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Abstract 

In this paper, a diffusion model for the analysis of multivariate longitudinal data with 

continuous and possibly unbalanced measurement times is presented. The central idea is to 

model the data from a single person with an Ornstein-Uhlenbeck diffusion process. We 

extend it hierarchically by allowing the parameters of the diffusion process to vary randomly 

over different persons. With this approach, both intra- and interindividual differences can be 

analyzed simultaneously. The individual difference parameters can be regressed on 

covariates, thereby providing an explanation. We apply the method to data from an 

experience sampling study to investigate changes in the core affect. It can be concluded that 

some Big Five factors (extraversion, agreeableness, neuroticism) are related to features of the 

trajectories in the core affect space, such as average pleasantness, autocorrelation, variability 

of the movements. 
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A hierarchical Ornstein-Uhlenbeck diffusion process for multivariate longitudinal data 

Many characteristics are constantly subject to change. Emotions and mood are 

obvious examples, but also measures that are intuitively believed to be very stable such as 

personality characteristics (e.g., Borkenau & Ostendorf, 1998) reveal their changing nature   

when repeated measures are taken. The analysis of a multivariate or vector-valued time series 

measured for a single individual is well developed. The dynamic factor analysis model 

(Ferrer & Nesselroade, 2003; Molenaar, 1985; Wood & Brown, 1994) - which is an 

improvement upon the older P-technique factor analysis (Cattell, 1963) - provides a widely 

used example of a method for such a multivariate time series. 

Besides variation within a single individual, people also tend to differ from each other 

with respect to almost every conceivable psychological characteristic. A single characteristic 

of this nature is often measured repeatedly for a sample of individuals. The analysis of such a 

relatively short univariate time series collection (also called longitudinal data) is commonly 

carried out with multilevel models (Goldstein, 2003; Raudenbush & Bryk, 2002). Such 

models cope in a straightforward way with unbalanced data (i.e., the number of 

measurements and measurement times can differ over persons) and with intra- and 

interindividual difference variables. 

The analysis of multivariate longitudinal data is not as well developed as the 

univariate case (Dubin & Müller, 2005; Weiss, 2005). In the case of multivariate longitudinal 

data, several response variables are measured at multiple time points for a sample of 

individuals. The methodology for multivariate longitudinal data is a currently active field of 

research, both in psychology (e.g., Blozis, 2004; Bollen & Curran, 2006; MacCallum, Kim, 

Malarkey, & Kiecolt-Glaser, 1997; Thum, 1997) and in biostatistics (e.g., Becket, Tancredi, 

& Wilson, 2004; Fang, Tian, Xiong, & Tan, 2006; Fieuws & Verbeke, 2004; O’Brien & 

Fitzmaurice, 2005; Thiébaut, Jacqmin-Gadda, Babiker, & Commenges, 2005).  
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In this paper, we present a random-effects model for the analysis of multivariate 

longitudinal profiles with continuous and possibly unbalanced measurement times. The main 

idea is to model the sequence of multivariate measurements within a person with an 

Ornstein-Uhlenbeck (OU) diffusion process. A diffusion process is a continuous-time 

continuous state Markov process. Both the cross-correlation (dependence between the several 

response variables) and the serial correlation structure are represented in a natural way in the 

diffusion process-based model. In addition, we allow the driving parameters of the OU 

process to differ over persons (i.e., they are random effects). The mean as well as the 

variance and covariance parameters will be turned into random effects. In this way, not only 

the interindividual but also the intraindividual variability can be described and explained (by 

regressing the random effects onto predictors or covariates; see De Boeck & Wilson, 2004). 

Because the OU process has a stationary distribution, the proposed model is 

especially useful for phenomena that exhibit a centralizing tendency. Moods and emotions 

are prime examples of domains in which a centralizing tendency can be found (Larsen, 2000; 

Lykken & Tellegen, 1996). The idea is that every individual has their own ideal set point 

with respect to a certain emotion or mood. It can be assumed that people adjust their current 

emotional state towards this ideal set point whenever there is a deviation, and the larger the 

deviation, the stronger the adjustment. Evidence for such a homeostasis effect in emotions 

has been recently found by Chow, Ram, Boker, Fujita and Clore (2005) using a damped 

oscillator model, which shows some similarities with the OU model proposed in this paper. 

The OU process and some variants (e.g., the integrated OU process) have been 

proposed as a models for the analysis of longitudinal profiles in several fields. For example, 

single time series from measurements of animal movement have been modeled as an OU 

process by Blackwell (1997, 2003), Brillinger (2004) and Dunn and Gipson (1977). The 

position of a tagged animal is recorded at regular times and the resulting trajectories are 
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modeled with an OU process. However, a major difference between our psychological 

approach and this biological application is that in the latter one there is no interest in 

describing and explaining differences between subjects. In the context of longitudinal data 

analysis, Taylor, Cumberland, and Sy (1994) have proposed a univariate integrated OU 

process for the serial correlation process in a linear mixed model, besides the regular 

Gaussian measurement error (see Verbeke & Molenberghs, 2000). In the case of an 

integrated OU process, it is the first derivative that follows an OU process (for details, see 

below). A possible disadvantage of the integrated OU process is its non-stationarity (the 

variance of the process depends on the measurement time) and therefore Taylor et al. (1994) 

model the difference between consecutive measurements. Sy, Taylor, and Cumberland 

(1997) use the bivariate integrated OU process for the modeling of bivariate longitudinal 

data. De la Cruz-Mesía and Marshall (2006) propose the OU model as a model for serially 

correlated error in a nonlinear mixed-effects model.  

In addition, it has to be noted that diffusion models have been applied extensively in 

psychological research; most often as reaction time models in the area of elementary decision 

tasks and information processing paradigms. Commonly the well-known Wiener process 

with absorbing boundaries has been used extensively (Ratcliff, 1978, 2002; Ratcliff & 

Tuerlinckx, 2002), but Diederich (1997) and Diederich and Busemeyer (2003) apply an OU 

process to data from elementary decision tasks. Comparing this field with the type of 

application in the current paper, the major difference lies in the nature of reaction time (and 

choice) modeling, i.e. the realized sample path of the diffusion model is considered 

unobservable. As a model for reaction times and choice responses, the only observable 

features are the time to absorption and possibly the boundary of absorption and from this 

information, some basic features of the process have to be determined.  



