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Abstract

To find out the categorical or dimensional nature of the latent structure of psychological

data, several methods are available, of which taxometrics is the most well-known and most

widely used, mainly in the field of psychopathology. Taxometrics stands for a series of

methods that are based on Coherent Cut Kinetics. A recent development to address the

continuity vs. discontinuity controversy is the Dimension/Category (DIMCAT) frame-

work that is based on item response theory. A simulation study with both rating-scale

and continuous data is presented to compare the performance of both methods under

various circumstances. Of the taxometric methods MAXCOV, MAMBAC and L-Mode

are used. It turns out that DIMCAT and L-Mode perform very well, while MAXCOV and

MAMBAC deliver a rather poor performance when using rating-scale data. Furthermore,

it is also established that among the several measures suggested in the taxometric liter-

ature, the Comparison Curve Fit Index seems to be the best index for decision making

about the underlying structure.
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Introduction

Taxometric methods are developed to investigate whether a phenomenon under study,

such as depression or giftedness, is categorical in comparison with normality. The method-

ology in question requires a hypothesized category, such as depression or giftedness, a

sample of people from the hypothesized category and a substantial proportion of these

among the total sample, and finally, a set of indicator variables with validity for the

hypothesized category. That the category is hypothesized means that the operational

classification of persons into a category does not imply that the category is a genuine cat-

egory. The alternative to a genuine category is a continuum or dimension with a cutpoint

as the only basis for a classification. Taxometric methods are aimed at differentiating

between a dimensional structure and a genuine categorical structure, starting from a data

set with persons described in terms of indicator variables.

In order for the taxometric methodology to work one needs (a) a hypothetical focus

category, called the taxon group, which can be differentiated from a contrast category,

called the complement group, commonly the category of normality; (b) a sample of per-

sons belonging to the focus category or contrast category, with a substantial proportion

of both; (c) a small set of indicator variables with validity for the differentiation between

the two categories (the focus category and the contrast category), with the indicator vari-

ables being continuous variables (ideally), ordered-category variables or binary variables

(possible in practice). (d) It is not required that the actual membership of the persons

in the two categories is known, it suffices that a substantial proportion of both categories

is present in the sample. (e) The methodology is not based on a specific model for the

data. However, for the answer obtained through an application of the methodology to

be categorical, the distance between the categories on the indicator variables needs to be

above 1.25 SDs (Meehl, 1995) which is considered to be a large effect size in psychology

(Cohen, 1988).
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A common type of data sets in psychology stems from the application of a ques-

tionnaire measuring a trait or attitude, presented to a sample of groups, a focus group

and a control group. The issue may then be whether the trait or attitude shows a cate-

gorical or a dimensional structure. For example, using a depression questionnaire, one of

the many available, for depressed persons and normals, one may wonder whether depres-

sion is a continuum or a category when compared to normality. In fact, each time such

data are available, one may investigate the dimensional versus categorical nature of the

differentiation made by the questionnaire.

The DIMCAT approach is developed with this kind of application in mind, but

with a broader domain of application if wanted. (a) More than two categories can be

investigated at the same time. (b) The indicator variables may vary as to their validity

for the categories (positive, negative, none), but a substantial proportion of them needs

to have at least some validity, no matter in which sense (positive or negative). (c) The

indicator variables may be a few or many, and they may be of any kind: binary, rating

scale, continuous, etc., although in the original formulation they are binary. (d) The

categories under study may be observed (e.g., a diagnosis) or unobserved, and hence,

latent.

Because its generality, DIMCAT should be able to perform reasonably well also

in situations considered ideal for taxometrics. An important restriction of DIMCAT is

that it requires a model to start from. In the original formulation, the two parameter

item response model (2PL; Birnbaum, 1968) is used as the basic model. Also models for

rating-scale and even for continuous data can be used, of the linear type for the latter, and

multidimensional models can be used as well, but always a certain type of model needs

to be chosen, and the answer to the issue of categoricality may depend on the model that

is chosen. The two approaches will be described more formally and more in detail in

separate sections on taxometrics and DIMCAT.
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In order to compare both approaches on their performance for differentiating be-

tween a categorical and a dimensional structure, two studies are set up. In the first study,

data are generated from a rating-scale item response model with 11 indicator variables.

This is a typical case when a questionnaire is used for a specific trait or attitude. These

kinds of data may be considered DIMCAT data, as they represent the ideal case for DIM-

CAT. For reasons of comparison both DIMCAT and taxometrics will be applied in this

study.

In the second study, data generated by Meehl and Yonce (1994) will be used,

with four continuous indicator variables. These data were used by Meehl and Yonce

(1996, 1994) to validate the taxometric methods, and these methods worked rather well.

These kinds of data may be considered taxometric data, as they represent the kind of

data taxometric methods are made for. It is an interesting issue how well DIMCAT will

perform when applied to these data.

In sum, the design of the two studies taken together is a two by two design: DIM-

CAT versus taxometric data analyzed with a DIMCAT versus taxometric methodology.

Taxometrics

Of the numerous taxometric methods MAXCOV, MAMBAC and L-Mode will be applied

in this paper and hence presented here briefly.

MAXCOV

Being the first published taxometric method, MAXCOV is the most well-known and most

popular technique of the taxometric family up to now. MAXCOV (e.g., Meehl, 1973;

Meehl & Yonce, 1996; Waller & Meehl, 1998) is based on the General Covariance Mixture

Theorem (Waller & Meehl, 1998) which describes the covariance of two indicator variables

(denoted by x and y here) in a population consisting of two categories (or groups, classes
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etc.) as follows:

cov(x, y) = Pcovt(x, y) + Qcovc(x, y) + PQ(x̄t − x̄c)(ȳt − ȳc) (1)

Where cov(x, y) is the covariance of x and y in the full population, and the sub-

scripts t and c are indices for the taxon group (i.e., the group or class in question) and the

complement group, respectively. P is the class size or proportion (also called base rate)

of the taxon group and Q is the class size of the complement group (Q = 1−P ), whereas

(x̄t− x̄c)(ȳt− ȳc) is the cross-product of the mean differences between the two categories.

