object cluster p and attribute cluster q, respectively. In matrix notation, two-mode partitioning 

can be formalized as: 

     .=M AWB'       (2) 

 

2.1.2 The three-mode partitioning model 

Being a straightforward generalization of the two-mode partitioning model, the three-mode 

partitioning model approximates a real-valued I × J× K object by attribute by source data 

array D by a real-valued model or reconstructed data array M of the same size, which can be 

further decomposed into I × P,  J × Q, and K × R partition matrices A, B, and C, and a real-

valued P × Q × R weight array W, with (P,Q,R) being the complexity of the model:    

         (3) 
1 1 1

.
QP R

ijk ip jq kr pqr
p q r

m a b c
= = =

=∑∑∑ w

In matrix notation, the three-mode partitioning model is written as follows: 

),= ⊗A AM AW (C' B'     (4) 

where ⊗ denotes the Kronecker product, and MA and WA denote the I × JK and P × QR 

matricizations of M and W respectively (Kiers, 2000). 

 

2.2 Data analysis 

Given a multi-mode data array D and a desired complexity (i.e., a prespecified number of 

clusters for each mode of D), multi-mode partitioning looks for a model array M of the 

desired complexity that maximizes the percentage of data variance accounted for by the 

model:            

    
2

2

|| ||1 100,
|| ||

VAF
d

⎛ ⎞−
= − ×⎜ ⎟−⎝ ⎠

D M
D

    (6) 
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where d and ||.|| denote the overall data mean and the Euclidean norm, respectively. To obtain 

multi-mode partitioning solutions with good VAF-values, several algorithms have been 

proposed. In particular, Gaul and Schader (1996), Baier et al. (1997), Castillo and Trejos 

(2002), and van Rosmalen et al. (2005) proposed algorithms for the two-mode case, whereas 

Rocci and Vichi (2005), Kiers (2004) and Schepers et al. (2006) proposed three-mode 

partitioning algorithms. For the analyses reported in this paper, we used the three-mode 

partitioning algorithm (i.e., DRIFT with 50 random multi-starts) that turned out to be most 

robust in the comparative simulation study performed by Schepers et al. (2006). Note that any 

three-mode partitioning algorithm can also be used for two-mode partitioning of data 

matrices, because a two-mode data matrix can also be conceived as a three-mode data array 

with the third mode consisting of one element only.  

 

3. Four model selection heuristics for multi-mode partitioning 

 

Up to now, almost no heuristics for selecting the numbers of clusters in multi-mode 

partitioning have been proposed in the literature. One exception to this is an extension of the 

well-known Calinski-Harabasz index (Rocci and Vichi, 2005) (see below). Promising 

candidate heuristics could be inspired by model selection work in the domain of one-mode 

partitioning on the one hand and in the domain of multi-mode component analysis on the 

other hand. In this section we will discuss four promising model selection heuristics: Two are 

derived from existing heuristics for one-mode partitioning and two from methods for selecting 

among multi-mode component analysis models of different complexities.  

 

3.1 Extended Calinski-Harabasz indices 
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In order to select the most useful number of clusters in a traditional k-means clustering of the 

objects of a given object by attribute data matrix, Calinski and Harabasz (1974) proposed the 

following CH–index:  

( ) /( 1) .
( ) /( )

trace kCH
trace I k

−
=

−
B
W

     (7) 

As trace(W) and trace(B) are the within- and between-cluster sums-of-squares, and k and I 

denote the number of clusters and the total number of objects, it can be concluded that the 

CH-index divides the between-cluster variability of a solution by the corresponding within-

cluster variability, both corrected for their respective degrees of freedom. As such, the CH-

index will attain high values for solutions with enough but not too many clusters. The 

Calinski-Harabasz model selection heuristic then consists of two steps: 

1. For all k-means clustering solutions among which one wants to select, determine the 

value of the CH-index. Note, however, that CH is not defined for k = 1, implying that 

one will never select a model with one cluster only. 

2. Select the solution with the highest CH-value. 

 

The Calinski-Harabasz index outperformed 29 other k-means clustering model 

selection heuristics in Milligan and Cooper’s (1985) well-known simulation study. Therefore, 

it is not surprising that this index still is the most widely used and preferred model selection 

criterion in traditional k-means clustering.  