A hierarchical Ornstein-Uhlenbeck 

 

6 

 

The structure of the remainder of the paper is as follows. In the next section, we 

explain the OU diffusion process together with the interpretation of its parameters. 

Subsequently, we discuss a hierarchical extension. An application to the modeling of core 

affect trajectories is presented afterwards and the paper ends with a discussion. 

 

 

The Ornstein-Uhlenbeck Diffusion Process 

In this section, we want to give a non-technical and self-contained account of the OU 

diffusion process. A more detailed explanation can be found in Cox and Miller (1972), Dunn 

and Gipson (1977), Karlin and Taylor (1981) and Blackwell (2003). At this point, we do not 

yet present an application, so our explanation will be in general terms without reference to a 

substantive area. 

Let us assume that the state of an individual at time t (t ≥0) can be represented as a 

point 1 2( ) ( ( ), ( ),..., ( ))Y
T

qt Y t Y t Y t=  in a continuous q-dimensional space. In general, an OU 

diffusion process is a continuous-time Gaussian process { }( ) : 0Y t t ≥  defined on this q-

dimensional space such that, given that the process was in state Y(t) at time t, the conditional 

distribution of the position ( + )Y t d  d time units later is: 

 

( ) ( ) ( ) ( ( ( ) ) )Y Y y N y
d d ' d

qt d t t ~ e t , e e− − −+ = + − −Β Β Βµ µ Γ Γ , (1) 

 

where µ  is a q-dimensional vector and ΒΒΒΒ  and Γ are q q×  matrices. The function e
M
 (with M 

a square matrix) is the matrix exponential
 1
.  
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If ΒΒΒΒ  is a positive definite matrix, then the Ornstein-Uhlenbeck process is stationary, 

because as d → ∞ , the matrix exponential part 0de− →B and the process has the following 

equilibrium or stationary distribution:  

 

( ) ( )Y Nq~t ,µ Γ .   (2) 

 

From Equation 2, it can be deduced that µ  is the mean of the equilibrium distribution 

and Γ is its covariance matrix (hence, Γ is positive definite). The assumption of stationarity 

implies that if the process runs for an infinite long period of time, this equilibrium density is 

the density function of the visited points in the q-dimensional space. It will also be assumed 

in this paper that the distribution of Y(0) (the first measurement, when time t equals 0) is the 

equilibrium distribution. 

From the formulation of the conditional or instantaneous (if d is very small) mean of 

the process ( ( ) )y
de t−+ −Β

µ µ  (see Equation 1), we can see that the conditional mean 

depends on the previous position ( )y t , on the time difference d between the two 

measurements and on two parameters of the process: µ  andΒΒΒΒ . The interpretation of these 

two parameters will be explained now. As explained above, the parameter µ  is the centre of 

the equilibrium distribution and can thus be seen as a point of attraction in the q-dimensional 

space. Because of this property, µ  is also denoted as the homebase of the process.  

The q q× matrix ΒΒΒΒ  controls the strength of the centralizing force, which keeps the 

process in the vicinity of the homebase. This matrix represents a mean reverting or 

centralizing tendency, since it impedes the process to diffuse away from the homebase. To 

interpret the centralizing tendency, it is easier to start with its explanation for a one-

dimensional model (q=1). In that case, the conditional mean of Y(t+d) given y(t) is equal to 
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βµ ( ( ) µ)de y t−+ −  (with β >0). From the latter equation, it can be easily derived that if β is 

large, the conditional mean is very close to the homebase µ. When β approaches zero, the 

homebase takes a value close to the previous position (with the Wiener process as limiting 

case if β→0, provided that γβ remains constant where γ is the standard deviation of the 

univariate equilibrium distribution).  

To simplify the interpretation in the general q-dimensional case, we only deal in this 

paper with the subset of isotropic ΒΒΒΒ  matrices. The matrix ΒΒΒΒ  is said to be isotropic if 

= βΒΒΒΒ ΙΙΙΙ , where ΙΙΙΙ  is the q q×  identity matrix (because ΒΒΒΒ  is required to be positive definite, 

β >0). If ΒΒΒΒ  is restricted to be isotropic, it can be shown that βd de e− −= I
Β . The characteristics 

of the conditional mean β ( ( ) )de t−+ −yµ µ  reveal that if β  becomes large (i.e., strong 

centralizing tendency), the exponential factor goes to 0, meaning that the next point comes 

from a normal distribution with the homebase µ  as a mean. Alternatively, when β  is small 

(i.e., weak centralizing tendency), the exponential factor is close to 1 and the next position is 

a draw from a normal distribution with the previous point as a mean. Thus, as in the one-

dimensional case, the matrix exponential part de−β  behaves as a weight function, taking 

values between 0 and 1, and adding a certain proportion of the distance between the previous 

point and the homebase to the homebase.  

Given a previous point y(t) and a mean µ , Figure 1 depicts the 0.5 probability 

contour curves of three conditional distributions from Equation 1 for a two-dimensional 

(q=2) model. In all three cases, all parameters are kept constant, and just the centralizing 

tendency differs (small, medium, large). With a small β  value, the instantaneous mean of the 

distribution of the next point is close to the previous point but as β  increases the 

instantaneous mean is moving closer to the homebase. Note that the instantaneous variance 
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also depends on the centralizing tendency parameter: a larger β  value involves a larger 

variability (see later). 

 

INSERT FIGURE 1 ABOUT HERE 

 

For isotropic ΒΒΒΒ  matrices, it holds that for any dimensionality of the space, the 

conditional mean lies somewhere on the line connecting µ  and y(t). A related advantage with 

isotropic matrices is that the centralizing tendency does not give any special importance to 

the chosen coordinate system (the centralizing tendency matrix is invariant under rotation 

and reflection; see also Blackwell, 1997). Thus, the centralizing tendency is controlled only 

by the distance from the homebase of the process and not its direction 
2
. 

In Appendix A, it is shown that the (continuous) autocorrelation function ρ(d) of an 

OU process equals e
–βd
. Because the autocorrelation function is exponentially decaying as a 

function of continuous time, the OU process is the continuous time variant of what is known 

in the time series literature as the autoregressive process of order 1 (denoted as AR(1); see 

Brockwell & Davis, 2002). Figure 2 shows the change in the autocorrelation function as a 

function of time in the case of four different β  values. Although the range of the β  

parameter is relatively small, it leads to a remarkable effect on the slope of the 

autocorrelation function. High (low) β  values lead in general to a low (high) autocorrelation 

because the serial correlation function decreases more (less) steeply. 

