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Abstract

An item response theory model for dealing with test speededness is proposed. The model
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1 Introduction

Test speededness has been modeled using two alternative item response theory (IRT) approaches
both of which assume a single point at which the examinee’s response strategy switches to an
alternative response strategy due to time limits being reached for the test (Bolt et al., 2001,
Yamamoto, 1987 and Yamamoto and Everson, 1997). In this paper, we propose an alternative
model in which the response strategies switch more gradually. We show that this alternative
model is in fact a general case which subsumes both previous explanations of speededness and
provides a more realistic view of test speededness. In addition, this alternative model provides
an opportunity to consider modeling other psychological processes, particularly ones which may
change gradually, such as learning or change in attitudes or preferences.

Let Ypi denote the binary response (incorrect/correct, coded Ypi = 0 and Ypi = 1, respectively)
of examinee p, p = 1, . . . , P , to item i, i = 1, . . . , I. In the classical one-parameter Rasch model
(1PL) (Rasch, 1960) Ypi depends on the examinee ability θp and item difficulty βi in the following
way

Ypi|θp ∼ Bern(Pi(θp))

with

Pi(θp) =
exp(θp − βi)

1 + exp(θp − βi)
(1)

and θp ∼ N(0, σ2
θ) if the marginal maximum likelihood formulation is chosen. Moreover, condi-

tional on θp all responses of subject p are assumed independent; this is the so-called local item
independence condition. Formally, denoting Y′

p = (Yp1, . . . , YpI),

P (Yp = yp| θp) =
I∏

i=1

[Pi(θp)]ypi [1− Pi(θp)]1−ypi .

The Rasch model has been extended in several ways. In the two-parameter logistic model (2PL)
(Birnbaum, 1968) the difference θp − βi is weighted by an item discrimination parameter αi:

Pi(θp) =
exp(αi(θp − βi))

1 + exp(αi(θp − βi))
, (2)

so that the influence of examinee ability on outcome depends on the item. The three-parameter
logistic model (3PL) (Birnbaum, 1968) extends the 2PL with an item specific guessing parameter
ci:

Pi(θp) = ci + (1− ci)
exp(αi(θp − βi))

1 + exp(αi(θp − βi))
.

The parameter ci clearly reflects the probability of a correct answer under random guessing. For
further interpretations of the 3PL, we refer to Hutchinson (1991).
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The Rasch model, and item response theory models in general, are not robust with respect to
violations of the local item independence assumption. The inclusion of items with local item de-
pendence may result in contaminated estimates of test reliability, person and item parameters,
standard errors and equating coefficients, see for instance Yen (1984), Thissen et al. (1989),
Sireci et al. (1991), Yen (1993), Wainer and Thissen (1996), Lee et al. (2001) and Tuerlinckx
and De Boeck (2001).

Yen (1993) and Ferrara et al. (1999) provide a detailed taxonomy of possible reasons for the
existence of local item dependency. One of the most prevalent causes in educational testing
is test speededness. Test speededness refers to testing situations in which some examinees do
not have ample time to answer all questions. Speededness effects are often detrimental to the
intended functioning of the test in that the speed with which one responds is usually not an im-
portant part of the construct of interest. Examinees affected by test speededness hurry through,
randomly guess on or even fail to complete items, usually at the end of the test, and hence
receive ability estimates that may underestimate their capacities. On the other hand, the item
difficulty parameters of items administered late in the test tend to be overestimated (Douglas
et al., 1998 and Oshima, 1994).

Item response theory models dealing with test speededness are relatively new.

The hybrid model of Yamamoto and Everson (1997) uses multiple item response theory models
to describe the behavior of examinees. A classical item response model is valid throughout most
of the test but end-of-test items are answered randomly by some subset of examinees. The model
identifies M possible latent classes, one for whom an item response model is valid for all items,
and M − 1 classes with an item response model describing answers to the first I −m items and
random guessing on the last m items, m = 1, . . . ,M − 1. Formally,

P
(m)
i (θ(m)

p ) =





exp(αi(θ
(m)
p −βi))

1+exp(αi(θ
(m)
p −βi))

, i ≤ I −m,

ci, i > I −m,

with m = 0, . . . ,M − 1. Clearly, speededness is unlikely to be so straightforward, as students
do not switch immediately to random guessing beyond some point.

