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Abstract

Structural equation models are commonly used to analyze two-mode data sets in which a

set of objects is measured on a set of variables. The underlying structure within the

object mode is evaluated using latent variables which are measured by indicators coming

from the variable mode. When the objects are in addition measured under different

conditions, three-mode data arise, and with this, the study of the correlational structure

of two modes simultaneously may be of interest. In this paper we present a model which

simultaneously uses a latent structure to handle two of the three modes of a data set. A

study about emotion using a persons by situations by responses three-mode data set

shows that the model is useful to study systematic differences across the entities of the

persons mode and the situations mode.

Keywords: Structural equation model, three-mode data, individual differences,

situational differences.
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A Double-Structure Structural Equation Model for

three-mode data

Structural equation models (SEM) are a popular tool in social sciences for

investigating two-mode data arrays in which a set of objects (mode 1) is measured on a

set of variables (mode 2). Examples of such two-mode data sets are abundant. As a

specific example, that will be elaborated in the remainder of the paper, consider the case

in which a group of persons is asked to answer a set of questions regarding emotional

responses to a particular kind of situation. For example, various negative affect responses

to a frustrating situation. In this case, the object mode consists of a random sample of

persons and the variable mode are the emotional responses. The resulting data set is a

two-dimensional array of persons by responses.

A SEM can then be used to explain the covariation between the manifest variables

(i.e., the emotional responses) by making use of latent variables (and relationships

between them). The latent variables are underlying individual difference variables.

It is not uncommon, however, that data can be collected regarding several

situations. Following the previous example, consider that a group of P persons has been

asked to answer a set of R questions regarding their emotions in S different situations.

This kind of data are represented in a three-dimensional array and are referred to as

three-mode data (e.g., Kroonenberg, 2005; Cattell, 1946, 1952) with persons and responses

being extended with a third mode which is, in this case, the situation mode. More

specifically for the data which will be analyzed in this paper, a set of persons is measured

with respect to four emotional responses (frustration, tendency to act antagonistically,

irritation, and anger) in a set of situations. Thus, the situations are considered to be the

third mode of the data. Figure 1 shows a schematic representation of the

three-dimensional data array in which the observation xprs represents the response of
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person p (p = 1, . . . , P ) to question r (r = 1, . . . , R) under situation s (s = 1 . . . , S).

When confronted with this kind of data structure, the researcher may choose among

several alternatives to analyze such data. A first option is simply to aggregate over the

third mode (i.e., situation mode) to arrive to the more common two-mode data structure.

Aggregation can be carried out by calculating some kind of summary statistic of the

responses of a given person in the set of situations (e.g., mean, sum, median, etc.).

However, aggregation has some severe disadvantages. After aggregation over the situation

mode, one can only answer questions with respect to individual differences and

correlations across individuals. Of course, to investigate the situational differences and the

correlational structure on the situation side, one can always aggregate over the person

mode, but the net result is two unrelated models. For example, when aggregating over

situations, the questions asked concern whether persons who tend to be angry also tend to

be irritated. When aggregating over persons, one might ask whether situations which tend

to elicit anger also tend to elicit irritation. The relations between emotional responses in

the two models can be similar or even identical but they don’t need to be, neither on

statistical grounds, nor on psychological grounds (see further).

Studying the correlational structure of two modes simultaneously instead of only

studying a single mode, is new in behavioral research, but it is nevertheless reasonable and

doable. In the context of the emotional response data set, it can be hypothesized that on

the one hand, it is possible that the proneness of individuals to one response is positively

correlated to the proneness to other responses because of general underlying traits related

to negative and positive affect. On the other hand, an emotional response may be less

correlated or even negatively correlated to similar other emotional responses when one

looks at the responses from a situational perspective, for example because there is room

for only one response at a time or because there are strong implicit or explicit situational

rules. As a concrete example, the same persons may be inclined to both emotions of anger



Double-Structure SEM 5

and guilt (but depending on the situations) whereas anger situations and guilt situations

do not overlap (e.g., Vansteelandt, Van Mechelen, & Nezlek, 2005; Zelenski & Larsen,

2000).

Given that the interest is in both the individual differences structure and the

situational differences structure, an approach is needed that allows one to model the

structure at two sides of the data array simultaneously. This is exactly what the

double-structure structural equation model (2sSEM) aims at. Basically, it will be assumed

that, similarly as for persons, also the situations are sampled from a population (often

called ‘a universe’). In the next step, a joint model will be built for the individual

differences and situational differences structure of the data. A preliminary version of the

approach in this paper has been proposed by De Boeck & Smits (in press).

The paper is organized as follows. First, we introduce the data set we are going to

analyze and formulate the basic research questions. Second, we introduce some necessary

notation and briefly revise the ideas behind the regular SEM, and based on this, we

formulate the 2sSEM. Then the issue of statistical inference is discussed. The model is

evaluated using a three-mode data set of persons by situations by responses about four

feelings. Finally, conclusions and a discussion will be presented.

Description of the data

A central question in the research of emotions pertains to the differences between

irritation and anger (e.g., Averill, 1982; Frijda, Kuipers, & ter Schure, 1989; Van Coillie &

Van Mechelen, 2006). Although the two emotions can be distinguished quite easily

phenomenologically, it is still unclear in what ways they exactly differ. The componential

theory in emotion research forms a fruitful framework to study emotions (Scherer, Schorr,

& Johnstone, 2001). It is hypothesized that emotions are associated with differential

componential patterns, and that the two emotions under consideration differ as to their
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componential nature.

The basic hypothesis underlying the application is that emotions rely on two

components: a feeling component, and an action-tendency component, and that the

weight of both may differ depending on the emotion. The more specific hypothesis is that

anger is relatively more action-oriented than irritation, whereas irritation is relatively

more feeling-based. Two corresponding components are considered for anger and

irritation: the feeling of frustration, and an antagonistic action tendency. It is

hypothesized that anger is primarily associated with an antagonistic action tendency, and

to a lesser degree with frustration, whereas irritation is primarily associated with the

feeling of frustration and to a lesser degree with an antagonistic action tendency.