 

INSERT FIGURE 2 ABOUT HERE 

 

The matrix Γ is the covariance matrix of the stationary distribution in Equation 2 and 

plays a role in the conditional covariance as well. The matrix Γ is a positive definite 
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symmetric q × q matrix containing the variances for each dimension as diagonal elements 

(denoted with the corresponding row index) and the covariances as off-diagonal elements: 

 

1 1

1

γ γ

Γ

γ γ

q

q q

 
 =  
 
 

…

⋮ ⋱ ⋮

⋯

. 

 

Large variance values imply that the process can go through dramatic changes (i.e., it is very 

volatile), while small variances presume smoother trajectories. The covariances represent the 

extent to which changes in one dimension tend to covary with changes in another dimension. 

It is often referred to as the volatility parameter. 

Examining the features of the instantaneous variance d ' de e− −− Β Β
Γ Γ  we can see that 

as the exponential part goes to 0 (i.e., a large centralizing tendency and/or time difference), 

the instantaneous variance converges to the variance of the stationary distribution. As the 

exponential part goes to 1 (i.e., small centralizing tendency and/or time difference), the 

instantaneous variance becomes very small. To illustrate this, assume for simplicity that q = 

2. Then d ' de e− −− Β Β
Γ Γ  equals:  

 

( ) ( )
( ) ( )

2 2

1 12

2 2

12 2

1 1

1 1

d d

d d

e e

e e

− β − β

− β − β

 γ − γ −
 
 γ − γ − 

, 

 

from which we can see the effect of the centralizing tendency β  for a higher dimensional 

case (given a constant time difference). On one hand, when β is large, 1 2andγ γ  are 

multiplied by a number close to one and hence the instantaneous variances are near the 

variances of the stationary distribution. On the other hand, when β  is small, the conditional 
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variances are close to 0. The same reasoning applies to the covariances. However, when 

considering the instantaneous cross-correlations, it can easily be seen that they are 

independent of the centralizing tendency and the time difference. Moreover, they are equal to 

the correlations of the stationary distribution ( 12

1 2

γρ =
γ × γ

).  

An equivalent and convenient way of representing the OU process is through a 

stochastic differential equation (SDE). SDEs provide an intuitive appealing way of 

understanding diffusion processes and they have a direct link with the more familiar field of 

deterministic differential equations. However, a full and rigorous treatment of SDEs would 

require the length of a monograph. Arnold (1974), Karlin and Taylor (1981) and Smith 

(2000) are good starting points for the study of SDEs. To simplify matters, we will assume 

that q = 1, such that the vector µ  and the matrices ΒΒΒΒ  and Γ reduce to the scalars µ, β and γ, 

respectively. For the one-dimensional OU process considered in this paper, the 

corresponding SDE equals: 

 

[ ]( ) ( ) 2 ( )= β µ − + βγdY t Y t dt dB t ,    (3) 

 

where dY(t) is the random change in the process Y(t) in a small time interval dt and B(t) 

represents a univariate standard (i.e., driftless and variance equal to one) Brownian motion 

process. As can be seen from Equation 3, the change in Y(t) consists of two components: a 

deterministic part and a stochastic part (embodied by the Brownian motion term). If γ→0, the 

stochastic part disappears and we are left with a simple first-order linear differential 

equation. One can also see that the magnitude of change in the deterministic part depends on 

the difference between the homebase µ and the current position Y(t). If there were no 
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stochastic disturbance in Equation 3, the solution of the deterministic differential equation 

would be equal to (given an arbitrary initial value at time 0 of Y(0)): 

 

[ ]( ) (0) tY t Y e−β= µ + − µ . 

 

This solution is exactly the scalar version of the mean of the conditional distribution in 

Equation 1. Given the initial value Y(0), the exact position of the deterministic process can be 

found for every time difference t. Moreover, if the time difference becomes large, the process 

converges to the homebase µ. However, when the stochastic disturbance term is added again, 

the OU process is retrieved and after a very long time difference, the exact position of the 

process is unpredictable because of the inherent stochastic nature of the process. 

 

A hierarchical extension of the OU diffusion process 

For the case where longitudinal data are collected for a random sample of persons, it 

is natural to consider a hierarchical extension of the OU diffusion process in order to describe 

and explain interindividual differences. Let us first fix some notation. A specific person p 

(p=1,…,P) is measured np times at the sequence of time points: 1 2 pp p ps p ,nt ,t , ,t , ,t… … . Note 

that we do not require that persons are measured at regular time intervals or that they are 

measured at exactly the same time points. The measured sequence of positions in the 

multidimensional space is denoted as 1 2 ,( ), ( ), , ( ), , ( )
pp p ps p ny t y t y t y t… … . In the hierarchical 

extension of the OU diffusion process, it will be assumed that the individual sets of OU 

parameters are drawn from a common population distribution.  

For all persons, the model for the first observation of the chain of measurements is 

the person-specific equilibrium distribution: 
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1 ~( ) ( , )Y Np q p pt µ Γ . 

 

This assumption can be justified, since in many applications the process has been diffusing 

long enough to have converged to its stationary distribution and forgotten its initial position. 

For the subsequent points, the conditional distribution of a single person p at time ts given its 

position in the previous position y(tp,s-1) is normal with instantaneous mean psδδδδ and variance 

psΛΛΛΛ : 

 

( )1 1( ) ( ) ( )Y Y yps p ,s p ,s q ps pst t t ~ N ,δ Λ− −=     (4) 

 

where 1( )

1( ( ) )yp ps p ,st t

ps p p ,s pe t
Β

µ µδδδδ −− −
−= + −  and 1 1( ) ( )p p s p ,s p p s p ,st t ' t t

ps p pe e
Β Β

Λ Γ Γ− −− − − −= − .  

The individual parameters on the population level come from different distributions. 

The homebase pµ  is assumed to follow a multivariate normal distribution. The mean vector 

µ  is the population mean of the means of the individual stationary distributions. The 

covariance matrix µΣΣΣΣ  represents the variations and associations that exist in the population 

between the individual means of the stationary distributions. It should be noted once more 

that each person has their own equilibrium distribution but the means come from a q-

dimensional normal population distribution. 