Bolt et al. (2002) extend the mixture Rasch model proposed by Rost (1990) to distinguish
latent classes of examinees according to the existence of speededness in their item response
patterns. Ordinal constraints are imposed on the item difficulty parameters across classes so as
to distinguish a class having no speededness effects from a class whose responses are affected
by speededness. In particular, for items early in the test, the item difficulty parameters are
constrained to be equal in the two classes; however, the item difficulty parameters of end-of-
test items in the speeded class are constrained to be larger than the respective item difficulty
parameters in the nonspeeded class. Let g denote a class indicator with g = 0, 1 referring to the
nonspeeded and speeded class, respectively, and let k denote the first item where the examinees
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experience the effects of test speededness. The mixture Rasch model can then be stated as

P
(g)
i (θ(g)

p ) =
exp(θ(g)

p − β
(g)
i )

1 + exp(θ(g)
p − β

(g)
i )

,

with

β
(0)
i = β

(1)
i for i < k,

β
(0)
i < β

(1)
i for i ≥ k.

The item difficulty estimates obtained in the nonspeeded class provide more suitable estimates
of the Rasch difficulties of end-of-test items than the difficulties estimated using all examinees.
Although this model has worked quite well at identifying test speededness, it does not allow
for different examinees becoming speeded at different points in the test. Since such differences
are plausible, in this paper, we propose a model that provides for this kind of transition as a
random effect within examinees.

The remainder of this paper is organized as follows. In the next section we propose an item
response model that accommodates the disadvantages of the hybrid model and the mixture
Rasch model. The model can be seen as consisting of two random processes, a problem solving
process and a random guessing process, with the random guessing gradually taking over from the
problem solving process. In this paper we use a Rasch process for the problem solving component
of the model. The involved change point and change rate are considered random parameters
in order to model examinee differences in both respects. The model was first formulated by
Wollack and Cohen (2004) as a model to simulate speededness data, but it will be treated here
as a full-fledged model for test data which can also be estimated. In Section 3 we evaluate the
performance of the model on the basis of a simulation study. The final section reports the results
of applying the model to a mathematics placement test.

2 A model for speeded test data with gradual process change

In this section we propose a new item response model for dealing with speeded test data. Under
the model, responses to items early in the test are governed by a Rasch model. Beyond some
point the success probability gradually decreases and eventually reduces to the success proba-
bility under random guessing. Both change point and change rate are examinee specific.

Using the same notation as before, the model can be stated as

Ypi|θp, ηp, λp ∼ Bern(πpi)

with

πpi = ci + (1− ci)Pi(θp)min

{
1,

[
1−

(
i

I
− ηp

)]λp
}

, (3)
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where Pi(θp) is given by (1) or (2), ηp (ηp ∈ [0, 1]) represents the speededness point and λp

(λp ≥ 0) the speededness rate of examinee p. The speededness point parameter ηp identifies the
point in the test, expressed as a fraction of the number of items, where examinee p first experi-
ences an effect due to speeding. For items with i ≤ ηpI there is no effect of speeding. Once the
examinee passes his/her speededness point, i/I − ηp is positive, resulting in a decrease of πpi.
The rate of decrease of πpi is controlled by the parameter λp, with larger λp values resulting in
a faster decrease. In Figure 1 we illustrate the role of η and λ by plotting the decay function
min{1, [1− (x− η)]λ} for some values of η and λ.
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Figure 1: (a) min{1, [1 − (x − η)]λ} for λ = 5, η = 0.5 (solid line) and η = 0.75 (broken line),
(b) min{1, [1 − (x − η)]λ} for η = 0.25, λ = 1 (solid line), λ = 2 (broken line) and λ = 0.5
(broken-dotted line).