The data in this paper stem from a sample of 679 Dutch speaking last-year high

school students. They were presented with 11 hypothetical situations and were asked to

indicate the degree to which they would experience frustration, a tendency to take

antagonistic action, irritation and anger, on a 4-point scale, ranging from 0 (not) to 3

(very strong) (De Boeck & Smits, in press; Kuppens, Van Mechelen, Smits, De Boeck, &

Ceulemans, in press). To simplify the model construction however, the original data were

dichotomized recoding the values 0 and 1 as 0 and 2 and 3 as 1. The 11 situations are

situations that may elicit anger or irritation. Examples of such situations are: “You find

out that a friend is spreading gossip about you”, “A friend lets you down on an

appointment to go out”, etc.

Some summary statistics of the data set are presented in Figure 2. In order to give

an idea of the individual and situational differences, the three-mode data were aggregated

first over the situation mode and second over the person mode. Aggregation consisted of

computing the proportion 1-answers (called proportion of endorsements). Panel (a) shows

histograms for each of the four responses of the proportion of endorsements in the 11

situations. As can be seen, on average there are 70% 1-responses in the situations, except
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for anger where the average proportion is larger. It is clear that the situations differ on all

four responses. Panel (b) is constructed similarly, but shows the proportion of

endorsements for each of the four responses for the 679 persons. From panel (b) it is clear

that persons differ on all four responses. Many persons show negative affect on all the

situations. The skewed distribution on the manifest level may seem a problem, but note

that this is not necessarily a problem on the latent level, since a normal distribution on

the latent level may appear as a skewed distribution on the manifest level, depending on

the item parameters (situation and response parameters in this case). The main

conclusion from the summary statistics is that for both, situations and persons,

sufficiently large differences are found in order to investigate covariance structures.

The basic research questions regarding these data are as follows (See Figure 3 for a

graphical representation):

1. What is the individual differences structure? If each emotional response

(frustration, antagonistic action tendency, irritation, anger) is considered an indicator for

a separate latent variable for which individuals can differ, how are these latent variables

then related to one another? Is frustration the primary component for irritation (i.e.,

more important than the antagonistic action tendency) and is the tendency to act

antagonistically the primary component for anger? (i.e., more important than

frustration). In terms of Figure 3 the hypothesis implied by the first research question is

that a > b, and that d > c.

2. What is the structure on the situation side? Is it the case also for situations that

frustration is the primary component of irritation, and the antagonistic action tendency is

the primary component of anger? In terms of Figure 3 the hypothesis is again that a > b,

and d > c.

3. If the structures of the person side and the situation side are similar, as

hypothesized in 1 and 2, are the population values for effects that link the four latent
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variables the same for persons and situations? In terms of Figure 3, the hypothesis is that

the standardized values for a, b, c, d, are identical for the structure of individual differences

and the structure of the situational differences. The hypothesis is phrased in terms of

standardized values, in order for the hypothesis to be independent of the variances.

It is neither a statistical necessity, nor a psychological necessity that the structure

for the modes is similar or identical. For example, the structure may be one-dimensional

for the persons, with all four feelings associated to only one and the same dimension (a

general dimension), whereas for situations multidimensionality applies.

Double-structure structural equation model (2sSEM)

In the case of three-mode data, one needs a model that takes into account both

individual and situational differences at the same time. To derive such a model, let us first

start from the formulation of two separate SEMs, one for the study of individual

differences and another one for the study of situational differences. Each model can be

applied to a single slice of the three mode cube. For example, the model on the person side

can be applied to a single situation and the model on the situation side can be applied to

a single person. The better option is to apply the model to aggregated data sets, one of

each type, as explained earlier. This option will be followed to explain the model.

Following Bollen (1989), a SEM encompasses two parts. The first part is the

measurement model which contains the equations representing the link between the

observed and latent variables. The second part is the structural model which contains the

equations that summarize the relationship between the latent variables. We will explicitly

write the measurement and structural model used for the study of both individual and

situational differences. This allows us to introduce the necessary notation.

It is worth emphasizing that SEM is primarily designed to be used with continuous

observed variables. This is why the 2sSEM is introduced using continuous observed
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variables. As pointed out earlier, the data that will be analyzed are dichotomous.

However, the extension to a measurement model for dichotomous observed variables is

straightforward and will be explained later. In preparation of formulating the 2sSEM, the

models for describing individual differences and for describing situational differences will

be formulated first.

Model for individual differences

After aggregating over the situation mode, the resulting data sets are rectangular

arrays of dimension P ×R, suitable to be used in a SEM model.

Let xp be an R-dimensional vector of observed variables measured on each person p

(p = 1, . . . , P ), θp is a Q-dimensional vector of latent (person) variables, and εp is an error

term. In the LISREL (Jöreskog & Sörbom, 1996) formulation of a SEM, the relationship

between observed and latent variables is modeled as follows

xEx
p = AExθEx

p + εEx
p (1)

xEn
p = AEnθEn

p + εEn
p

where θp has been partitioned into the Q1-dimensional subvector θEx
p and the

Q2-dimensional subvector θEn
p with Q1 + Q2 = Q. Accordingly, xp = (xEx

p ,xEn
p ), and

ε = (εEx
p , εEn

p ), where subvectors with the superscript Ex are R1-dimensional and refer to

the exogeneous part of the model whereas vectors with the superscript En are

R2-dimensional and refer to the endogeneous part of the model, with R1 + R2 = R. AEx

and AEn are R1 ×Q1 and R2 ×Q2 loading matrices, respectively. εEx
p is uncorrelated

with θEx
p , θEn

p , and εEn
p , and has a normal distribution N(0,ΨEx). εEn

p is uncorrelated

with θEx
p , θEn

p , and εEx
p , and has a normal distribution N(0,ΨEn). Equation (1) is known

as the measurement model.

The interrelations between latent variables is modeled as
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θEn
p = ∆θEn

p + ΩθEx
p + θ∗p (2)

where ∆ and Ω are Q2 ×Q2 and Q2 ×Q1 parameter matrices, respectively. θ∗p is a

Q2-dimensional vector of errors on the endogenous latent variables uncorrelated with θEx
p .

θEx
p follows a N(0,Σθ) distribution and θ∗p follows a N(0,Σθ∗) distribution, with Σθ∗

typically being diagonal. Under this model, it is assumed that (I −∆) is nonsingular.

Equation (2) is known as the structural model.