Rocci and Vichi (2005) already proposed a two-mode partitioning extension of the 

Calinski-Harabasz index; however, no systematic investigation of its performance has been 

pursued so far.  In particular, Rocci and Vichi (2005) proposed to choose the solution for 

which it holds that 

    
2

2 2

|| ' || /( 1) ,
|| ' || /( )

d PQExtCH
IJ PQ

− −
=

− −
AWB

D AWB
   (8) 
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is maximal. It can be derived that, like CH,  divides the sum-of-squares explained by 

the model by the residual sums-of-squares, both corrected for their respective degrees of 

freedom. The extended two-mode Calinski-Harabasz index can easily be generalized to the 

three-way case: 

2ExtCH

    
2

3 2

|| ( ' ') || /( 1) ,
|| ( ' ') || /( )

d PQRExtCH
IJK PQR

⊗ − −
=

− ⊗ −
A

A A

AW C B
D AW C B

  (9) 

It is easily verified that in case K = R = 1, (9) is equivalent to (8). Note that ExtCH2 and 

ExtCH3 are undefined for P = Q = 1 and P =Q = R = 1, respectively, implying that one will 

never select a multi-mode partitioning solution with one cluster only for each mode. 

 

3.2 Extended silhouette indices 

Kaufman and Rousseeuw (1990) proposed the Silhouette index for choosing among k-means 

clustering solutions with varying numbers of clusters. This index is defined for a given object 

i  as 

     ,
max{ , }

i i
i

i i

b aS
a b
−

=     (10) 

where ai  and  bi  denote the average (Euclidean) distance of object i to the other objects in the 

same cluster, and the average (Euclidean) distance of object i to the objects in the nearest 

other cluster, respectively, where the nearest other cluster is defined as the one with the 

minimal bi-value. Clearly, the numerator of (10) becomes large, if the solution contains at 

least enough clusters to adequately capture the variability in the objects. By dividing this 

numerator by the maximum of ai  and  bi , the index necessarily takes values between -1 and 1, 

indicating poor and well clustering, respectively, for object i. Note that the concept of other 

clusters only makes sense if k>1, implying that solutions with one cluster only are not 

considered. The average of the Silhouette-index Si across objects will further act as a model 

selection heuristic, with the solution with the highest average Silhouette-value being selected. 
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Recent studies (Tibshirani, Walther & Hastie, 2001; Sugar & James, 2003) showed that the 

Silhouette index performs almost as good as the Calinski-Harabasz index. 

 In this paper, we will evaluate the following two-mode extension of the Silhouette  

heuristic:  For all two-mode partitioning solutions under consideration, we determine the 

value of the Silhouette-index for each object and each attribute separately. Note that these 

indices can only be computed if P > 1 and Q > 1; in other words, only solutions with more 

than one cluster for each mode are considered. Next we compute the average Silhouette-index 

across objects  and the average Silhouette index across attributes , which are in 

their turn averaged, weighted by the number of objects and attributes:  

1( )E S 2( )E S

1
2

( ) ( )2I E S J E SExtS
I J

× + ×
=

+
    (11) 

The solution that maximizes ExtS2 is to be selected. 

For selecting among three-mode partitioning models, the procedure is similar, making use 

of a weighted combination (ExtS3) of the average silhouette indices for the objects, attributes 

and sources. 

 

3.3 DIFFIT 

Both this method and the next one are based on the idea that the most promising 3MCA 

solutions, that is, the solutions with the best fit-complexity balance, are located at elbows in 

the upper boundary of the convex hull of a goodness-of-fit versus complexity plot of the set of 

solutions from which one wants to choose (Kroonenberg & Van der Voort, 1987; 

Kroonenberg & Oort 2003). This convex hull idea implies that the complexity of 3MCA 

solutions is to be summarized by means of a single number instead of three (i.e., the number 

of components for each mode).  In particular, the DIFFIT method (Timmerman & Kiers, 

2000) works as follows: 
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1. For all 3MCA solutions among which one wants to select, determine the VAF-values. 

Furthermore, the complexity of the different solutions is expressed by one number 

sum, that is, the sum of the numbers of components P+Q+R. 

2. For each observed sum-value, retain only the best fitting solution, that is, the solution 

with the highest VAF-value. Indicate the N retained solutions by ssum. 