Not only is the mean of the stationary distribution allowed to be person-specific, but 

also its covariance matrix is assumed to be person specific: 
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1 1

1

p qp

p

q p qp

γ γ

Γ

γ γ

 
 =  
 
 

…

⋮ ⋱ ⋮

⋯

 . 

 

Therefore, we need to propose a population distribution for these covariance matrices, one 

that ensures the positive definiteness of ΓΓΓΓp. Moreover, we would like to regress the variances 

and covariances on covariates. The latter requirement rules out the inverse-Wishart 

distribution as candidate population distribution, since it does not allow in a natural way the 

regression of variances and covariances on covariates. One possible solution is to decompose 

the covariance matrix (Barnard, McCulloch, & Meng, 2000), usually into standard deviations 

and correlation matrices and assume proper distributions for the latter in order to ensure the 

positive definiteness. In this paper, we will split the covariance matrix into variances and a 

correlation. Next, the logarithms of the variances are sampled from a normal distribution. 

Using the Fisher transformation of the correlation coefficient, we are able to sample this 

transformed value from a normal distribution, which also provides the possibility of 

regressing the mean of this distribution on covariates. However, this solution for the 

decomposition is restricted to the two-dimensional case (and given the application we have in 

mind, that is sufficient). To regress (co)variances on predictors in the general 

multidimensional solution, we refer to Daniels and Pourahmadi (2002), who use a Cholesky 

decomposition for the covariance matrix. 

For the special case where q = 2 (as in the application of this paper), the simple 

solution looks as follows. The logarithm of the variances 1pγ and 2 pγ  can be sampled from a 

multivariate normal distribution: 
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1

2 log(γ) log(γ)

2

log(γ )
~ ( , )

log(γ )

p

p

 
  
 

N ω Σω Σω Σω Σ ,  

 

where 1 1 2

1 2 2

2

log( ) log( )

log( ) 2

log( ) log( )

γ γ γ
γ

γ γ γ

 σ σ
=  
 σ σ 

ΣΣΣΣ  is the population variance-covariance matrix of the log-

gammas. The correlation of the population distribution of the variances represents the 

dependence between the log-variances of the two dimensions.  

The covariance parameter 12 pγ  of Γ p can be expressed in terms of standard deviations 

and the correlation 12 1 2p p p pγ = γ × γ ×ρ . Instead of proposing a population distribution for 

the covariance parameter, it will be assumed that the Fisher-z transformed (or z-transformed 

in short) individual-specific cross-correlation coefficient F( )pρ  is drawn from a normal 

population distribution: 

 

2

F

11
F( ) log ~ (F( ), )

2 1

p

p

p

 + ρ
ρ = ρ σ  − ρ 

N .  

 

The cross-correlation for a person p, pρ  indicates the extent to which changes in one 

dimension tend to correlate with changes in the other dimensions for person p. From the 

mean of the population distribution of the z-transformed pρ , it can be learned whether there is 

on average (i.e., in the population) a positive, negative or zero correlation between the 

changes in two dimensions.  

Finally, because the centralizing tendency matrix is isotropic ( = βp p ΙΒ ), we need to 

assume a population distribution only for the single parameter β p . It is assumed in this paper 

that β p  is sampled from a lognormal distribution (it has to be larger than zero) so that: 
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2

log(β) log(β)log(β ) ~ (ω ,σ )p N . 

In a next step, covariates can be introduced into the model by regressing the 

individual OU parameters onto these covariates. This allows for explaining the individual 

differences in characteristics of the trajectories. Suppose k covariates are measured and xjp 

denotes the score of person p on covariate j (j = 1,…,k). Then we can collect all covariate 

scores into a vector (together with a constant 1 for the intercept) ( )'

1 21, , ...,=p p p kpx x xx . 

Moreover, let 
1µαααα  be the vector with regression coefficients for the regression of 1µ (i.e., the 

population homebase of the first dimension). The vectors with regression coefficients for the 

other parameters are given analogous names (e.g., 
2µαααα  for 2µ , 

1γ
αααα  for 1γ , etc.) .  

For the homebase, we assume the following linear regression model: 

 

1

2

2

'
~ ,

'
µ

µ

µ

  
  
  
  

p

p

p

N
x

x

αααα
µ Σµ Σµ Σµ Σ

αααα
  

 

where 1 1 2

1 2 2

2

2

µ µ µ
µ

µ µ µ

 σ σ
=  
 σ σ 

ΣΣΣΣ  is the covariance matrix. 

The logarithms of the diagonal elements of the volatility covariance matrix pΓ  are 

regressed on the covariates in the following way: 

 

1 1

2 log( )

2
2

'
log ~ ,  

'

p

p

p

p

γ

γ
γ

  γ 
      γ      

x
N

x

αααα
ΣΣΣΣ

αααα
.  

 

The z-transformed correlation coefficient F( )pρ  is also regressed on covariates: 
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2

F FF( ) ~ ( ' , )p p
ρ σN x αααα . 

 

The logarithm of the centralizing tendency is sampled from a normal distribution in the 

following way: 

 

( ) ( )2

log( )log ~ ' ,  p p β ββ σN x αααα . 

 

Application to core affect trajectories 

The hierarchical OU model as described in the previous sections will serve as a 

model for the trajectories of individuals in the core affect space (Russell, 2003). According to 

Russell (2003), the core affect lies at the heart of a person’s emotional experience and can be 

characterized as a compound of hedonic (pleasure-displeasure) and arousal (deactivated-

activated) values. This core effect is always part of the human psyche as a consciously 

accessible neurophysiological state and it is changing continuously over time. The core affect 

space is defined by two dimensions: activation (vs. deactivation) and pleasantness (vs. 

unpleasantness). Consequently, the emotional experience at a particular moment can be 

represented as a single point in the two-dimensional plane, and the itinerary of a person’s 

emotional experience is the core affect trajectory.  

Our goal with modeling the core affect trajectories with an OU model is twofold. 

First, we want to describe the individual and population characteristics of movement 

throughout the core affect space. By making use of a stochastic model approach such as the 

OU model, we are able to treat the elapsed time as continuous and model the two dependent 

variables (pleasantness and activation) simultaneously (together with their cross-correlation). 