In the ideal case, the indicator variables covary only in a mixed set of cases, and

thus between categories, but not within categories, so that the General Covariance Mixture

Theorem reduces to:

cov(x, y) = PQ(x̄t − x̄c)(ȳt − ȳc) (2)

The assumption of zero within-class covariance is a very severe one, but fortunately

simulation studies have shown that MAXCOV is robust even to sizeable violations of

this assumption (Meehl & Yonce, 1996). Meehl (1995) suggested that within-category

correlations as high as .30 are still acceptable. Furthermore, he claimed that even higher

within-category correlations might be acceptable if the correlations are similar in the

two categories. However, in the taxometrics literature .30 is used as an upper limit for

within-category correlations.

In practice, there are three indicator variables at a time involved in MAXCOV:

two indicator variables as output variables and the third indicator variable as an input

variable. All these three indicators are assumed to be valid for the differentiation of

the two categories. In order for the method to be applied, the input variable is divided
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into subsequent sections and in each section the covariance of the two output indicators

is calculated and plotted. In principle, at one extreme of the input variable there are

(almost) only taxon group members, whereas at the other extreme there are (almost) only

complement group members, with different mixing proportions in the sections in between.

According to Equation 2, the covariance of the output variables would approach zero at

the extremes, and would increase towards the interval where the proportions are equal.

For a truly categorical structure the plot of the covariances shows a peaked curve, the

peak appearing in the section where the proportions of the two groups approach equality

in the best way. Based on Equation 2, the base rate of a taxon can be calculated from

the location of the interval with the maximal covariance (called the Hitmax interval).

When applying MAXCOV, the indicator variables can be used in all possible out-

put, output, input triplets, which yields I ∗ (I−1)∗ (I−2)/2 possible MAXCOV analyses

(with I being the number of indicator variables). As all other taxometric methods, MAX-

COV is heavily based on the visual inspection of the resulting plots of the analyses.

Fortunately, also several consistency tests are developed to corroborate possible decisions

from a visual inspection of the plots (see later).

MAMBAC

MAMBAC (Mean Above Minus Below A Cut; Meehl & Yonce, 1994) is the simplest tax-

ometric method in which two indicator variables are used at a time, one being the input

indicator and the other the output indicator. The cases are sorted along the input indi-

cator that is assumed to separate the hypothetical groups in a valid way (e.g., depressed

and nondepressed). Cuts are made along the input indicator and the mean score on the

output variable is calculated for the cases falling below the cut as well as for the cases

falling above the cut, and then the difference between the two means is plotted. In the

next step the cut is moved upwards along the input indicator, and the same procedure

is repeated a number of times, so that a MAMBAC graph of the plotted differences of
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the means is obtained. In case there is an underlying categorical entity, the MAMBAC

curve is supposed to show a clear peak, or hump. In case there is an underlying dimen-

sional structure, the MAMBAC curve is supposed to have a dish shape. The MAMBAC

procedure can be repeated with all possible pairs of input and output variables.

L-Mode

L-Mode (short for Latent Mode; Waller & Meehl, 1998) is a relatively new taxometric

method that is based on factor analysis and more specifically on the notion that the factors

can represent not only latent continua, but also latent categories. L-Mode is applied on

the whole set of indicator variables which are all treated equally. The distinction between

the input variable and output variables does not apply.

L-Mode is based on the notion that a factor can not only represent an underlying

continuum but also an underlying dichotomous variable as well. In L-Mode, a common

factor analysis is performed and the resulting individual factor scores on the first factor

are plotted. In case of a categorical structure, the factor score plot is expected to show

bimodality, whereas in case of a dimensional structure the factor score plot is expected to

show unimodality or a rather flat distribution without clear peaks. In case of bimodality

the estimates of the base rate can be calculated from the location of either of the two

modes. Here again, the visual inspection of the plots plays an important role in the

decision making, but also consistency tests may be (and should be) employed.

Generating empirical sampling distributions to help interpret results

In the taxometric approach the decision about dimension-likeness vs. category-likeness is

primarily based on the visual inspection of the taxometric graph. However, taxometric

graphs most of the time are not quite easy to interpret just by visual inspection, as

many times the graphs are rather unclear, or ambiguous. To address this problem, John

Ruscio and his colleagues (J. Ruscio, Ruscio, & Meron, in press) developed a method
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to help interpret taxometric results. Their method is an application of the bootstrap

methodology. The essence of their method is to use important features of the data (e.g.,

indicator mean, skew, sample size, correlation structure, etc.) to generate artificial data

sets based on a dimensional underlying structure and a categorical underlying structure,

while sustaining the important data characteristics. The generated artificial data sets are

submitted to the same taxometric analyses than the empirical data, and the resulting

taxometric graphs are compared to find out which structure is more suitable to describe

the empirical data.

Measures to evaluate the category- versus dimension-likeness of different phe-

nomena in taxometric studies

Although in the taxometric research the emphasis has been on the visual inspection of

the graphs resulting from the various techniques, there were several attempts to find some

measures that could be used to the decision making about the underlying nature of the in-

vestigated phenomena. From the beginning, consistency tests were strongly recommended

to reassure the decisions about the underlying nature. Most studies employed consistency

tests that compare the results across different taxometric procedures. As an alternative,

the consistency of base rate estimates can be used as a criterion. In MAXCOV and MAM-

BAC the built-in consistency test is based on the variability of the base rate estimates

stemming from the analyses of the different triplets, or pairs of indicators for MAXCOV

and MAMBAC, respectively. In case of L-Mode, the built-in consistency test is the dif-

ference between the base rate estimates stemming from the estimation based on the left

mode and the right mode of the L-Mode graph. Quantitative consistency measures such

as the standard deviation of the base rates or the difference between the base rates are

used as a decision aid. Unstable base rates must be considered as counterevidence for a

categorical structure.

Another measure that can be used in taxometric decision-making is the Goodness
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of Fit Index (GFI) which was described by Jöreskog and Sörbom (1988) for Structural

Equation Models. The GFI is a measure to express the consistency of the observed

variance-covariance matrix and the variance-covariance matrix predicted from the results

of a given analysis. The use of this index in taxometrics was proposed by Waller and

Meehl (1998), who suggested .90 as a threshold, stating that a categorical structure is

unlikely to produce a GFI value below .90, whereas a dimensional structure is unlikely

to result in a GFI value above .90 based on a small simulation study. However, other

simulation studies (e.g., Haslam & Cleland, 2002) suggested that the GFI is a rather poor

index of the underlying structure.