3. For each of the N retained solutions, compute difsum as the difference between 

sumVAF and 1sumVAF − ; this implies that the dif-value of the simplest solution (1,1,1) 

equals 0.  

4. Exclude all solutions si for which a solution sj (j>i) exists such that difj>difi. Number 

the M remaining solutions by m=1..M. The associated sum-values are given by 

sum(m), implying that the corresponding dif-values are given by difsum(m).  

5. For the first M-1 solutions, compute  

     bsum(m)=difsum(m)/difsum(m+1).     (12) 

6. Eliminate solutions that entail VAF increases that are smaller than the overall expected 

increase in VAF when considering a more complex solution, the latter being estimated 

by ² /( 3)maxsum −X , with summax=min(I,JK) +min( J,IK) + min(K,IJ). Note that the 

denominator, summax - 3, is based on the observation of Wansbeek and Verhees (1989) 

that summax is the highest sensible complexity and that three sum values (i.e., 1, 2, and 

4) will not occur or are not sensible. 

7. From the remaining solutions, select the solution with the highest bsum(m)-value. 

 

The DIFFIT heuristic showed almost perfect performance when evaluated in 

simulation studies.  To obtain two- and three-mode partitioning versions of DIFFIT, the 

following simple adjustments suffice: In step 1, to express the complexity of a two-mode 

partitioning solution by a single number, the sum P+Q of the number of clusters for the two 
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modes is computed; similarly, the complexity of a three-mode partitioning solution is given 

by P+Q+R. With respect to step 6, for multi-mode partitioning, summax equals the sum of the 

numbers of elements pertaining to each mode. Furthermore, whereas in case of two-mode 

partitioning, only a sum-value of 1 can not occur, in three-mode partitioning sum-values of 1 

and 2 are not sensible; therefore, we divide ²X  by I+J-1 and I+J+K-2, respectively. One 

may note that, in contrast to the extended Calinski-Harabasz and Silhouette indices, DIFFIT 

allows to make a selection among all possible solutions. 

 

  

3.4 Numerical convex hull method 

Ceulemans and Kiers (2006) presented the following numerical convex hull based method, to 

select among 3MCA solutions of different complexities: 

1. Determine the complexity- and VAF-values of all 3MCA solutions from which one 

wants to choose. Ceulemans and Kiers (2006) considered two options for quantifying 

the complexity of a solution: the number of free parameters fp=IP+JQ+KR+PQR-P²-

Q²-R² and the sum of components sum=P+Q+R. Simulation results showed that, for 

choosing among 3MCA solutions only, the use of the sum-values yielded slightly 

better results than the use of the fp-values. 

2. For each of the n observed sum-values, retain only the best fitting solution, that is, the 

solution with the highest VAF-value. 

3. Sort the n retained solutions by their sum-values and denote them by si (i=1…n). 

4. Exclude all solutions si for which a solution sj (j<i) exists such that VAFj > VAFi. 

5. Consecutively consider all triplets of adjacent solutions: Exclude the middle solution 

if its point is located below or on the line connecting its neighbours in a VAF versus 

sum plot. 
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6. Repeat Step 5 until no solution can be excluded anymore. This step yields the 

solutions on the upper boundary of the convex hull. 

7. Determine the st-values  

 1 1

1 1

.i i i
i

i i i

VAF VAF VAF VAFst
sum sum sum sum

− +

− +

i

i

− −
=

− −
 (13) 

of the retained convex hull solutions. 

8. Select the solution with the highest st-value. Note that a relatively large st-value 

indicates that allowing for sumi components (instead of sumi-1 components) increases 

the VAF-value of the model considerably, whereas allowing for more than sumi 

components hardly increases the VAF-value. Thus, the solution is selected after which 

the increase in VAF-value levels off. Note that it is impossible to select the least and 

the most complex model, respectively, since (13) is undefined for these solutions. 

 

This method appeared to have almost perfect performance in simulation studies. 

Moreover, it also performed well when used for selecting among three-way hierarchical 

classes models of different complexities (Ceulemans & Van Mechelen, 2005), the models in 

question implying an overlapping clustering of all modes in a three-way three-mode binary 

data array.  