Moreover, we are able to evaluate the strength of the centralizing tendency and individual 
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difference herein. As a second goal, we want to explain the individual differences in the 

characteristics of individual trajectories. In doing this, we could try to answer such questions 

as: Can the average position (mood) of an individual be predicted from some of their major 

personality dimensions? 

The most common method for collecting data about such trajectories is experience 

sampling (Bolger, Davis & Rafaeli, 2003; Csikszentmihalyi & Larson, 1987; Larson & 

Csikszentmihalyi, 1983; Russell & Feldman-Barrett, 1999). Persons are surveyed repeatedly 

at random chosen time points with respect to their position in the core affect space and this 

assessment takes place in the natural environment of the participants. From data obtained by 

experience sampling, we are able to investigate the intra- and interindividual variation in core 

affect position.  

As an illustration of the hierarchical OU model for the core affect trajectories, we 

analyze part of the data described in Kuppens, Van Mechelen, Nezlek, Dossche, and 

Timmermans (2006). In that study, 56 students from the University of Leuven were paid to 

give systematic self-reports about their emotional state in the core affect space during one 

week. A wristwatch beeped nine times per day. The participants were provided with a 

booklet in which they could indicate their positions on the Affect Grid (Russell, Weiss & 

Mendelssohn, 1989; see the used format of the grid on Figure 3). When the participants 

missed a beep, they had to indicate why they missed it, and most of the time the reason was 

that they did not hear it. In the analysis the missing data were considered to be missing at 

random (MAR; see Little & Rubin, 2002) and hence it was assumed that there was no 

observation at that time. The elapsed time interval between the measurements was semi-

random. The participants were asked to give information about the time when they were 

awake, this interval was divided into equal periods, and a random beep was scheduled into 
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each period. As a consequence of this procedure, we do not have measurements for the 

evenings.  

 

INSERT FIGURE 3 ABOUT HERE 

 

In addition to the experience sampling, in an introductory session the participants also 

completed the Dutch version of NEO-FFI (Hoekstra, Ormel, & de Fruyt, 1996), which is a 

questionnaire to measure the dimensions of the Five Factor model of personality (Big Five). 

The NEO-FFI consists of 60 items divided equally into five scales which asses Neuroticism, 

Extraversion, Openness to experience, Agreeableness and Conscientiousness. All items are 

rated on a 5-point scale ranging from 1 (strongly disagree) to 5 (strongly agree). The five 

factors will be used as covariates to explain individual differences in the characteristics of 

core affect trajectories. 

The average age of the participants was 21 years (SD = 1.9) and 70% of them were 

women. The maximum number of measurements for a single person was 63 and on average 

there were 60 measurements per person (SD = 2.9). 

An exploratory data analysis was carried out to investigate the main characteristics of 

the measurements. First, we present two typical person profiles from the data set (see Figure 

4). The subsequent measurements are connected with straight lines. We can see from these 

profiles that there is variability in the occupied positions in the core affect space but we can 

also notice that its extent may differ somewhat between the individuals.  

 

INSERT FIGURE 4 ABOUT HERE 
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Figure 5 shows a smoothed heat map of the visit frequencies in the core affect space, 

based on the aggregated data. We can clearly see a central area, where most of the visits are 

concentrated. We expect the location of the population distribution of homebase to be 

somewhere in that area.  

 

INSERT FIGURE 5 ABOUT HERE 

 

Figure 6 shows the estimated vector-field of the core affect grid with the data pooled 

together for all individuals in the dataset. For each cell in the core affect grid, we calculated 

the average distance traveled when leaving the cell. (The last measurements for each day 

were not taken into account because the transition from the last measurement of the previous 

day and the first of the current day is not necessarily the same process as transitions within a 

day; see also below). The length of the vector is proportional to the estimated escape velocity 

from that cell and its angle corresponds to the direction of escape. A central location in the 

grid can be observed from where the average velocity to move away is very small. As we are 

moving away from this central point, we can notice a tendency to be pulled towards this 

center: the direction of most of the vectors are more or less pointed to the central location and 

with increasing distance from the central point, the vector length tends to increase. (At the 

border cells, we notice more irregularity - these are due to sampling variability because there 

are much less visits to these outer cells; see also the heat map in Figure 5.)  

 

INSERT FIGURE 6 ABOUT HERE 

 

Because of the obvious day-night problem (i.e., transitions within a day do not 

necessarily result from the same process as transitions overnight; see also above), we extend 
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the hierarchical OU model with an additional level. Instead of having measurements (level 1) 

nested within persons (level 2), we will now consider a three-level model: measurements 

nested within days nested within persons. In this way, we avoid making strong assumptions 

about the process of overnight transitions. To illustrate how the equations change, assume 

that the days are denoted by an index r (r = 1,…,7). Then the conditional distribution of a 

single person p, on day r, at time ts given its position in the previous position y(tp,r,s-1) on the 

same day, is normal with instantaneous mean prsδ and variance prsΛΛΛΛ (an extension of 

Equation 4): 

 

( )1 1( ) ( ) ( )pr ,s pr ,s pr ,s 2 prs prst t t ~ N ,δ Λ− −=Y Y y , 

 

where 1( )

1( ( ) )p pr ,s pr ,st t

prs pr pr ,s pre t
Β

δ µ µ−− −
−= + −y  and 1 1( ) ( )p pr ,s pr ,s p pr ,s pr ,st t ' t t

prs p pe e
Β Β

Λ Γ Γ− −− − − −= − .  

The first observation of each day comes from a person- and day-specific equilibrium 

distribution (corresponding to the defined equilibrium distribution of the process, see 

Equation 2), in the following manner: 

 

1 2 ( )pr , pr p~N ,Y µ Γ . 

 

Comparing the equations of the three-level model to the two-level model formulation, 

we can notice that each person has seven day-specific homebases. The time difference also 

has a day index r. The parameter s runs from the second observation of day r until the last 

observation of day r. The new notation ensures that the transition between the last 

measurement of day r and the first measurement of day r+1 is not taken into account. The 
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centralizing tendency and the volatility matrix parameters correspond to the 2-level model 

formulation, presented in the previous chapter.  