Each component of θEx
p and θEn

p represents a concept (feeling) to be studied. The

superscripts Ex and En stand for exogenous and endogenous, respectively (see e.g., Bollen,

1989). The subscripts p indicate that person variables are concerned. Note that in

Equation (1) an intercept, say, τ = (τEx, τEn), could have been added in the regression

equations. However, if the variables are assumed to be deviation from their means, as it

was assumed here, the intercept can be omitted.

An example. Suppose that one is interested in checking the hypothesis mentioned in

the research question 1 (see Section 2). Then, frustration and the antagonistic action

tendency are the exogeneous latent variables denoted by θp,fru and θp,ant, respectively.

Irritation and anger are the endogeneous latent variables denoted by θp,irr and θp,ang,

respectively; and no interrelations between these endogeneous latent variables are

considered (i.e., ∆ = 0). Then, following (1) the measurement model would read as

xp,irr = α1θp,irr + εp,irr

xp,ang = α2θp,ang + εp,ang




⇔ xEn

p = AEnθEn
p + εEn

p (3)

xp,fru = α3θp,fru + εp,fru

xp,ant = α4θp,ant + εp,ant




⇔ xEx

p = AExθEx
p + εEx

p (4)

where xEn
p = (xp,irr, xp,ang), xEx

p = (xp,fru, xp,ant), εEn
p = (εp,irr, εp,ang),
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εEx
p = (εp,fru, εp,ant), AEn = diag(α1, α2), and AEx = diag(α3, α4). In other words, the

manifest x variables are used to measure the latent (unobserved) θs variables in the

measurement model.

The corresponding structural model is

θp,irr = ω1θp,fru + ω2θp,ant + θ∗p,irr

θp,ang = ω3θp,fru + ω4θp,ant + θ∗p,ang




⇔ θEn

p = ΩθEx
p + θ∗p (5)

The relations among the latent variables are accomplished by this structural model.

Looking at the structural model, one can now see whether irritation is primarily related

with frustration, more so than with the antagonistic action tendency, and whether the

reverse is true for anger.

Finally, note that the model is not identified because there is only one indicator for

each latent variable, which is a problem for SEM. However, as one will see, the problem

vanishes when the 2sSEM will be defined. The solution is not found by using the situation

specific variables as S indicators variables for each latent variable, because in that way the

situational structure does not appear. Although all data would be used simultaneously,

the variation that is modeled with the various situational responses as indicator variables

would still be only variation between individuals.

More details about rules for identification and estimation of SEMs can be found in

Bollen (1989).

Model for situational differences

After aggregating over the person mode, a SEM can be used to investigate the

correlational structure of situations. The SEM is exactly the same model that was used to

investigate the correlational structure of persons, including the model assumptions. The

only difference relies in the notation we use for situation latent variables.

Let βs = (βEx
s , βEn

s ) be a T -dimensional vector of latent (situation) variables. βEx
s
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is a T1-dimensional subvector and βEn
s is a subvector of dimension T2 with T1 + T2 = T .

The subscripts s indicate that situation variables are concerned. The measurement model

is

xEn
s = ΓEnβEn

s + εEn
s (6)

xEx
s = ΓExβEx

s + εEx
s

where, as before, subvectors with the superscript Ex are R1-dimensional whereas

subvectors with the superscript En are R2-dimensional. ΓEx and ΓEn are R1 × T1 and

R2 × T2 loading matrices, respectively.

The corresponding structural model is

βEn
s = ΥβEn

s + ΛβEx
s + β∗s (7)

with the Υ and Λ being T2 × T2 and T2 × T1 parameter matrices, respectively,

describing interrelations among latent situation variables, and β∗s a T2-dimensional vector

of errors on the endogenous latent situation variables.

An example. Suppose that one is now interested in checking the hypothesis

mentioned in the research question 2 (see Section 2). A very similar example like the one

given above can be thought for the situational differences part. After the model is fitted,

one can see, for example, whether irritation is primarily feeling based, whereas anger

would be primarily action based.

A disadvantage of considering two different models at a time, one for the study of

the person side of the data, and another for the study of the situation side of the data, is

that the modeling of individual and situational differences occurs in two separate and

unrelated models. When three-mode data are available, one may compare the two

structures in a natural way considering both individual differences and situational
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differences together, because they are derived from the same set of data. This requires a

model including both aspects and a simultaneous estimation of the two structures.

The 2sSEM

In order to present a general formulation of the model, assume that there are Q

latent person variables and T latent situation variables. The following notation will be

used. The observed random variable xprs is used to denote to which extent person p

exhibits response r in situation s. The index r may take four values in our data set, and

these values correspond with frustration (fru), antagonistic action tendency (ant),

irritation (irr), and anger (ang). Following a convention in psychometrics, θ refers to

person effects and β to situation effects. The effect of responses will be represented by τ .

From the context it will be clear whether an effect is fixed or random.

Measurement model. Following (1) and (6), the measurement model we use is

xprs =
Q∑

q=1

αrqθpq +
T∑

t=1

γrtβst + τr + εprs = α>r θp + γ>r βs + τr + εprs (8)

where αrq is the weight of the q-th (q = 1, . . . , Q) latent person variable for response

r and γrt is the weight of the t-th (t = 1, . . . , T ) latent situation variable for response r. τr

is assumed to be a fixed general effect for response r, and εprs is an error term.

The measurement model can also be written in matrix form. First, collect all

responses pertaining to the same person-situation combination in the R× 1 vector xps.

The row vectors of weights (α′r and γ ′r) can be stacked below each other in the weight

matrices A and Γ. The model now becomes:

xps = Aθp + Γβs + τ + εps (9)
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with



xp1s

...

xprs

...

xpRs




=




α11 · · · α1Q

...
. . .

...

αr1 · · · αrQ

...
. . .

...

αR1 · · · αRQ







θp1

...

θpq

...

θpQ




+




γ11 · · · γ1T

...
. . .

...

γr1 · · · γrT

...
. . .

...

γR1 · · · γRT







βs1

...

βst

...

βsT




+




τ1

...

τr

...

τR




+




εp1s

...

εprs

...

εpRs




(10)

Note that for the specific set of models considered for the data set discussed in this article,

one has Q = R and T = R. However, it is perfectly possible to formulate a model in which

Q < R and T < R, and also Q 6= T . For reasons of simplicity, the measurements parts of

the models fitted in this paper will have loading matrices that are known and binary. In

this case, αrq = 1 when r = q and 0 otherwise, and, correspondingly, γrt = 1 when r = t,

and 0 otherwise.