The graphs of simulated sampling distributions can also provide a measure to help

the taxometric decision making. The taxometric graph of the empirical data can be

compared with the graphs of the simulated categorical and simulated dimensional data,

not only visually but also using a similarity measure. Ruscio et al. (in press) suggested

the Comparison Curve Fit Index (CCFI) as a measure to compare the similarity of the

graphs.

The Dimension/Category framework

A recent development in the methodology to investigate the categorical vs. dimensional

structure of individual differences (or differences in general) is the DIMCAT framework

(De Boeck et al., 2005). DIMCAT is based on item response modeling (IRT), and it

provides a broad and elaborated framework for the distinction between categories and

dimensions. Given a hypothesized pair of categories (e.g., depression and normality), the

issue is how much category-like or how much dimension-like the distinction is.

In the DIMCAT framework, various types of categories are described. Distinctions

are basically made along two axes. The first axis differentiates qualitative differences

(i.e., the differences cannot be understood as referring to a degree of something) and
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quantitative differences (i.e., the differences are differences in the degree of something;

e.g., category B having more of the same category A has). The hypothesized categories

can be homogeneous or heterogeneous, and they can be qualitatively different or only

quantitatively different. The heterogeneity versus homogeneity axis (second axis) refers

to a within-category feature, whereas the latter refers to a between-category feature. The

heterogeneity versus homogeneity axis differentiates between heterogeneity (systematic

variance) and homogeneity (no systematic variance) within categories. The axes refer to

the latent structure and not the manifest variables. For example, homogeneity is not

homogeneity in terms of manifest variables, but in terms of the latent variable(s). In

terms of the manifest variables, it means that they are not correlated within categories,

which is the basic assumption of taxometrics and of the common type of latent class

analysis.

Furthermore, there are two types of qualitative differences: differences in indicator

location, and differences in indicator relevance, to be explained in the following. Differ-

ences in indicator location refer to a lack of parallelism in (the ordering of) the indicator

means from one category to another. For example, the prevalence of symptoms may show

a different pattern depending on the category.

Differences in indicator relevance mean that depending on the category other in-

dicators are more relevant in determining a degree within the category (if there is such a

degree). Differences in relevance imply that the indicator values contribute to the within-

category degree in a different way depending on the category and hence that a different

quality is represented depending on the category. Differences in relevance imply also a

different correlational structure within the categories and therefore refer to what is com-

monly seen as lack of factorial equivalence. However, since the full factor model also

explains the means, factorial equivalence in a broader sense also includes the equivalence

of the means (e.g., Meredith, 1993). For this reason De Boeck et al. (2005) deem the
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equivalence of the factor loadings as factorial equivalence in the limited sense.

When the between-category differences are quantitative, a nested (secondary) axis

differentiates between abrupt and smooth differences. Abrupt differences refer to a clear

multimodality in the distribution along a common underlying dimension, whereas for

smooth differences there is a large overlap, so that the sum of the distributions of the

categories appears as unimodal.

The alternative for a categorical structure is a dimensional structure. It is a struc-

ture with only quantitative differences among the persons, and with no other basis for

categorization than an arbitrary cutpoint.

In the DIMCAT framework, the category versus dimension distinction is seen as

multifaceted and gradual. (Meehl also shared this idea stating that ”taxonicity itself is

not taxonic” (Meehl, 1979, p. 566), but in taxometrics this issue was not explicated

any further with the exception of J. Ruscio and Ruscio (2002)). Following DIMCAT,

a structure can be categorical in different senses, and to different degrees. Qualitative

differences between the categories are more category-like than quantitative differences,

and the larger the qualitative differences are, the more category-like the structure is. Ho-

mogeneity within the categories is more category-like than heterogeneity, and the smaller

the within-category variance is, the more categorical the structure is. Abrupt differences

between categories are more category-like than smooth differences, and the more abrupt

the differences are, the more categorical the structure is.

To find out the true nature of a given phenomenon, a series of item response models

are fitted, and then the decision about what kind of category-likeness the phenomenon in

question shows, is based on the comparison of the goodness-of-fit statistics of the various

models.

To present the models, we assume the indicator data are of a rating-scale type.
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Given M response alternatives indexed by m (m = 1, . . . , M), the Modified Graded Re-

sponse Model (MGRM; Muraki, 1990) defines the cumulative (conditional) probability

of alternative m (m = 1, . . . , M) or higher for indicator i, given the category c person p

belongs to as:

P (Ypi > m|θpc, cp) =
exp(αic(θpc − βic + ωm + γc))

1 + exp(αic(θpc − βic + ωm + γc))
(3)

and the probability of responding in response category m is:

P (Ypi = m|θpc, cp) = P (Ypi > m|θpc, cp)− P (Ypi > m + 1|θpc, cp), (4)

except that for the lowest rating-scale response alternative P (Ypi > m|θpc, cp) = 1

and for the highest one P (Ypi > m + 1|θpc, cp) = 0, because M + 1 is not possible.

In Equations 3 and 4, Y is the response, α is the indicator discrimination parameter

(indicating relevance), θ is the latent dimension of category c (c = 1, . . . , C) along which

persons p (p = 1, . . . , P ) are normally distributed (or in other words, it is the category-

specific random effect), β is the location parameter of indicator i (i = 1, . . . , I) in category

c (together, the βs define the profile), γ is the category (group) difference parameter, and

ω is the response alternative threshold parameter for alternative m (but ω1 is irrelevant

because P (Ypi > 1) = 1). It is assumed that θpc ∼ N(0, σ2). For reasons of identification

one of the m− 1 relevant thresholds must be set equal to 0.

The MGRM is the cumulative logit equivalent of the Rating Scale Model (RSM;

Andrich, 1978), which is based on adjacent logits. The MGRM cuts the distribution

over a latent continuum into sections corresponding to the values on the rating scale.