To obtain multi-mode partitioning versions of the numerical convex hull procedure, it 

is only necessary to specify how to quantify the complexity of a solution in Step 1. In this 

regard, we propose to use for a two-mode partitioning solution the sum P+Q of the numbers 

of clusters for the two modes, and for a three-mode partitioning the sum P+Q+R of the 

numbers of clusters for each of the three modes.  

 

4. Simulation study 
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In this section, we present two simulation studies in which we evaluate to which extent the 

different model selection criteria succeed in indicating the true underlying complexity in the 

data. First, we discuss the design of the simulation study and the performance of the four 

model selection criteria with respect to indicating the correct underlying numbers of clusters 

in the context of choosing among two-mode partitioning models. Next, we discuss the design 

and the results pertaining to a simulation study in which the selection of the numbers of 

clusters of three-mode partitioning models for three-way three-mode data is investigated. 

 

4.1 Two-mode partitioning 

4.1.1 Design 

To explain the design of the data generation, three different types of real-valued I × J matrices 

must be distinguished: a true matrix T, which can be represented by a two-mode partitioning 

model with a prespecified number of clusters for each mode; a data matrix D, which is T 

perturbed with error; and the model matrix M yielded by the two-mode partitioning 

estimation, which can be represented by a two-mode partitioning model with the same 

number of underlying clusters as the true matrix T. Three design factors were fully crossed on 

the level of the data generation (matrices T and D) for the data generated in this simulation 

study:  

1. the size I × J of the data matrices at two levels: 40 × 40, 80 × 20; 

2. the numbers of clusters present in the two-mode partitioning model that underlies the 

data matrices, at five levels: (2,2), (3,2), (3,3), (4,3), (4,4); 

3. the amount of error on the data at three levels: 15, 30, 45%. 

For each cell of the design ten replications were considered, yielding 300 two-mode simulated 

data sets.  In particular, for each combination of the levels of size, numbers of clusters and 

error, partition matrices A and B are drawn by randomly assigning each element of a mode to 
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one of its corresponding clusters. A true matrix T then is obtained by generating entries of W 

as independent realizations of a uniformly distributed variable in [0,1] and by combining the 

resulting A, B and W by (1). Next, corresponding data matrices D are obtained by 

     ,ε ε= + = +D AWB' E T E     (14) 

where ε denotes a coefficient for manipulating the error level, and E is sampled from the 

standard normal distribution and multiplied by a scalar such that =T E . 

Each of these 300 simulated data sets were subjected to 25 two-mode partitionings by 

considering all combinations of numbers of clusters ranging from (1,1) to (5,5). Subsequently, 

for each data set, each of the four model selection criteria were applied to the obtained 25 

solutions. 

 

 

4.1.2 Results 

Figure 1 displays the frequencies with which each of the four model selection criteria indicate 

the correct underlying numbers of clusters. The numerical convex hull procedure performs 

best with 236 ‘hits’ out of 300 (or 79%). The DIFFIT method performs almost as good with 

234 hits (78%). The Extended Calinski-Harabasz and Silhouette indices clearly do not 

perform as well as the former two methods (with hit percentages of 25 and 30, respectively). 

 

[insert Figure 1 about here] 

 

For 57 out of the total of 300 data sets (19%),  both DIFFIT and the numerical convex hull 

select the same incorrect solution. A closer examination of these data sets reveals an 

underestimation of the underlying numbers of clusters in each case, that is, the indicated 

number of clusters for one mode is never larger than the true number of clusters for that 
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mode. Moreover, it appeared that the corresponding VAF-values of these incorrectly chosen 

solutions in general are almost as large as the goodness-of-data values (GOD) which indicate 

the percentage of variance accounted for in the data by the true underlying model: 

     
2

2

|| ||1 100,
|| ||

GOD
d

⎛ ⎞−
= − ×⎜ ⎟−⎝ ⎠

D T
D

   (15) 

This means that the “incorrectly” chosen solutions explain a fairly large amount of the 

structural part in the data and in this respect act as approximately equivalent to the true 

underlying model. 