Note that now one has multiple indicators for θpr, because xpr1 to xprS are

indicators, and similarly one has multiple indicators for βsr, because x1rs to xPrs are

indicators.

(Double-structure) Structural model. For the structural model, again a partition into

endogeneous and exogeneous latent variables is made, both, for latent person variables

and for latent situation variables: θp = (θEn
p , θEx

p ) and βs = (βEn
s , βEx

s ).

The two-fold structural model can now be defined as follows:

θEn
p = ∆θEn

p + ΩθEx
p + θ∗p (11)

βEn
s = ΥβEn

s + ΛβEx
s + β∗s

The vector of exogenous latent person variables θEx
p follows a Q2-variate normal

distribution with a mean vector of all zeros and a variance-covariance matrix Σθ.

Independently of the exogenous variables, the vector of error terms, θ∗p, follows a
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Q1-variate normal distribution with mean vector of all zeros and diagonal

variance-covariance matrix Σθ∗ . The model at the situation side can be explained in a

completely analogous manner. Note that in Equation (11) a structure is imposed on both,

the person latent variables and the situation latent variables and both, θs and βs, are

modeled as random effects.

The standard graphical way of representing the SEM is by mean of a path diagram

(e.g., Bollen, 1989). This graphical pictorial representation of a system of simultaneous

equations can be transferred to the 2sSEM as well. Straight one-headed arrows represent

the directional influence between the variables connected by the arrows. Curved

two-headed arrows represent correlations between variables. In the application, we will

make use of the graphical representation to introduce several models; see Figure 4. The

observed variables and the error terms are not shown.

The model for dichotomous data. A latent threshold formulation will be used to

make the model suitable for analyzing binary data. Consider a random variable Yprs

logistically distributed with mean α>r θp + γ>r βs + τr and the scale parameter equal to one

(or equivalently, assume that εprs in (8) follows a standard logistic distribution). This

continuous variable is considered to be latent, and it is mapped into the manifest binary

variable Xprs in the following way: Xprs = 1 if Yprs > 0 and Xprs = 0 otherwise. More

precisely,

E(Xprs | θp, βs) = Pr(Xprs = 1 | θp, βs) = πprs (12)

= Pr(Yprs > 0 | θp, βs)

= exp(α>
r θp+γ>r βs+τr)

1+exp(α>
r θp+γ>r βs+τr)

such that

log
(

πprs

1− πprs

)
= logit(πprs) = ηprs = α>r θp + γ>r βs + τr (13)
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Note that the resulting response model is a nonlinear mixed model (NLMM)

specified by a bilinear predictor ηprs, a logit link, and a distribution from the exponential

family, say, the Bernoulli distribution of the Xs. If the loadings are assumed to be fixed,

as will be the case in this paper, the model is more specifically a generalized linear mixed

model (GLMM). Note also that now the τs parameters can be more clearly interpreted as

an indication of the probability (on the logistic scale) of showing each of the r

(r = 1, . . . , R) responses if all latent variables are set to zero.

Statistical inference

Bayesian estimation

The 2sSEM is a model with random effects for two of the three modes in the data.

Therefore, it is a crossed-random effects model (e.g., Snijders & Bosker, 1999; Janssen,

Schepers, & Peres, 2004). The estimation of the parameters of such a model is not trivial

(Tuerlinckx, Rijmen, Verbeke, & De Boeck, 2006). The reason is that the likelihood

contains an integral of a very high dimension (at minimum as high as the product of the

number of elements of the modes with random effects). The well known Gauss-Hermite

quadrature method becomes unfeasible, because of the high dimensionality of the integrals

in the likelihood function. Also Laplace approximations tend to break down because the

dimensionality of the integral grows as a function of the sample size. (e.g., Shun &

McCullagh, 1995; Shun, 1997). Possible alternative solutions, are Monte-Carlo and

Quasi-Monte Carlo methods for numerical integration (e.g., González, Tuerlinckx, De

Boeck, & Cools, 2006), and Bayesian methods, which is the approach taken in this paper.

De Boeck & Smits (in press) solved the problem by fitting a nonlinear mixed model with

only random effects at the person side, and with fixed β’s being a function of other fixed

β’s. Unfortunately, by assuming situation parameters (β’s) to be fixed effects, one does

not fit a genuine 2sSEM, but only a fixed-effects approximation.
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Bayesian inference is based on the posterior distribution of all parameters of interest

given the observed data. Let ϑ be the vector of parameters of interest and x the observed

data. If X | ϑ ∼ f(x | ϑ), then Bayes’ theorem leads to the following relation

f(ϑ | x) ∝ f(x | ϑ)f(ϑ) (14)

which shows that the posterior density is proportional to the likelihood function

times the prior. The idea is then to obtain a sample from the posterior distribution and

use the posterior mean and posterior confidence intervals to summarize the distribution of

each parameter of interest.

In the particular case of the 2sSEM for a three-mode data set with persons,

situations and responses, ϑ = (θp,θ
∗
p,βs, β

∗
s,∆,Ω,Υ,Λ, τ ,Σθ,Σβ,Σθ∗ ,Σβ∗). For the

intercepts τs and the loading and effect parameters in ∆,Ω,Υ, and Λ, normal diffuse

priors were chosen. For the covariance matrices Σθ,Σβ,Σθ∗ , and Σβ∗ , inverse-Wishart

prior distributions were chosen. Finally, the distribution for person and situation latent

variables are given by the model assumptions and are multivariate normal distributions

with zero vector mean and covariance matrices Σθ and Σβ, respectively.

Using the relation in (14), the posterior distribution is then given by the product of

the likelihood

f(x | ϑ) =




P∏

p=1

R∏

r=1

S∏

s=1

π
xprs
prs [1− πprs]1−xprs


 (15)

and the prior

f(ϑ) =
P∏

p=1

N(θp;0,Σθ)
P∏

p=1

N(θ∗p;0,Σθ∗)
S∏

s=1

N(βs;0,Σβ)
S∏

s=1

N(β∗s;0,Σβ∗) (16)

×
R∏

r=1

p(δr)
R∏

r=1

p(ωr)
R∏

r=1

p(υr)
R∏

r=1

p(λr)
R∏

r=1

p(τr)× p(Σθ)p(Σβ)p(Σθ∗)p(Σβ∗)

where N(Z; µ,Σ) means that the random vector Z is distributed as a multivariate normal

distribution with vector mean µ and covariance matrix Σ. Note that independence of the
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priors is assumed.