The MGRM is a model for rating scale data, for the case it is reasonable to assume

that the distances between the response alternatives of the rating scale are the same for
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all indicators, but not necessarily equal along the scale (the same scale with possibly

unequal distances). One may think of a continuum with – depending on the indicator – a

series of thresholds or cutoffs on the one hand, and a moving normal distribution, one for

each person, so that for each pair of a person and an indicator, the thresholds or cutoffs

determine the probabilities of the response alternatives.

Other models can be used instead of the one in Equation 3, but it seems a reason-

able assumption that the scale does not depend on the indicator when the same response

alternatives are used (Embretson & Reise, 2000). Therefore, an alternative to the MGRM

is the Rating Scale Model (RSM; Andrich, 1978) which has in common with the MGRM

that the category distances do not change from indicator to indicator, but the driving

principle is that not cumulative log odds are modeled as in Equation 3, but adjacent log

odds, preferring response alternative m on response alternative m− 1.

Note that in the original paper on DIMCAT (De Boeck et al., 2005) cp is a man-

ifest and thus observed variable, but this is not a necessary condition. Here, cp will be

considered to be a latent variable, meaning that the categories and category memberships

are not observed.

The model in Equation 3 and its restricted variants will be used here to make the

distinctions along the two main axes. The most general model (Equation 3) is called the

QUAL1&2-HET model, with QUAL referring to qualitative differences, 1 and 2 meaning

that both types of qualitative differences (lack of discrimination equivalence and lack of

location equivalence, respectively) are present, whereas HET means that there is within-

category heterogeneity. As a next step the discriminations are set to be equal across

groups resulting in the QUAL2-HET model (qualitative differences are restricted to lo-

cation nonequivalence). Restricting also the locations to be equal across groups yields

the QUAN-HET model, where only quantitative differences are taken into account, but

not qualitative differences. The QUAL2-HET and the QUAN-HET models have their
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counterparts in models with within-group homogeneity, called the QUAL2-HOM and

the QUAN-HOM models, respectively. A QUAL1&2-HOM model does not make sense

because discriminations imply heterogeneity. A purely dimensional model, called the

uniform MGRM, is defined by Equation 3 without any category-specific parameters, im-

plying that the same MGRM applies to all persons. In other words stated, there is only

one category and all persons belong to this category.

In order to compare the performance of the above-described two approaches, tax-

ometrics and DIMCAT, two simulation studies are planned. In Study 1 rating-scale data

are used, which can be considered the most typical data type in questionnaires used for

psychological assessment (e.g., Beck Depression Inventory, Beck, Steer, & Brown, 1996;

Center for Epidemiologic Studies Depression Scale, Radloff, 1977; NEO PI-R, Costa &

McCrae, 1992; Rosenberg Self-Esteem Scale, Rosenberg, 1965). In the second study, sim-

ulated data sets with continuous indicator variables were employed that were used earlier

to evaluate taxometric procedures. The data type in the first study can be considered

as more suited for the DIMCAT approach, although rating-scale and even dichotomous

data are not uncommon in the taxometric practice (e.g., Beach & Amir, 2003; Hankin,

Fraley, Lahey, & Waldman, 2005; A. M. Ruscio & Ruscio, 2002). Note that recently the

trend is to use (quasi-) continuous data or at least rating-scale data with a relatively

large number (7-10) of response alternatives in taxometric studies (e.g., Franklin, Strong,

& Greene, 2002; Marcus, John, & Edens, 2004; Rothschild, Cleland, Haslam, & Zimmer-

mann, 2003). As far as the continuous data in Study 2 are concerned, these are clearly

suited for taxometric analyses, but their suitability for DIMCAT analyses may not be

that clear, as earlier it was stated that DIMCAT is based on IRT. For continuous data,

it is quite natural to use the linear model, and hence, to replace Equation 3 with

Ypi|cp = αicθpc − βic + γc + εpi (5)
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with βic now being the mean of indicator i in category c, and εpi being a normally

distributed error term which is independent of p, i and c. The other symbols have the

same meaning as in Equation 3.

Study 1

Data generation

Common features of the data sets

The data sets used for the analyses were generated based on the model in Equation 3. All

data sets consisted of eleven indicator variables (I = 11) each of which have four response

alternatives on a rating scale (M = 4), with a total sample size of 400 (N = 400), and

200 in each of both groups. The discrimination parameters are fixed to 1 (αic = 1 for

all i and c), the indicator locations (βic) range from -2 to 2 by steps of 0.4, the person

category difference parameter (γc) is fixed to zero for the reference category, and is 0 or

2 for the other category (see later), and the response alternative thresholds are -1, 0 and

1 for ω2, ω3 and ω4, respectively. The implication is that the item location coincides with

the second threshold of the item.

Design factors

There were three factors in the data generation design, varied in an orthogonal way. The

first factor was the value of the category difference parameter for the second group taking

the values of either 0 or 2 (γ2 = 0 or γ2 = 2), so that the second class differs from the

first in a quantitative way when γ2 = 2 or does not differ from the first when γ2 = 0,

independent of whether the categories also differ in a qualitative way or not.

The second factor was the relation of the location parameters across the two classes.

The same 11 values were used in all three cases, but the location parameters were either

identical in the two groups (rβi1βi2
= 1), or uncorrelated (rβi1βi2

= 0), or they were
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perfectly negatively correlated (rβi1βi2
= −1). The different values of this factor, define

an absence of qualitative differences (when rβi1βi2
= 1), or define a qualitative difference

type (when rβi1βi2
= 0 or rβi1βi2

= −1). The case of rβi1βi2
= −1 is one with extreme

qualitative differences with respect to location. Note that the correlation between the

location parameters is not based on individual differences and is unrelated to overall

individual differences.

When a location correlation of 0 or -1 (rβi1βi2
= 0 or rβi1βi2

= −1) is combined

with a group main difference of 2 (γ2 = 2), there are both qualitative and quantitative

differences present in the data. If the group difference is 0 (γ2 = 0), whereas the location

correlation is 0 or -1, there are only qualitative category differences. If the location

correlation is one (rβi1βi2
= 1) and the group means do not differ (γ2 = 0), the model is

purely dimensional because homoscedasticity and equal discriminations are assumed.