The person-day homebases are considered as random samples from a person 

distribution, and the person-specific homebase provides the mean of this distribution. This 

person-specific homebase comes from a common population distribution. These sample 

distributions look as follows:  

 

( )
( )
2

2

~ , ,

~ , .

pr p day

p

N

N

µ

µ

µ µ Σµ µ Σµ µ Σµ µ Σ

µ µ Σµ µ Σµ µ Σµ µ Σ
 

 

We have allowed the homebase parameters to vary over days, but not the other 

parameters, for three reasons. First, as already mentioned above, we do not want to make 

assumptions about the process during the night. Second, it is plausible that the homebase 

differs systematically over days, following e.g. a weekly cycle (the most well-know 

phenomenon is called as “Blue Monday”, see further references in the paper of Ram et al., 

2005). Third, making the other parameters also day-specific would increase the complexity 

of the model enormously with obvious consequences for ease and duration of computation on 

the one hand and interpretation on the other hand. 

Two three-level hierarchical models and their application on a dataset will be 

presented. In a first model (from now on referred to as the empty model), the person-specific 

OU parameter sets are not regressed on covariates, only their population distribution is 

investigated. In a second model (from now on referred to as the full model), the OU 

parameters are regressed on these covariates. Such a model not only takes interindividual 

differences for granted but also tries to explain them (see also De Boeck & Wilson, 2004). 
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Because of the complexity of both the empty and full model and the large number of 

parameters in each case, a Bayesian approach is taken to estimate the parameters so that we 

can make use of Markov Chain Monte Carlo (MCMC) methods to explore the posterior 

distribution (Gelman, Carlin, Stern, & Rubin, 2003; Robert & Casella, 2004). The MCMC 

computations were carried out using WinBUGS (Spiegelhalter, Thomas, Best, & Lunn, 

2003).  

The choice of a Bayesian estimation procedure implies that we had to assign priors to 

the parameters of the models. Let us consider first the sampling distributions of the empty 

model. When the person-specific diffusion parameters were constrained to be positive, their 

logarithms were sampled from normal population distributions. The z-transformed 

correlation value came also from a normal population distribution. The means of these 

normal distributions were assigned a normal prior distribution with mean zero and precision 

0.1 (i.e., a variance of 10). The inverted variances of the population distribution were given a 

gamma prior distribution with parameters 0.1 and 0.1. (Sensitivity had been checked by 

allowing normal priors with precision 0.01 and gamma priors with parameters 0.01 and 0.01, 

but that did not change the results.) The prior for the correlation of the log of the variances 

came from a uniform distribution between -1 and 1.  

The person specific homebases were sampled from a bivariate normal population 

distribution. The prior distribution of the population homebase was a bivariate normal 

distribution with a zero mean vector and a precision matrix 0 001. I×  (where I is the two-by-

two identity matrix). The person specific homebase created the mean of the normal 

distribution of the person-day specific homebases. For the inverse of their covariance 

matrices µΣΣΣΣ  and dayµΣΣΣΣ  non-informative Wishart-distributions were assigned. With regard to 

the full model, intercepts and regression coefficients come into play. For those parameters, 

normal priors have been used. 
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The results we will present below are based on 60000 draws from the posterior 

distribution, which come from 10000 iterations with six chains. Apart from the selected 

10000 iterations, each chain started with a discarded burn-in period, which was chosen to be 

10000 iterations in the case of the empty model, and 15000 iterations in the case of the full 

model (the convergence was somewhat slower in the full model). The initial values of the 

chains are randomly perturbed rational values derived from the data (e.g., the sample average 

for the homebases). The evaluation of the convergence is based on a visual assessment of the 

trace plots and on the values of the Gelman-Rubin (1992) �R  diagnostic as modified by 

Brooks and Gelman (1998).  

Table 1 shows a summary of the results for the empty model containing the posterior 

mean and standard deviation and the endpoints of the 95% posterior credibility interval. The 

estimated means of the homebase population distribution are (5.88, 5.20), corresponding to 

the findings of previous research (Russell, Weiss, & Mendelssohn, 1989), which show that 

on average the emotional state of persons is slightly pleasant and rather activated than 

deactivated. The correlation in the population between the homebases of the dimensions is 

estimated to be 0.28, which means that across persons, the homebases of the pleasantness and 

the activation dimensions are only moderately correlated. If we look at the standard 

deviations of the homebases (
1µσ ,

2µσ ) on the two dimensions, it appears that there is an 

approximately equal amount of variability. Comparing this interindividual standard 

deviations to the standard deviations of the day-person specific homebases (
1dayµσ ,

2dayµσ ), 

which represent an intraindividual change in the position of homebases during a week, we 

can see that the latter one is smaller (with 37% and 39%, respectively). With regard to the 

day specific part of the model, averaging the person-day specific homebases across days 

showed no remarkable daily variation. 
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The average log-variance of the activation-deactivation dimension in the stationary 

distribution is somewhat larger than the average log-variance of the pleasantness-

unpleasantness dimension, although the 95% credibility intervals show considerable overlap. 

The correlation between the logarithms of the variances is relatively high (i.e., 0.68), hence it 

seems that there is a tendency for people with rather low/high variability in the pleasantness 

dimension to show correspondingly low/high variability in the activation dimension as well 

and vice versa. Considering the posterior mean of the z-transformed correlation in the 

stationary distribution, we see that the latter is rather small (i.e., 0.01) which suggests that on 

average, there is not much cross-correlation (i.e., on average, the bivariate person-specific 

stationary distributions have zero correlation). However, there is considerable variability in 

the estimated person-specific cross-correlation parameters: Although the average is 0.01, the 

95% confidence interval varies between -0.34 and 0.35. It must be emphasized here that there 

is a conceptual difference between the population correlation of the homebase distribution 

and the average correlation of the stationary distribution and that they are unrelated with each 

other.  

 

INSERT TABLE 1 ABOUT HERE 

 

The mean of the population distribution of the logarithm of the centralizing tendency 

(i.e., log(β)ω ) is estimated to be -4.19. Based on that, the posterior mean of the population 

average centralizing tendency is 0.019. We may also look at the posterior estimates for the 

person-specific centralizing force (i.e., 
log( )pe

β
). To illustrate graphically the interpretation of 

this average and the individual variation in centralizing tendency, we convert the posterior 

βp-values to the corresponding autocorrelation functions. Figure 7 shows the person-specific 

autocorrelation function together with the autocorrelation function based on the average 
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population value (thick line). For most participants, the autocorrelation between subsequent 

core affect positions separated 2 hours in time had already fallen below 0.2. 