In order to obtain a sample from the posterior distribution, different iterative

methods belonging to the class of Markov Chain Monte Carlo (MCMC) techniques (e.g.,

Gelman, Carlin, Stern, & Rubin, 1995) have been developed. WinBUGS (Spiegelhalter,

Thomas, Best, & Lunn, 2003) is a software program for Bayesian analysis of complex

statistical models using MCMC techniques. After providing a likelihood and prior

distribution, the program automatically draws a sample of all parameters from their

posterior distribution. Once convergence has been reached, parameter estimates can be

obtained and inferences can be made.

All models in this paper were fitted with the WinBUGS software. Convergence was

assessed using the CODA R package (Best, Cowles, & Vines, 1997) which implements

standard convergence criteria (e.g., Cowles & Carlin, 1996). The main WinBUGS code

that was used is shown in the Appendix.

Bayesian model selection and model checking

Different models for the data will be fitted. For model selection, the deviance

information criterion (DIC) (Spiegelhalter, Best, Carlin, & Van der Linde, 2002) will be

used which is calculated as a compromise between model fit and the number of effective

parameters in the model. DIC is defined as

DIC = D(ϑ) + pD (17)

where

D(ϑ) = Eϑ|x{−2 log f(x | ϑ)}

is the posterior mean of the deviance, used to measure model fit and,

pD = Eϑ|x{−2 log f(x | ϑ)}+ 2 log f(x | ϑ̂)}
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is an estimate of the effective number of parameters. Lower values of the criterion indicate

models with a better fit (for more details, see Spiegelhalter et. al, 2002).

After a model is selected, it is recommended to evaluate whether it fits the data in a

global way. For this purpose use is made of the sample from the posterior distribution via

posterior predictive checks (PPC) (e.g., Gelman et al., 1995). The main idea behind PPC

is that “if the model fits, then replicated data generated under the model should look

similar to observed data” (Gelman et al., 1995, p.165). The way to measure the

discrepancy between some features of the model and data is to use a test quantity or

discrepancy measure T (x, ϑ) which is calculated on the data and may depend on the

model parameters. When the test quantity T (·, ·) does not depend on the model

parameters, then it is called a test statistic and it is denoted by T (x). Then, lack of fit

can be assessed by the tail-area probability or p-value of the test quantity. Note that the

PPC procedure allows one to choose any test quantity which can be used to check a

particular relevant aspect of the model. In practice, given a discrepancy measure T (x, ϑ),

the posterior predictive check p-value is calculated as follows:

1. Draw a vector ϑ(k) from the posterior distribution.

2. Simulate a replicated data set x
(k)
rep from f(x | ϑ(k)).

3. Calculate T (x, ϑ(k)) and T (x(k)
rep, ϑ

(k))

4. Repeat 1 to 3 K times.

5. Count the proportion of replicated data sets x
(k)
rep for which

T (x(k)
rep, ϑ

(k)) ≥ T (x,ϑ(k)).

Note that when a test statistic T (x) is used, step 3 does not require a model

estimation at each iteration k, but only the calculation of T (x), and T (x(k)
rep) for each

replicated data set.

Another useful tool to look at is the graphical display. In the case of discrepancy

measures, one can plot T (x(k)
rep,ϑ

(k)) and T (x,ϑ(k)) against each other. In the case of test
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statistics one can compare T (x) with T (x(1)
rep, . . . ,x

(K)
rep ) by localizing T (x) in the

frequency distribution of T (xrep).

Application

Model

Six different models will be fitted to the data. For convenience of notation, let us

represent frustration, antagonistic action tendency, irritation, and anger with indices 1, 2,

3 and 4, respectively. Frustration and the antagonistic action tendency are considered as

the exogeneous latent variables and, irritation and anger are considered as the

endogeneous latent variables. Thus, θEx
p = (θp1, θp2), θEn

p = (θp3, θp4), βEx
s = (βs1, βs2),

and βEn
s = (βs3, βs4).

The six models have the same measurement model but differ with respect to their

structural part. In general, the model equations can be written as

ηprs = θpr + βsr + τr Measurement model (18)

and

θEn
p = ΩθEx

p + θ∗p Structural model (19)

βEn
s = ΛβEx

s + β∗s

with p = 1, . . . , 679, r = 1, . . . , 4, and s = 1, . . . , 11. As already mentioned, the loading

matrices in the measurement model do not contain any free parameters but are fixed

instead. For every response, there is a separate latent variable on the person and on the

situation side, so that the loadings in Equation (8) equal 1 if q = r and t = r and 0

otherwise with Q = T = 4. We assume that there is no effect of latent endogeneous

variables on one another; neither on the person side (i.e., ∆ = 0), nor on the situation

side (i.e., Υ = 0) (see Equation (11)). Finally, as stated earlier, it is assumed that
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θEx
p ∼ N(0,Σθ), βEx

s ∼ N(0,Σβ), θ∗p ∼ N(0,Σθ∗), and β∗s ∼ N(0,Σβ∗), with both Σθ∗

and Σβ∗ being diagonal matrices and in addition with an equal variance for both θs such

that, Σθ∗ = σ2
θ∗I and an equal variance for both βs, such that Σβ∗ = σ2

β∗I, respectively,

where I is the identity matrix. A model allowing different variances was also fitted, but

this did not result in a better fit. Note that, because of the zero correlations among the

residuals, the model is not a saturated SEM.

The different structural models can be most easily presented by means of their

graphical representation. Figure 4 shows the representation for three models (the other

three models that will be fitted will be derived from these). Model 1 is the most general

model in which both irritation and anger are determined by frustration and an

antagonistic tendency. Model 2 is the extreme form of the earlier mentioned hypothesis,

with irritation based exclusively on frustration, and anger based exclusively on the

antagonistic action tendency. Model 3 is the opposite, with irritation exclusively based on

the action tendency and anger exclusively based on feelings. The corresponding parameter

matrices Ω and Λ in the structural model are shown in Table 1. The three remaining

models are constructed by restricting the parameter matrices of the person and situation

side to be equal (Ω = Λ). These models will be denoted as Models 1r, 2r and 3r, with r

denoting the equality restriction in question.