The third factor defines within-category homogeneity or within-category hetero-

geneity by using θpc ∼ N(0, 0) or θpc ∼ N(0, 1), respectively, yielding homogeneous cate-

gories or heterogeneous categories, respectively.

The combination of these three factors describe twelve data configurations for each

of which 20 data sets were generated.

Taxometric results

The taxometric analyses were accomplished using John Ruscio’s (2006) free program

code. As the data in Study 1 are rating-scale data (DIMCAT data), not the original

MAXCOV method (described above) is used, but the so-called Short Scale MAXCOV

(e.g., Gangestad & Snyder, 1985; Ruscio, 2000; Schmidt, Kotov, & Joiner, 2004) which is

designed to be used with variables that do not form a (quasi) continuous scale. In Short

Scale MAXCOV, two output indicators are picked from the indicator set, just as in case

of the original version, but instead of using one of the remaining indicators as the input
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variable, the sum of all remaining indicators is used to form a composite input variable.

An important assumption is that the sum score has validity for the category distinction.

Although in the original form of MAXCOV the covariances are plotted along the

nonoverlapping ordered sections of the input indicators, the analyses can also be accom-

plished using overlapping windows instead. The method was originally used for another

taxometric procedure called MAXEIG (Waller & Meehl, 1998). The advantage of the

procedure is that it provides MAXCOV plots that are easier to interpret without using

smoothing techniques.

The MAMBAC analyses were performed in a way similar to Short Scale MAXCOV;

one indicator was taken as the output indicator, whereas the the remaining indicators were

summed to form a composite input indicator. Also for MAMBAC, overlapping windows

were used instead of nonoverlapping windows.

For the L-Mode, the analyses are simply common factor analyses and the factor

scores on the first factor are plotted.

As it was already mentioned, the visual inspection of the graphs plays an important

role in taxometrics. However, presenting all the plots resulting from the simulation study

would not be feasible. Only representative graphs for each cell in the generation design

will be shown. As there are many plots: 55 MAXCOV plots, 11 MAMBAC plots and 1

L-Mode plot for each of the 20 data sets within a cell of the design, only representative

plots will be presented. Beyond these graphs, also the summary of the consistency tests

will be presented.

MAXCOV

MAXCOV does not seem able to indicate taxonicity (category-likeness) with the data

configurations of Study 1. Figure 1 shows a representative averaged MAXCOV graphs

for each of the twelve data structures.
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(a) correlation is 1
main effect is 0

(b) correlation is 0
main effect is 0

(c) correlation is -1
main effect is 0

(d) correlation is 1
main effect is 2

(e) correlation is 0
main effect is 2

(f) correlation is -1
main effect is 2

(g) correlation is 1
main effect is 0

(h) correlation is 0
main effect is 0

(i) correlation is -1
main effect is 0

(j) correlation is 1
main effect is 2

(k) correlation is 0
main effect is 2

(l) correlation is -1
main effect is 2

Figure 1: MAXCOV graphs for for homogeneous categories (a to f) and heterogeneous categories
(g to l) depending on (the degree of) qualitative differences and main effect.
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Based on the visual inspection of these graphs, one would conclude in most cases

that the underlying structure is dimensional, whereas in most of the cells (10 out of

12) the structure is in fact category-like. The exceptions where category-likeness can

be established indeed are the cells where a quantitative difference (main effect of 2) is

combined with homogeneity without extreme qualitative differences (panel d and e of

Figure 1, respectively).

For MAXCOV, a ”built-in” consistency test is the variability of the base rate

estimates stemming from the covariance plots of indicator triplets (two output indicators

and one input indicator). For each of the data sets in this simulation study, there are

55 estimates of the base rate. Kotov et al. (2004) suggest 0.1 SD as a rule of thumb,

that is, when the standard deviation of the base rate estimates is smaller than 0.1, the

underlying structure is most likely to be categorical. The underlying structure is most

likely to be dimensional when the standard deviation of the base rate estimates is greater

than or equal to 0.1. Table 1 contains the percentages of correct MAXCOV decisions

based on the SD of the base rate estimates, on the GFI and on the CCFI. It can be

clearly seen from these results that with the data configurations of Study 1 the rule of

thumb of 0.1 SD of the base rate estimates does not work. Even when the averaged curve

suggest a categorical underlying structure, the SD of the base rate estimates is larger

than 0.1, suggesting a dimensional underlying structure. This result is true for every data

set of every data configuration. Hence, for the true dimensional structures the SD-based

decisions are perfect, whereas for the categorical structures the SD-baseddecisions are

never correct.

For the GFI the results are more promising for the data configurations with a

main effect of 2 (γ2 = 2). When the main effect is zero (γ2 = 0) the GFI never results

in a correct decision, while for a main effect of two the results are perfect when only

quantitative differences are present (rβi1βi2
= 1), with only slightly worse results when the



Comparison of DIMCAT and taxometrics 21

quantitative differences are combined with qualitative differences. However, the correct

decision rate deteriorates to zero when extreme qualitative differences are combined with

within-class heterogeneity.

Table 1: Percentages of correct MAXCOV decisions based on the threshold of the standard
deviation (SD) of the base rate estimates, on the GFI and on the CCFI

var theta main effect corr of items SD GFI CCFI

a 0 0 1 100 0 68.42

b 0 0 0 0 0 25

c 0 0 -1 0 0 25

d 0 2 1 0 100 84.21

e 0 2 0 0 100 55.56

f 0 2 -1 0 85 5

g 1 0 1 100 0 94.74

h 1 0 0 0 0 5

i 1 0 -1 0 0 25

j 1 2 1 0 100 10

k 1 2 0 0 56.25 6.25

l 1 2 -1 0 0 10

Of the three measures described above, the CCFI seems to provide the highest

correct decision rate when considering all data configurations. The CCFI produces correct

decision rates larger than zero for all data configurations, with the highest hit rate for

a categorical structure if no qualitative differences occur and when the categories are

homogeneous (hit rate is 84.25). This is because taxometrics is not specifically aimed

at revealing qualitative between-class differences (see Hidegkuti & De Boeck, in press)

and because latent homogeneity is assumed as explained earlier (although the method is

robust against mild heterogeneity). For the two dimensional structures (main effect of

zero and no qualitative differences) also high hit rates are obtained (68.42 and 94.74).