 In order to investigate the effect of the three design factors (size, numbers of clusters 

and error) on the performance of each of the four model selection methods, we counted how 

often each method in each condition indicated the correct underlying numbers of clusters. We 

analyzed these frequencies (between 0 and 10) by means of a repeated multivariate measures 

analysis of variance (RMANOVA), using only main effects and first-order interactions of 

model selection method and the independent variables. Sufficiently large effect sizes (η2 > 

0.10) are only observed for numbers of clusters (η2 = 0.20), model selection method (η2 = 

0.51) and interaction between numbers of clusters and model selection method (η2 = 0.11). It 

can be seen from Figure 2 that the sizeable interaction is mostly due to a large decrease in 

performance (i.e., from perfect to worst out of four) for the Extended Silhouette index when 

the numbers of clusters becomes larger than (2,2). Two remarks are important here: First, as 

discussed in 3.2, the Extended Silhouette index does not allow the selection of models with 

less than two clusters for each mode. This implies that in all cases where the true underlying 

numbers of clusters equals (2,2), a correct selection corresponds to the selection of the least 

complex model possible for this index. Second, closer inspection of the cases where this index 

selects an incorrect solution shows that it always underestimates the underlying numbers of 

clusters. Taking into account these two remarks, it is not surprising that this index performs 
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well only when the true numbers of clusters equals (2,2). Finally, we note that the same 

tendency to underestimate the numbers of clusters is observed for the Extended Calinski-

Harabasz index. 

 

[insert Figure 2 about here] 

 

 

4.2 Three-mode partitioning 

4.2.1 Design 

For the data generated in the part of the simulation study that pertains to three-mode 

partitioning, a completely analogous design was used as for two-mode partitioning. The levels 

of the three design factors here are: 

1. the size I × J× K  of the data arrays at three levels: 20 × 20 × 20, 30 × 30 × 9, 80 × 10 

× 10; 

2. the true numbers of clusters present in the three-mode partitioning model that 

underlies the data arrays, at five levels: (2,2,2), (3,2,2), (4,2,2), (4,3,2), (4,4,4); 

3. the amount of error on the data at three levels: 15, 30, 45%. 

By generating 10 replicates in each cell of the design by ( ' ) ,ε= ⊗ +A AD AW C B' E  a total of 

450 data sets are considered in this simulation study. 

Each of these 450 simulated data sets were subjected to 125 three-mode partitioning 

analyses by considering all combinations of numbers of clusters ranging from (1,1,1) to 

(5,5,5). Subsequently, for each data set, each of the four model selection criteria was applied 

to the resulting 125 solutions. 
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4.2.2 Results 

As depicted in Figure 3, for 124 (28%), 196 (44%), 438 (97%) and 442 (98%) out of the total 

of 450 data sets, the Extended Calinski-Harabasz index, the Extended Silhouette index, the 

DIFFIT procedure and the numerical convex hull heuristic, respectively, succeeded in 

indicating the correct underlying numbers of clusters. 

 

[insert Figure 3 about here] 

 

Clearly, as in the two-mode case, DIFFIT and the numerical convex hull heuristic are superior 

to the Extended Calinski-Harabasz and Silhouette indices. Moreover, the former two model 

selection heuristics perform almost perfect. We used the same repeated multivariate measures 

analysis of variance procedure as in Section 4.1.2, using only main effects and first-order 

interactions of model selection method and the independent variables. A sufficiently large 

effect size (η2 > 0.10) is only observed for model selection method (η2 = 0.68), indicating that 

the design factors are more or less irrevelant in explaining the performance in indicating the 

correct numbers of clusters. As an aside, it is interesting to note that, similarly to the two-

mode case, the Extended Calinski-Harabasz index, whenever it selected an incorrect three-

mode partitioning solution, always underestimated the correct numbers of clusters. No such 

systematic (mis)behavior was observed for the Extended Silhouette index. 

 

5. Application to a collection of mixed empirical-artificial data sets 

 

One may wonder to which extent the results found in the simulation studies above also hold 

for more realistic data sets.  In particular, the question may be raised whether our reported 

findings apply in cases where (1) the underlying structure is a natural one (as opposed to an 
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artificially simulated one), and (2) the error on the data is not Gaussian distributed. In this 

section, we will apply all four model selection heuristics to a collection of simulated data sets, 

all of which are constructed on the basis of an empirical data set, the Chopin’s preludes data 

set, which can be downloaded from http://three-mode.leidenuniv.nl. As Murakami and 

Kroonenberg (2003) describe in detail, this data set was gathered by asking 38 Japanese 

university students to rate the 24 preludes composed by Chopin on twenty bipolar scales (e.g., 

bright-dark, slow-fast). Murakami and Kroonenberg (2003) suggested to preprocess the 

resulting 24 (preludes) × 20 (scales) × 38 (participants) data array D by centring the scores 

across the prelude mode and by subsequently normalizing the scores per scale. 