Estimation and model selection

Five chains were ran starting from different initial values for the parameters of

interest in each of the fitted models. Each chain was run with 5000 iterations, discarding

the first half of each chain as a burn-in stage. For the inferences and model checking we

accepted every fifth draw of the remaining 2500 draws of each of the five chains. This

helps to reduce autocorrelation and then to avoid dependence between subsequent draws.

Thus, the final sample size of iterations was 2500 and the results that will be reported are
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based on it.

As a convergence diagnostics the R̂ (Gelman & Rubin, 1992) was used, which is

implemented in CODA. Also, graphical tools implemented in CODA to check the mixing

and autocorrelation of the chains were used.

When estimating the model under the parametrization in (18) and (19) a poor

mixing of the chains for the τ parameters was obtained. This is because the τs (fixed

effect) parameters are involved as a term in sums of random effects. In other words, the τs

appear in the mean likelihood contribution for each person p and each situation s. Then,

a strong correlation between τs and all the random effects arises. To solve this problem we

used hierarchical centering (e.g., Gelfand, Sahu, & Carlin, 1995; Browne, 2004). The idea

is to consider the τ parameters as the mean of one of the set of random effects. Thus, the

model was re-parameterized as follows

ηprs = θpr + β̃sr with β̃sr = βsr + τr (20)

and

θEn
p = ΩθEx

p + θ∗p (21)

β̃
En

s = Λβ̃
Ex

s + β∗s

and where we now assume that




β̃s1

β̃s2


 ∼ N







τ1

τ2


 ,Σβ


 and




β∗s3

β∗s4


 ∼ N







τ3

τ4


 ,Σβ∗




Note that under this reparametrization, the values for τ1 and τ2 remain the same as

before the reparametrization. However, given that β̃s1 and β̃s2 play a role in β̃s3 and β̃s4

the values for τ3 and τ4 can no longer be interpreted as explained before (as an indication

of the probability on the logistic scale showing response 3 and 4, respectively). This
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interpretation now applies to τ̃3 and τ̃4, respectively.

τ̃3 = λ1τ1 + λ2τ2 + τ3 , and τ̃4 = λ3τ1 + λ4τ2 + τ4 (22)

After reparametrization, all the R̂ statistics were less than or equal to 1.03 for all

the models, so that convergence seems established (Gelman et. al, 1995).

Table 2 shows the obtained DIC values for all the fitted models. From these results,

it is clear that Models 1 and 1r are to be preferred above the others. The model with the

lowest DIC, and then the preferred model, was Model 1r in which the person and situation

structure are restricted to be equal both qualitatively and quantitatively. It must be noted

however that the difference in DIC values seems to be relatively small.

Model checking

Two types of tests were carried out. The first test checks a particular aspect of our

model, while the second is a general omnibus test of goodness-of-fit. More precisely, given

that our main interest is to evaluate the correlation structure of the four traits

(frustration, antagonistic action tendency, irritation, and anger), the correlation between

the sum scores over persons, Corr(x+rs, x+r′s), and over situations, Corr(xpr+, xpr′+) for

each of the constructs (r = 1, . . . , 4) was used as a test statistic. The second test, which

assesses the model fit in a global way, is the χ2 discrepancy measure (Gelman et al, 1995).

In the context of the application, the Pearson χ2 measure is defined as

χ2(x,ϑ) =
P∑

p=1

R∑

r=1

S∑

s=1

(xprs − E(xprs | ϑ))2

V ar(xprs | ϑ)
(23)

When using x+rs, the estimated p-values varied between 0.25 and 0.52 with a

median of 0.36, whereas when using xpr+, the estimated p-values varied between 0.08 and

0.97 with a median of 0.84. Considering a reasonable range for the p-value to be the

interval 0.05 and 0.95 (Gelman et al, 1995) it can be seen that the model fits the data.
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The more extreme values of the p-values when using xpr+ are a consequence of the smaller

number of situations considered.

Figure 5 shows an scatter plot of the χ2 test quantity evaluated for the observed

and the replicated data. The posterior p-value is also reported in the figure and it is

calculated as the proportion of points above the diagonal line (i.e., the proportion of

observed values that is larger than the replicated ones). From Figure 5 it can be

concluded that the model fits the data also reasonably well in a global way.

Results

Table 3 shows the posterior means and standard deviations of the parameters in

Model 1r. Figure 6 contains the graphical representation of the structural part of Model

1r. The numbers refer to the corresponding estimated parameter values.

For the latent person structure, it can be seen that frustration and the antagonistic

action tendency both have an effect on irritation and anger. On the contrary, for

irritation, the feeling of frustration is more important than the antagonistic tendency, as

hypothesized, and for anger, the antagonistic tendency is more important than the feeling

of frustration again as hypothesized. For irritation, the difference is very small (0.49

versus 0.46); but for anger it is much larger (0.54 versus 0.30). For persons, the correlation

between the exogeneous latent person variables is moderately high and positive. On the

situation side, the correlation between the exogeneous latent situation variables is much

lower but still positive. The posterior standard deviation for correlations on the situation

side is larger than the one on the situation side due to a smaller sample of situations.

The τ parameters can be interpreted as an indicator of the probability of showing

each of the four responses, when all latent variables are set to zero (on the logistic scale).

Stated otherwise, for an average person, in an average situation, the probability of

endorsing response r, equals:
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πp1s =
exp(1.56)

1 + exp(1.56)
= 0.83, πp2s =

exp(1.51)
1 + exp(1.51)

= 0.82 (24)

πp3s =
exp(1.74)

1 + exp(1.74)
= 0.85, πp4s =

exp(1.80)
1 + exp(1.80)

= 0.86

Then, for instance, the probability of being angry or feeling irritated is slightly larger than

the probability of feeling frustrated and feeling an antagonistic action tendency.

It can be concluded that the leading hypotheses of the study are confirmed. The set

of questions before mentioned in Section 2, can now be answered in the following way.

Regarding Question 1, one should look at the Ω matrix, and conclude that irritation

seems to be slightly more feeling based but the difference is negligible, whereas anger is

clearly more action based. Regarding Question 2, one should look at the Λ matrix and, in

this particular case, the conclusions coincide with the ones stated for the person side

because the best fitted model is the one in which Ω and Λ matrices are assumed to be

equal. Regarding Question 3, the conclusion is that the equality of the two structures, the

one of individual differences and the one of situational differences, is not contradicted by

the data.