It must be concluded that with the data configurations in Study 1 the MAXCOV

procedure provides a rather poor performance in detecting categorical structures. How-
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ever, there are substantial differences between the different measures that were suggested

to help the taxometric decision making. The CCFI seems to be the best measure, al-

though also this measure fails most of the time when qualitative differences play a role.

It has to be noted though, that the qualitative differences employed here (mainly the case

of perfect negative correlation of the indicator locations across the two classes) represent

a rather extreme case of qualitative differences.

MAMBAC

The MAMBAC results are rather similar to those of the MAXCOV analyses. The repre-

sentative averaged MAMBAC graphs appear in Figure 2, while the percentages of correct

decisions based on the threshold on the standard deviation of the base rate estimates, the

GFI and the CCFI are shown in Table 2.

The visual inspection of the representative MAMBAC graphs suggests the same

conclusions that were obtained with the visual inspection of the MAXCOV graphs, namely

that a category-like structure would be concluded only in the case of data configurations

with a main effect of two and within-class homogeneity.

As far as the measures are concerned, the SD of the base rate estimates and the

GFI yield the exact same hit rates as in case of MAXCOV, hence they are not discussed

any further here. Also the CCFI results are similar to those obtained with MAXCOV,

but more polarized.

L-Mode

Figure 3 shows the representative L-Mode graphs. As can be seen, L-Mode performs very

well in most cases, that is, the plot of the factor scores shows unimodality when only one

class is present or in other words stated, when the structure is dimensional (panels a and

g of Figure 3), and it shows clear bimodality for all but two categorical structures. For

a mild form of qualitative differences (correlation of the indicator locations across classes
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(a) correlation is 1
main effect is 0

(b) correlation is 0
main effect is 0

(c) correlation is -1
main effect is 0

(d) correlation is 1
main effect is 2

(e) correlation is 0
main effect is 2

(f) correlation is -1
main effect is 2

(g) correlation is 1
main effect is 0

(h) correlation is 0
main effect is 0

(i) correlation is -1
main effect is 0

(j) correlation is 1
main effect is 2

(k) correlation is 0
main effect is 2

(l) correlation is -1
main effect is 2

Figure 2: MAMBAC graphs for homogeneous categories (a to f) and heterogeneous categories
(g to l) depending on (the degree of) qualitative differences and main effect.
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Table 2: Percentages of correct MAMBAC decisions based on the threshold of the standard
deviation (SD) of the base rate estimates, on the GFI and on the CCFI

var theta main effect corr of items SD GFI CCFI

a 0 0 1 100 0 47.37

b 0 0 0 0 0 0

c 0 0 -1 0 0 0

d 0 2 1 0 100 100

e 0 2 0 0 100 72.22

f 0 2 -1 0 85 50

g 1 0 1 100 0 100

h 1 0 0 0 0 0

i 1 0 -1 0 0 0

j 1 2 1 0 100 0

k 1 2 0 0 56.25 6.25

l 1 2 -1 0 0 5

is 0) combined with heterogeneity and a main effect of zero (panel h in Figure 3) the

bimodality is only minor. Also when the categories are heterogeneous and the difference

between the categories is quantitative, one would not recognize the two underlying classes

based on the plot of the factor scores (panel j of Figure 3). When the difference is

qualitative and the two categories differ as to their level as well (main effect of two), the

bimodality is always very clear.

As it was mentioned before, the visual inspection of the graphs can be supported

by consistency tests. For L-Mode, a ”built-in” consistency test is to compare the base rate

estimates calculated from the two modes. When there is a categorical structure in the

background of the data, the base rate estimates are supposed to be fairly similar, whereas

in case of a dimensional underlying structure, the base rate estimates are not expected

to be similar. Therefore, the difference between the base rate estimates calculated from

the two modes can be used as an indication of the underlying structure. Unfortunately,

for this consistency test there is no recommended threshold value. Therefore, a threshold

of 0.1 was used as in case of the SD of the base rate estimates for the MAXCOV and
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(a) correlation is 1
main effect is 0

(b) correlation is 0
main effect is 0

(c) correlation is -1
main effect is 0

(d) correlation is 1
main effect is 2

(e) correlation is 0
main effect is 2

(f) correlation is -1
main effect is 2

(g) correlation is 1
main effect is 0

(h) correlation is 0
main effect is 0

(i) correlation is -1
main effect is 0

(j) correlation is 1
main effect is 2

(k) correlation is 0
main effect is 2

(l) correlation is -1
main effect is 2

Figure 3: L-Mode graphs for homogeneous categories (a to f) and heterogeneous categories
(g to l) depending on (the degree of) qualitative differences and main effect.
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Table 3: Percentages of correct L-Mode decisions based on the threshold of the difference of the
base rate estimates and on the GFI

var theta main effect corr of items Difference GFI

a 0 0 1 100 0

b 0 0 0 75 0

c 0 0 -1 100 0

d 0 2 1 26.32 100

e 0 2 0 100 100

f 0 2 -1 100 85

g 1 0 1 100 0

h 1 0 0 0 0

i 1 0 -1 100 0

j 1 2 1 0 100

k 1 2 0 37.5 56.25

l 1 2 -1 90 0

MAMBAC procedures.

Table 3 shows the percentage of correct decisions based on the difference between

the base rate estimates based on the two modes, and the percentage of correct decisions

based on the GFI. The hit rates yielded by the GFI are identical with those stemming

from the MAXCOV and MAMBAC analyses. CCFI seemed not to work for L-Mode (John

Ruscio, personal communication, October 18, 2006) and hence, it was not considered. The

hit rates based on the difference of the base rate estimates corroborate the conclusions

that were drawn based on the visual inspection of the graphs. The results are very good in

general, with two clear exceptions for the cells that were identified earlier as problematic

from a visual inspection (cells h and j). For two other cells (d and k) the results are rather

poor without a clear explanation, although in both cases the bimodality is relatively less

pronounced. The GFI results are clearly inferior to those of the difference consistency

norm.

As one can see, the results based on the base rate difference corroborate the con-
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clusions drawn from the representative plots, but the visual inspection suggests a better

differentiation.