 

INSERT FIGURE 7 ABOUT HERE 

 

In the full model, each of the six person-specific Ornstein-Uhlenbeck parameters (i.e., 

the homebases and the log-variances of the pleasantness-unpleasantness and the activation-

deactivation dimensions, the z-transformed cross-correlation between the dimensions and the 

log-centralizing tendency) are regressed onto the Big Five personality dimensions. Table 2 

summarizes posterior mean and standard deviations for the eight regression coefficients for 

which the 90% posterior credibility intervals do not contain zero. (We do not use the 

traditional 95% confidence interval because in this way we are able to present some rather 

fascinating associations.) 

The results show that the locations of the individuals’ homebases are related to 

neuroticism and extraversion: the homebase of the neurotic individuals is less pleasant and 

the extravert people tend to occupy homebase with a higher activation level. The 

intraindividual variabilities in the occupied positions in the core affect space on the two 

dimensions (i.e. parameters 1 2log( ) and log( )p pγ γ ) show a relation with extraversion, 

agreeableness and neuroticism. Specifically, the results suggest that the extraverts show 

higher variability in the pleasantness dimension. Moreover, the variability of the trajectories 

is also related to the agreeableness in both dimensions: Less agreeable people tend to show 

higher variability with respect to pleasantness-unpleasantness and activation-deactivation as 

well. Additionally, people with a high neuroticism score show higher variability in the 

pleasantness-unpleasantness dimension. Hence, agreeableness and neuroticism have opposite 

effects on the variability of the pleasantness position. 
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Not only the trajectory variability, but also the centralizing tendency parameter is 

associated with neuroticism: Neurotic individuals in general have a smaller centralizing 

tendency, which implies that they are more likely to leave their homebase region and they are 

not eager to return quickly. In combination with the observation that neurotics have a larger 

variability on the pleasantness dimension, one might conclude that neurotic individuals do 

show less emotional stability. Finally, the positions in the core affect space visited by 

agreeable people are somewhat stronger correlated across dimensions. Thus, for agreeable 

persons, changes in one dimension tend to covary more strongly with changes in the other 

dimension in the same direction. 

 

INSERT TABLE 2 ABOUT HERE 

 

The empty as well as the full model handle the two repeatedly measured variables 

pleasantness and activation together. However, it brings forth the question, whether it is 

necessary to add cross-correlation parameters between dimensions. Moreover, every person 

has a unique value to express their dependence level between pleasantness and activation. 

We decided to test whether this person-specific parameter is really necessary in the model. 

Furthermore, it is also useful to investigate whether the three-level model formulation is 

appropriate; hence we need to compare the three-level model with a two-level one, in which 

the observations are nested just within persons. In addition, we can also examine whether the 

full model provided a better fit than the empty model.  

To carry out the model selection, we opted for the Deviance Information Criterion 

(DIC) statistic (Spiegelhalter, Best, Carlin, & van der Linde, 2002). The DIC takes into 

account two important features of the model: the complexity (based on the number of the 

parameters) and the fit (typically measured by a deviance statistic). DIC examines the two 
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features together and gives a measure which balances between the two. Its formula is the sum 

of the effective number of parameters and the posterior mean of the deviance (defined as -2 

times loglikelihood). Theoretically, the model with smaller DIC would better predict a 

replicate dataset of the same structure. We compared two alternative models, namely a 

reduced three-level model and a two-level model to the three-level empty and full models. In 

the case of the reduced three-level model, all the person-specific cross-correlation parameters 

were set to zero. In the two-level model, the day level in the homebases was omitted, so that 

the person-specific OU parameter sets could not vary among the days. From the results it 

turns out that the three-level full model performs better than any of the alternative ones. The 

DIC value of this model is 25210, which is relatively close to the value of the three-level 

empty model, which is 25213. Nevertheless, both models do better than the two-level model 

(DIC = 25266) and the three-level reduced model (DIC = 25325), suggesting that the three-

level model formulation and the simultaneous modeling of the two longitudinal variables 

with person-specific cross-correlation are good choices.  

 

Discussion 

In this paper, we have introduced a model for the analysis of multivariate 

longitudinal profiles with continuous and possibly unbalanced measurement times. The core 

of our approach is a multivariate Ornstein-Uhlenbeck diffusion process, which serves as a 

model for the intraindividual behavior. The model is hierarchically extended to handle data 

from many persons drawn randomly from a population. Thus, it becomes a convenient 

framework to describe and explain interindividual differences in the characteristics of 

individual trajectories. 

Our hierarchical diffusion modeling approach offers several distinctive 

characteristics. First of all, we are able to regress in principle all the diffusion parameters 
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onto predictors (and not only mean parameters as is the standard in traditional multilevel or 

structural equation modeling). The diffusion parameters represent aspects such as 

intraindividual variability, autocorrelation in the positions, and cross-correlation, of which 

interindividual differences can both be described and explained with the help of covariate 

information. Secondly, the version of the OU process used admits the compelling feature of 

stationarity, allowing researchers to model not only subsequent measurements (as does the 

integrated multivariate OU process of Sy, Taylor, & Cumberland, 1997), but also the first 

measurement time. Additionally, the equlibrium distribution shows a general picture of the 

time-varying phenomena. However, in future applications it would be nice to compare the 

non-stationary variant in an empirical way with the stationary one. Thirdly, the model can be 

fit in the framework of differential equations, which offers an advantageous way to compare 

the OU model with other time-dependent models, like the damped oscillator model of Chow, 

Ram, Boker, Fujita, and Clore (2005) or the non-linear coupled oscillator model of Butner, 

Amazeen, and Mulvey (2005). The stochastic differential equation representation opens the 

possibility of casting many more interesting models in a hierarchical framework as presented 

here.  

Additionally, the joint modeling of several time-varying psychological phenomena 

represents a great potential. Although this paper focused on the two-dimensional case, our 

general model formulation is multidimensional and the model can easily be implemented for 

the multidimensional case as well: the only difference resides in the decomposition of the 

covariance matrix, but for that problem a solution is available in the paper of Daniels and 

Pourahmadi (2002).  