Discussion and Conclusion

An extension of the regular SEM, called double-structure structural equation model

(2sSEM), has been presented. The model is shown to be useful for the study of underlying

structures in two of the the three modes of a three-mode data. A study of emotions using

a persons by situations by responses three-mode data set shows that the model can be

used to assess individual differences and situational differences simultaneously without the

necessity of using two separate and unrelated models. Using a common model for both

structures can be advantageous in the sense that no loss of information is implied.

A special feature of the data we consider here is that they are binary after
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dichotomization. A person judges a response to occur in a situation or not. The model

developed is thus in the first place an extension of a nonlinear mixed model for binary

data. However, the model can be easily adapted for ordered-category data (rating-scale

data), and for continuous data.

Other techniques for the analysis of three-mode data have been proposed and used

earlier such as three-mode factor analysis (Tucker, 1966), three-mode principal component

analysis (Kroonenberg, 1983), for continuous data, and, the three-way hierarchical classes

models (e.g., Ceulemans & Van Mechelen, 2005; Ceulemans, Van Mechelen, & Leenen,

2003; Leenen, Van Mechelen, De Boeck, & Rosenberg, 1999), for binary data. All of them

refer to decomposition models that reduce each of the three modes of the data to a few

components. The main similarities and differences between these techniques and the

2sSEM will be the subject of future study.

In this paper, the focus is on data sets of a particular kind: a fully crossed

three-dimensional data array with binary data on persons, situations, and emotional

responses. Of course, other kinds of three-mode can be thought of. For instance, suppose

that a sample of persons has been asked to rate another sample of persons on a set of

personality items. The items can be thought of measuring latent variables. The structure

of the raters is not necessarily equal to the structure of the rated persons. One could even

argue that the equality of both structures is suspicious since then the former might be a

mere reflection of beliefs from the part of the raters.
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Appendix

WinBUGS code used to fit selected model 1r. Note that in order to fit the other

models showed in this paper, the modification of the code is straightforward. A brief

explanation of the code is given below.

model;

{

#1# for(i in 1:n){

#2# for( j in 1:J) {

#3# logit(p[i,j,1]) <- theta[i,1] + beta[j,1]

#4# x[i,j,1] ~ dbern(p[i,j,1])

#5# x.rep[i,j,1] ~ dbern(p[i,j,1])

#6# t[i,j,1]<-pow(x[i,j,1]-p[i,j,1],2)/(p[i,j,1]*(1-p[i,j,1]))

#7# t.rep[i,j,1]<-pow(x.rep[i,j,1]-p[i,j,1],2)/(p[i,j,1]*(1-p[i,j,1]))

#8# logit(p[i,j,2]) <- theta[i,2] + beta[j,2]

#9# x[i,j,2] ~ dbern(p[i,j,2])

#10# x.rep[i,j,2] ~ dbern(p[i,j,2])

#11# t[i,j,2]<-pow(x[i,j,2]-p[i,j,2],2)/(p[i,j,2]*(1-p[i,j,2]))

#12# t.rep[i,j,2]<-pow(x.rep[i,j,2]-p[i,j,2],2)/(p[i,j,2]*(1-p[i,j,2]))

#13# logit(p[i,j,3]) <- w[1]*theta[i,1] +w[2]*theta[i,2]+theta3[i]+w[1]*beta[j,1]+w[2]*beta[j,2]+beta3[j]

#14# x[i,j,3] ~ dbern(p[i,j,3])

#15# x.rep[i,j,3] ~ dbern(p[i,j,3])

#16# t[i,j,3]<-pow(x[i,j,3]-p[i,j,3],2)/(p[i,j,3]*(1-p[i,j,3]))

#17# t.rep[i,j,3]<-pow(x.rep[i,j,3]-p[i,j,3],2)/(p[i,j,3]*(1-p[i,j,3]))

#18# logit(p[i,j,4]) <- w[3]*theta[i,1] +w[4]*theta[i,2]+theta4[i]+w[3]*beta[j,1]+w[4]*beta[j,2]+beta4[j]

#19# x[i,j,4] ~ dbern(p[i,j,4])

#20# x.rep[i,j,4] ~ dbern(p[i,j,4])

#21# t[i,j,4]<-pow(x[i,j,4]-p[i,j,4],2)/(p[i,j,4]*(1-p[i,j,4]))

#22# t.rep[i,j,4]<-pow(x.rep[i,j,4]-p[i,j,4],2)/(p[i,j,4]*(1-p[i,j,4]))

#23# }

#24# theta[i,1:2] ~ dmnorm(mu.theta[],R[,])

#25# theta3[i]~dnorm(0,tt)

#26# theta4[i]~dnorm(0,tt)

#27# }

#28# tt ~ dgamma(0.0001,0.0001)

#29# vt<-1/tt
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#30# mu.theta[1]<-0

#31# mu.theta[2]<-0

#32# R[1:2,1:2]~dwish(O[,],2)

#33# O[1,1]<-0.001

#34# O[2,1]<-0

#35# O[1,2]<-0

#36# O[2,2]<-0.001

#37# for( j in 1 : J) {

#38# beta[j,1:2] ~ dmnorm(mu.beta[],E[,])

#39# beta3[j] ~ dnorm(tau[3],tb)

#40# beta4[j] ~ dnorm(tau[4],tb)

#41# }

#42# tb ~ dgamma(0.0001,0.0001)

#43# vb<-1/tb

#44# mu.beta[1]<-tau[1]

#45# mu.beta[2]<-tau[2]

#46# E[1:2,1:2]~dwish(G[,],2)

#47# G[1,1]<-0.001

#48# G[2,1]<-0

#49# G[1,2]<-0

#50# G[2,2]<-0.001

#51# for(k in 1:4){

#52# tau[k]~ dnorm(0,0.0001)

#53# w[k]~ dnorm(0,0.0001)

#54# }

#55# SigmaT[1:2,1:2]<-inverse(R[1:2,1:2])

#56# SigmaB[1:2,1:2]<-inverse(E[1:2,1:2])

#57# CorrT<-SigmaT[1,2]/sqrt(SigmaT[1,1]*SigmaT[2,2])