DIMCAT results

Of the various possible models, six were used to reveal the underlying structure of the

generated data sets. These models were: (1) a one-class model (Model 1, the polytomous

version of the 1PL model) which is actually a purely dimensional model, (2) a two-class

latent class model allowing only quantitative differences (Model 2, category main effect),

(3) a two-class latent class model allowing both quantitative and qualitative differences

(Model 3), and (Models 4, 5, 6) the homogeneous counterparts of the previous three

models. The DIMCAT analyses were carried out with the Mplus software (Muthén &

Muthén, 2006). The analyses were performed using nonadaptive Gaussion quadrature

with 15 quadrature points.

Since it is not uncommon that a latent class analysis results in a local optimum

(e.g., Lubke & Muthén, 2005), the DIMCAT analyses involving latent classes were per-

formed using 15 starting value sets for each analysis. After 10 iterations the loglikelihood

values were evaluated and the 5 starting value sets resulting in the best loglikelihood

values were used to run the analysis until convergence was reached.

The comparison of the six models and the decision was made based on two in-

formation criteria, the AIC and the BIC. The decision about the underlying structure

is considered to be correct if the true model (i.e., the one used to generate the data)

is the best fitting one (i.e., has the smallest AIC and BIC values). The percentage of

correct decisions for each of the twelve data configurations appear in Table 4, for both,

the AIC and the BIC. For the combinations on line a and line g, the correct decision is

dimension-like, whereas on all other lines the correct decision is category-like.

In general, DIMCAT performs very well in revealing the latent structure of these
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Table 4: Percentage of correct DIMCAT decisions (Study 1)

var theta main effect corr of items AIC BIC

a 0 0 1 0 26.7

b 0 0 0 100 100

c 0 0 -1 100 100

d 0 2 1 100 100

e 0 2 0 95 100

f 0 2 -1 95 100

g 1 0 1 100 100

h 1 0 0 100 100

i 1 0 -1 100 100

j 1 2 1 5 0

k 1 2 0 100 100

l 1 2 -1 100 100

data sets, with two exceptions. The first exception is the cell where homogeneity is

combined with identical indicator locations in both groups and a person category main

effect of zero (neither quantitative nor qualitative differences). For this combination, the

DIMCAT analyses tend to prefer the model with heterogeneity, almost never the one

with homogeneity. The second exception is the cell where heterogeneity is combined with

quantitative differences, but not with qualitative differences (line j in Table 4). This is a

category-like combination which was also problematic for L-Mode to detect. The source

of this problem is most likely that the mixture of two normal distributions with a variance

of 1 and a mean difference of 2, yields a joint distribution which is unimodal, making it

almost impossible to separate the two classes.

To further investigate this issue, the analyses for the problematic data configuration

was repeated but now using a category main difference of 4 (instead of 2) to generate the

data. A representative MAXCOV graph as well as a representative L-Mode graph appear

in Figure 4.

It is clear from the graphs, that with a larger category main difference, both
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MAXCOV L-Mode

Figure 4: Represenative MAXCOV and L-Mode graphs for the cell with heterogeneity, identical
indicator locations and a category main effect of 4

MAXCOV and L-Mode work fine. This finding is also corroborated for L-Mode based

on the difference between the base rate estimates calculated from the two modes, which

was 0.04 on average, with a standard deviation of .02, whereas in the original study it

was 0.72 with a standard deviation of 0.2 (line j of Table 3). In case of the MAXCOV

analyses, the mean standard deviation of the base rate estimates is 0.13 with a standard

deviation of 0.02, which is a substantial improvement in comparison with the original

study (mean standard deviation of 0.22 with a standard deviation of 0.02). However,

the standard deviation of the base rate estimates was smaller than the recommended

threshold in only 1 out of 20 data sets. Also the DIMCAT results improved, so that the

correct data structure was found in all twenty data sets, based on either the AIC or the

BIC, whereas in the original study the correct data structure was found only in 5 and 0

percent of the cases, based on the AIC and the BIC, respectively.
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Study 2

In the second study, data simulated by Meehl and Yonce (1994) were analyzed. In their

study four normally distributed indicator variables were used and the following four factors

were varied (but not in an orthogonal way): sample size, base rate, factor loadings,

indicator separation for categorical structures. The base rate is the proportion of the

taxon group (focus category, e.g., category of depressed people), whereas the indicator

separation is the the difference between the means of the indicator in the two categories.

The indicator separation is conventionally expressed in terms of Cohen’s d statistic. For

dimensional structures, two factors were varied: sample size and factor loadings. The

data sets with a dimensional underlying structure were generated in such a way that

the indicator correlations were the same as in the categorical data sets. The different

data configurations can be found in Table 5 (together with the results of the MAXCOV

analyses). For a more detailed description of the data generation procedure, the interested

reader is referred to Meehl and Yonce (1994, pp. 1067-1068).

The data sets were used to test the performance of various taxometric procedures

such as MAMBAC (Meehl & Yonce, 1994) MAXCOV (Meehl & Yonce, 1996), and L-Mode

(Waller & Meehl, 1998).

Taxometric results

In Study 2, the MAXCOV, the MAMBAC and the L-Mode analyses were performed in

the original fashion (not employing summed indicators as for the DIMCAT data), except

that also here, overlapping windows were used instead of nonoverlapping windows for

MAXCOV and MAMBAC.

MAXCOV

The percentages of correct decisions based on the standard deviation of the base rate

estimates, based on the GFI and on the CCFI appear in Table 5. The results are as follows:



Comparison of DIMCAT and taxometrics 31

(1) The decisions based on the SD of the base rate estimates supports almost exclusively a

dimensional underlying structure, independent of the true structure underlying the data.

(2) The GFI shows the opposite trend suggesting a category-like latent structure in most

cases. (3) The CCFI results are very good, independent of the underlying structure; the

CCFI provides a high hit rate for both dimensional and category-like structures. To a

certain extent, these findings are expected, as the CCFI has been shown to work well (J.

Ruscio, Ruscio, & Meron, in press), while the GFI seemed not to work well in previous

unpublished simulations. However, the rather poor performance of the SD and the GFI is

still noteworthy. Of the three measures, the CCFI seems to be a good choice to be used in

larger scale simulation studies, where the visual inspection of the resulting graphs is not

feasible. A visual inspection of the plots is still a decisive factor, but it can effectively be

aided by generating dimension-like and category-like comparison data and comparisons

of the corresponding results using the CCFI.