Finally, the Bayesian implemantation offers an easy way for estimating the 

parameters, moreover it makes it possible to use information from previous findings about 

the same topic to improve the parameter estimation.  
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We applied the model to a data set from a study that tracked the trajectories of 

persons in the core affect space. The hierarchical modeling approach pointed out some 

intriguing aspects of emotion change. With the OU model, we can regress the intraindividual 

variability parameter of the pleasantness-unpleasantness and activation-deactivation 

dimensions onto known personality dimension in order to examine this issue. It turned out, 

that for instance, agreeable people experience less change in their hedonic and arousal level. 

Besides the intraindividual changes, we were able to describe the degree of a centralizing 

force, which motivates the individual to readjust their current mood to their homeostatic 

homebase. Not only did we get a general picture about this centralizing tendency in the 

emotion experience, but we also learnt that the neurotic individuals tend to have a lower level 

of it. Taking into account the relationship between the longitudinal variables of pleasantness-

unpleasantness and activation-deactivation also proved useful in the current application. 

Besides the improving model fit, we could observe that agreeable people show more 

consistency in the changes of the hedonic and arousal values. 

As a drawback to the current application, we need to mention the discreteness of the 

core affect grid. Since the offered change process is continuous, a more precise measure of 

the occupied position in the core affect space would be desirable. Also just representing the 

core affect space without the grid (and putting a very subtle grid afterwards to code the 

obtained self-reports) could be a nice improvement for decreasing the measurement error. 

However, for such data it may also be possible to assume a continuous-time discrete state 

space Markov chain as a model for the intraindividual data. This type of model might 

investigated in future research. 
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Appendix A : Derivation of the autocorrelation function for a multivariate OU process 

For simplicity and without loss of generality let us assume that µµµµ is a q×1 vector of 

zeros. Then the covariance matrix function of the OU process with a general B and ΓΓΓΓ can be 

derived as follows (see also Schach, 1971): 
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If B equals βI then the covariance matrix function becomes .de−βΓΓΓΓ  Because 

[ ] [ ]var ( ) var ( )t t d= + =Y Y ΓΓΓΓ , the autocorrelation function ρ(d) is equal to e–βd
 in the 

isotropic case. 
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Footnotes 

1
 The matrix exponential e

M
 is defined as follows: 

1 !

∞

=

= +∑
j

M

j

M
e I

j
. 

If M is a diagonal matrix with elements m1,…,mq, it is equal to; 
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=  
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m

e

e

e
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where im
e is the scalar exponential function value of mi. 

 

2
 The nature of the currently used isotropic ΒΒΒΒmatrices implies that the overall behavior of 

the process around the homebase can always be depicted with straight lines tending towards 

the concentration point. If we allowed for a wider class of ΒΒΒΒ  matrices with different values 

in the dimensions, we could achieve different curvatures around the homebase, which would 

provide different interpretations of the relationship among the dimensions by giving a special 

meaning to the used co-ordinate system. On the one hand taking into account this possibility 

could improve the quality of the model, on the other hand it would significantly increase its 

complexity, as well as its implementation and the interpretation of its parameters. The 

implementation is more complicated by the fact that not just ΒΒΒΒ  but the '+ΒΓ ΓΒΒΓ ΓΒΒΓ ΓΒΒΓ ΓΒ  matrix 

must be also always positive definite, see more in Dunn and Gipson (1977). For more details 

on the effect of the isotropic constraint see Blackwell (1997) 
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Table 1  

 

Summary measures of the posterior distributions for the most important parameters 

Parameters Description 

Posterior 

mean 

95% posterior 

credibility interval 

Posterior 

SD 

 Pleasantness 
    

1µ  Average homebase 5.88 5.68 6.08 0.10 

1µσ  SD of the average homebase 0.68 0.54 0.85 0.08 

1dayµσ  Daily SD of the average homeb. 0.43 0.32 0.56 0.06 

1log(γ )ω  Average log-variability  0.94 0.79 1.09 0.08 

 Activation     

2µ  Average homebase  5.20 5.02 5.38 0.09 

2µσ  SD of the average homebase 0.59 0.46 0.75 0.07 

2dayµσ  Daily SD of the average homeb. 0.36 0.27 0.47 0.05 

2log(γ )ω  Average log-variability  1.18 1.03 1.32 0.07 

      

1 2µ µρ  Correlation between homebases 0.28 -0.05 0.57 0.16 

1 2log( ),log( )γ γρ  Correlation between log-variances  0.68 0.43 0.88 0.12 

F(ρ ) Average z-transf. cross-correlation 0.01 -0.06 0.08 0.04 

log(β)ω  Average log-centralizing tendency -4.19 -4.39 -3.97 0.11 
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Table 2 

 

Summary of the regression coefficients with a 90% posterior credibility not containing 0 

Parameters Description Covariates 

Posterior 

mean 

90% posterior 

credibility interval 

Posterior 

SD 

 Pleasantness      

p1µ  Homebase  neuroticism -0.28 -0.56 -0.01 0.17 

1log(γ )ω
p
 Variability  neuroticism 0.24 0.03 0.46 0.13 

1log(γ )ω
p
 Variability  extraversion 0.33 0.02 0.64 0.19 

1log(γ )ω
p
 Variability  agreeableness -0.45 -0.73 -0.17 0.17 

 Activation      

p2µ  Homebase  extraversion 0.36 0.02 0.69 0.20 

2log(γ )ω
p
 Variability  agreeableness -0.38 -0.65 -0.11 0.17 

       

log(β )ω
p
 Centralizing tendency neuroticism -0.34 -0.65 -0.03 0.19 

F( pρ ) Cross-correlation agreeableness 0.21 0.07 0.35 0.08 
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Figure Caption 

Figure 1. The 0.5 probability contour curves of conditional distributions with three different 

values for β  (0.0005; 0.005; 0.03) and with 
2 2 1 7

, ( )
2 1 2 7

t d
     

µ = − =     
     

y= , Γ= , Γ= , Γ= , Γ  and d = 

100. 

Figure 2. Four different β values and corresponding autocorrelation functions. 

Figure 3. The Affect Grid used in the application. 

Figure 4. Person profiles in the core affect grid. 

Figure 5. Smoothed heat map of the visit frequencies in the core affect space. 

Figure 6. Estimated vector field of the core affect grid. 

Figure 7. Change in the autocorrelation function according to the estimated β parameters of 

the individuals. 
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