#58# CorrB<-SigmaB[1,2]/sqrt(SigmaB[1,1]*SigmaB[2,2])

#59# tau3<-w[1]*tau[1]+w[2]*tau[2]+tau[3]

#60# tau4<-w[3]*tau[1]+w[4]*tau[2]+tau[4]

#61# Tobs<-sum(t[,,])

#62# Trep<-sum(t.rep[,,])

#63# p.value <- step(Trep-Tobs)

}

From lines 1 to 23 the likelihood of the model in equations (18) and (19) is specified.
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From 24 to 54, the prior distributions for the parameters are specified. From 55 to the end

of the code, covariance matrices, correlations, reparametrized values of τ (see Equation

(22)) and the p-values are obtained.
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Model 1 Model 2 Model 3

Ω




ω1 ω2

ω3 ω4







ω1 0

0 ω4







0 ω2

ω3 0




Λ




λ1 λ2

λ3 λ4







λ1 0

0 λ4







0 λ2

λ3 0




Table 1

Parameter matrices in the structural model for the three 2sSEM estimated models
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DIC pD

Model 1 25211.80 1456.53

Model 1r 25209.50 1451.83

Model 2 25335.80 1440.09

Model 2r 25337.80 1444.47

Model 3 25424.60 1454.99

Model 3r 25423.10 1457.20

Table 2

DIC and pD values for the three fitted models (lower values are preferable)



Double-Structure SEM 37

Model 1r

Value sd Value sd

ω1 = λ1 0.30 0.04 σθp1,θp2 2.19 0.20

ω2 = λ2 0.54 0.05 σ2
θp2

2.70 0.24

ω3 = λ3 0.49 0.04 σ2
βs1

0.66 0.36

ω4 = λ4 0.46 0.05 σβs1,βs2 0.17 0.27

τ1 1.56 0.26 σ2
βs2

0.71 0.42

τ2 1.51 0.27 ρθp1,θp2 0.68 0.03

τ̃3 1.74 0.21 ρβs1,βs2 0.25 0.28

τ̃4 1.80 0.23 σ2
θ∗ 0.51 0.06

σ2
θp1

3.93 0.34 σ2
β∗ 0.10 0.04

Table 3

Results for Model 1r
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Figure Captions

Figure 1. Three-mode data. The observation xprs represents the response of person p to

question r under situation s.

Figure 2. Proportion of endorsements for each of the four responses: (a) Situation side,

(b) Person side

Figure (a).

Figure (b).

Figure 3. Graphical representation of the research questions

Figure 4. Three different models

Figure (a). Model 1

Figure (b). Model2

Figure (c). Model 3

Figure 5. χ2 values for the observed verus the replicated data based on 2500 simulations

from the posterior distribution of (xrep,ϑ).

Figure 6. Results for Model 1r



P
e
rs

o
n
s

1

:

:

p

:

:

P S
itu

at
io

ns

1.
. .

. .
. .

.s
.. 

.. 
..S

1.. .. .. .. .. r.. .. .. .. .. ..R
Responses

x111x111

xp11xp11

xP11xP11

xprsxprs

xPr1xPr1 xPR1xPR1

xPRsxPRs

xPRSxPRS



Frustration

Proportions

F
re

q
u
e
n
cy

0.5 0.6 0.7 0.8 0.9

0
2

4
6

Antagonistic action

Proportions

F
re

q
u
e
n
cy

0.5 0.6 0.7 0.8 0.9

0
2

4
6

Anger

Proportions

F
re

q
u
e
n
cy

0.5 0.6 0.7 0.8 0.9
0

2
4

6

Irritation

Proportions

F
re

q
u
e
n
cy

0.5 0.6 0.7 0.8 0.9

0
2

4
6

Proportion of endorsements: Situations

(a)

Frustration

Proportions

F
re

q
u
e
n
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0
0

2
5
0

Antagonistic action

Proportions

F
re

q
u
e
n
cy

0.0 0.2 0.4 0.6 0.8 1.0
0

1
0
0

2
5
0

Anger

Proportions

F
re

q
u
e
n
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0
0

2
5
0

Irritation

Proportions

F
re

q
u
e
n
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0
0

2
5
0

Proportion of endorsements: Persons

(b)



Frustration

Antagonistic

tendency
d

b

c

Irritation

Anger

a



GFED@ABCθp1

ω3

ÃÃB
BB

BB
BB

BB
ω1 // GFED@ABCθp3

GFED@ABCθp2
))

ρθp1,θp2

55

ω4 //

ω2

>>||||||||| GFED@ABCθp4

GFED@ABCβs1

λ3

!!B
BB

BB
BB

BB
λ1 // GFED@ABCβs3

GFED@ABCβs2
))

ρβs1,βs2

55

λ4 //

λ2

==||||||||| GFED@ABCβs4

(a) Model 1

GFED@ABCθp1
ω1 // GFED@ABCθp3

GFED@ABCθp2
))

ρθp1,θp2

55

ω4 // GFED@ABCθp4

GFED@ABCβs1
λ1 // GFED@ABCβs3

GFED@ABCβs2
))

ρβs1,βs2

55

λ4 // GFED@ABCβs4

(b) Model2

GFED@ABCθp1

ω3

ÃÃB
BB

BB
BB

BB
GFED@ABCθp3

GFED@ABCθp2
))

ρθp1,θp2

55

ω2

>>||||||||| GFED@ABCθp4

GFED@ABCβs1

λ3

!!B
BB

BB
BB

BB
GFED@ABCβs3

GFED@ABCβs2
))

ρβs1,βs2

55

λ2

==||||||||| GFED@ABCβs4

(c) Model 3



28000 30000 32000 34000 36000

28
00

0
30

00
0

32
00

0
34

00
0

36
00

0

T(x, θ)

T
(x

re
p, 

θ)
p=0.70



GFED@ABCθp1

0.30
ÃÃB

BB
BB

BB
BB
0.49 // GFED@ABCθp3

GFED@ABCθp2
))

0.68

55

0.54 //

0.46

>>||||||||| GFED@ABCθp4

GFED@ABCβs1

0.30
!!B

BB
BB

BB
BB
0.49 // GFED@ABCβs3

GFED@ABCβs2
))

0.25

55

0.54 //

0.46

==||||||||| GFED@ABCβs4