 We analyzed this data set with the numbers of clusters ranging from (1,1,1) to (5,5,5), 

yielding 125 three-mode partitioning solutions. Subsequently, on the basis of the numerical 

convex hull method we retained the solution with numbers of clusters equal to (2,3,2) (the 

DIFFIT method indicates the same solution as most appropriate). 

 Next, we obtained 100 simulated data sets from the Chopin data and the solution with 

complexity (2,3,2) by: (a) reconstructing the model array M according to (3), (b) obtaining 

the residual array R by subtracting M from D, and (c) constructing 100 simulated data arrays 

by adding residual arrays, the entries of which were drawn randomly with replacement from 

the set of residuals R, to the model array M. Note that the 100 simulated three-way three-

mode data arrays constructed in this way have the same empirically obtained underlying true 

structure, and do not include iid Gaussian distributed error. 

 We analyzed all 100 mixed empirical-artificial data sets, with the numbers of clusters 

ranging from (1,1,1) to (5,5,5), yielding 125 three-mode partitioning solutions for each. Next, 

we applied each of the four model selection heuristics considered in this paper to the set of 

solutions for each data set and calculated the proportion of data sets for which each of the 

heuristics indicated the “true” underlying numbers of clusters of (2,3,2). These proportions 
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equalled 0, .81, 1.00 and 1.00 for the Extended Calinski-Harabasz index, the Extended 

Silhouette index, the DIFFIT procedure and the numerical convex hull heuristic, respectively. 

In line with the findings of our two simulation studies with artificial data, the DIFFIT and 

convex hull methods have a perfect performance. The performance of the extended Calinski-

Harabasz index is even worse than in the simulation studies with artificial data whereas the 

extended Silhouette index seems to perform somewhat better than expected. We conclude that 

the ordering of the four model selection heuristics on the basis of their model selection 

performance for this set of 100 mixed empirical-artificial data sets is the same as the one that 

showed up in our simulation studies with artificial data.  

 

6. Concluding remarks 

 

In this paper we compared the performance of four different model selection heuristics to 

select among multi-mode partitioning models of different complexities. It was found that the 

procedures specifically designed for a multi-mode context (i.e., DIFFIT and numerical convex 

hull) perform much better than procedures based on an extension of what usually is applied in 

one-mode k-means clustering (i.e., Calinski-Harabasz and Silhouette). Moreover, it was found 

that the performance of the former two model selection criteria ranged from satisfactory (in 

the two-mode case) to almost perfect (in the three-mode case). The difference between the 

model selection methods further was found to be the most important factor in explaining the 

performance in indicating the correct numbers of clusters. Only in the two-mode case, the 

(interaction with) numbers of clusters also turned out to be important. However, this finding 

could be attributed to the fact that the Extended Silhouette index does not allow to select 

models with less than two clusters for each mode. 
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 The multi-way model selection criteria differ from the extensions of one-mode 

procedures in two respects: First, they explicitly take into account the complexity of the 

considered solutions. Second, the logic behind the numerical convex hull, and implicitly also 

the DIFFIT method, is that only those solutions are considered that yield an increase in 

explained variance that is not smaller than increases for subsequent solutions (i.e., the 

solutions that lie on the upper boundary of the convex hull). Note further that multi-way 

model selection criteria require a specification of the model complexity. Therefore, both 

aspects cannot easily be disentangled in an explanation of the good performance of the multi-

way model selection criteria. 

 The other two methods considered in this paper are merely straightforward extensions 

of model selection criteria that have been shown to be useful in the context of one-mode k-

means clustering. As such, one may argue that these methods, unlike the DIFFIT and 

numerical convex hull methods, do not fully take into account the specific nature of multi-

mode data and models. 
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Figure captions. 

 

Figure 1. Frequency of correct two-mode model selection by each of the four model selection 

criteria under study. 

 

Figure 2. Mean frequency of correct two-mode model selection by each of the four model 

selection criteria under study, for each level of numbers of clusters. 

 

Figure 3. Frequency of correct three-mode model selection by each of the four model 

selection criteria under study 
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