MAMBAC

The percentages of correct MAMBAC decisions based on the three criteria are shown in

Table 6. The results are similar to those obtained with MAXCOV, although the results

are somewhat more extreme. The CCFI results are again the best, being only slightly

worse for true dimensional structures than those obtained in the MAXCOV analyses. The

results based on the CCFI are very good not only in a relative sense (compared to the

other two measures) but also in an absolute sense.

L-Mode

The results of the L-Mode analysis are shown in Table 7. They do not bring any new

findings, but they corroborate instead the conclusions drawn in Study 1 and the conclu-

sions based on the MAXCOV and MAMBAC analyses of Study 2. As the CCFI is not

used with L-Mode there is no index available here to support the interpretation of the

L-Mode graphs. The other two indexes show a pattern similar to the MAXCOV and the
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MAMBAC analyses. The difference of the base rate estimates for L-Mode proves to be

a somewhat better criterion than the standard deviation of the base rate estimates for

the MAXCOV and MAMBAC procedures. However, it is still not nearly as good as the

CCFI in case of the other two procedures.

Generally, it can be concluded that two of the three taxometric procedures applied

in this study, namely MAXCOV and MAMBAC work very well when using the CCFI as

a criterion, whereas the other two criteria, the standard deviation (or difference in case

of L-Mode) of the base rate estimates, and the GFI have a rather poor performance. The

difference of the base rate estimates in case of L-Mode proves to be a better working

index then the SD of the base rate estimates (in case of MAXCOV and MAMBAC)

but not as good as the CCFI for the other two taxometric methods considered in this

paper. Although two of the three indices do not seem to work well, it must be concluded

that the taxometric methods can indeed differentiate between categorical and dimensional

structures quite well.

DIMCAT results

To perform the DIMCAT analyses, four models were used: (1) a one-class single factor

analysis model, (2) a two-class single factor analysis model, and (3, 4) the homogeneous

counterparts (the variance of the underlying factor is 0) of these two models. The αs (see

Equation 5) were fixed to one just as in the first study the discrimination parameters were

fixed.

The percentage of correct decisions (based on the AIC and BIC) about the under-

lying structure appear in Table 8. As can be seen, the results are very good in general.

The AIC produces somewhat less correct decisions, but in general it provides a fairly good

hit rate. The BIC, on the other hand, proves to be a perfect or nearly perfect criterion

for all the taxometric data configurations.
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Discussion

Although aiming at the same target of revealing the underlying nature of different psycho-

logical phenomena, the two approaches have a slightly different emphasis. Taxometrics is

best suited for data stemming from different scales which measure the same phenomenon.

These scales can be for example parts of a test battery measuring, for example, depression

and the total scores on each part may be used as (quasi continuous) indicator variables

in the taxometric analyses. This strategy, however, requires data from several scales or

questionnaires which may not be readily available in many studies. A possible way to

overcome this drawback is to use a single questionnaire consisting of items evaluated on

a Likert-type scale, and then combining the items measuring the same (or similar) facet

of the phenomenon in question into indicator variables which form a scale, as illustrated

in Study 1.

On the other hand, DIMCAT is well-suited for questionnaire-type data, that is,

rating-scale data with a limited set of response alternatives on a rating scale. Therefore,

DIMCAT appears to be a natural choice when one intends to study the underlying nature

of psychological phenomena using data from a single questionnaire, like, for example, the

Beck Depression Inventory (Beck et al., 1996).

Another important issue concerns the focus of the two different approaches. Both

methods are meant to find out whether there are two (or possibly more in case of DIM-

CAT) clearly separable categories, but for taxometrics the possible separation necessarily

appears on a common underlying dimension. As Waller and Meehl (1998, p. 9) stated

’Thus, the convenient dichotomy taxonic-vs.-dimensional should, strictly speaking, read

”taxonic-dimensional vs. dimensional only.”’ That is, even when taxonicity is found, the

taxons (categories) are assumed to be located on the same common underlying dimension.

Hence, the categorical vs. dimensional distinction in taxometrics seems to correspond to

the distinction between smooth and abrupt quantitative differences in DIMCAT. Thus,
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in taxometrics no qualitative differences (in the sense used in the DIMCAT framework)

are considered. Despite this fact, L-Mode can also detect categories if they are based on

qualitative differences (at least the location nonequivalence type) but it cannot determine

what the basis of the categorical nature is: quantitative or qualitative differences, or both

(Hidegkuti & De Boeck, in press). The method does not differentiate among different

types of categorical structures.

As could be seen, the results of the DIMCAT analyses are rather convincing,

DIMCAT performs very well in general, for both DIMCAT data and taxometric data. As

far as taxometrics is concerned, MAXCOV and MAMBAC works very well when analyzing

taxometric data and using the CCFI as a criterion, but their performance becomes less

convincing when used with the DIMCAT data configurations of the present study, even

when the CCFI is employed as a criterion. L-Mode performs rather well in defining

whether the underlying structure is categorical or dimensional, showing a comparable

performance to that of DIMCAT in both studies, following a visual inspection or using

the difference of the base rate estimates as a criterion. It is noteworthy, that the criterion

that worked best for MAXCOV and MAMBAC is not applicable to L-Mode.

The poorer performance of MAXCOV and MAMBAC may stem from the fact

that with indicators having only a few response alternatives (in this case four), composite

input indicators need to be employed. In many cases these composite indicators do not

differentiate between the underlying latent classes, such as when there are only qualitative

differences.

A limitation of the second study (using taxometrics data) is that the data gen-

erated by Meehl and Yonce (1994) represent fairly idealistic conditions, hence, it would

be desirable to repeat this second study with more realistic data including for example

skewed indicators, and larger within-category correlations (mainly combined with smaller

indicator separations), for example. The reason to use the data sets generated by Meehl
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and Yonce (1994) is that thus far these were the standard data sets used to evaluate the

taxometric methods. In further simulation studies comparing taxometrics and DIMCAT,

one should also vary the base rates and the indicator skew.
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