The rationale for the proposed model is as follows. Denote Pi(ηp, λp) = min{1, [1−(i/I−ηp)]λp}.
When examinee p encounters item i, he/she answers according to either a Rasch process or a
random guessing process, with probabilities Pi(ηp, λp) and 1 − Pi(ηp, λp) respectively. Under
random guessing the answer is correct with probability ci. Under the Rasch process the examinee
knows the answer with probability Pi(θp); if ignorant the examinee guesses at random. In Figure
2 we visualize the model with a decision tree. Clearly,

P (Ypi = 1|θp, ηp, λp) = Pi(ηp, λp)Pi(θp) + Pi(ηp, λp)[1− Pi(θp)]ci + [1− Pi(ηp, λp)]ci,

which simplifies to (3).

Model (3) has some interesting limiting cases:

• if [1 − (i/I − η)]λ = 0 for i/I > η (this corresponds to the limiting case λ → +∞), then
(3) reduces to one of the speeded classes in the hybrid model, and speededness is modeled
as random guessing,
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Figure 2: Decision tree representation of speededness model.

• in case λ = 0 or η = 1, the proposed model reduces to 1PL extended with random guessing
or 3PL,

• in case η = 0 and λ > 0 the examinee guesses at random at least to some degree from the
first item up to the final item,

• as with the 3PL, ci is the lower asymptote for θ → −∞.

Note that the 3PL model is obtained as a limiting case for λ = 0 (whatever the value of η) or
for η = 1 (whatever the value of λ) and hence is not uniquely identified within the proposed test
speededness model. This of course may entail estimation difficulties, such as non-convergence
of the optimization algorithm or ill-conditioned observed information matrices, when model (3)
is fitted to data that are not affected by test speededness. We will come back to this issue in
Section 3.

As is usual in item response theory, the person ability parameter is assumed to be normally
distributed with mean zero and variance σ2

θ . Concerning the parameters ηp and λp we make,
without loss of generality, the following distributional assumptions:

ηp ∼ Beta(α, β),
λp ∼ log N(µλ, σ2

λ).

For estimation, we restrict the discussion to the marginal maximum likelihood method. If the
model of interest is given by (3)-(1) with a common unknown random guessing parameter c,
then the parameters to be estimated are (β1, . . . , βI , c, σ

2
θ , α, β, µλ, σ2

λ), whereas under (3)-(2)
the parameters to be estimated are (α1, . . . , αI , β1, . . . , βI , c, α, β, µλ, σ2

λ). In the latter case σ2
θ
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has to be fixed at some positive constant for identification purposes. For convenience the vector
of unknown parameters will be denoted by ξ. In the marginal maximum likelihood method the
random effects are integrated out and the resulting likelihood is maximized with respect to the
unknown parameters. Under (3) and denoting joint density function of θp, ηp and λp by g the
marginal likelihood function is simply

L(ξ) =
P∏

p=1

∫

R

∫ 1

0

∫ ∞

0

I∏

i=1

P (Ypi = ypi|θp, ηp, λp)g(θp, ηp, λp)dλpdηpdθp. (4)

The integrals involved in (4) can be numerically approximated by a quadrature method and
the optimization can be performed using a standard Newton-Raphson algorithm. The SAS
NLMIXED procedure fits nonlinear mixed models with multivariate normal random effect dis-
tributions. However, as long as g in (4) is characterized by a normal dependence structure
(copula) NLMIXED can be used to fit model (3), whatever the functional form of the (con-
tinuous) marginal random effect distribution functions. Indeed, as shown in Proposition 1 (see
Appendix 2), in case of a normal dependence function, appropriately chosen compositions of
probability integral transforms and inverse probability integral transforms of the marginal dis-
tributions yield a multivariate normal distribution for the transformed random effects. As an
alternative to the SAS NLMIXED procedure (see Appendix 1 for example code), the authors
developed a Fortran program to maximize (4) and to compute the observed information ma-
trix and its inverse. This program is build around the NAG library subroutines D01BBF and
D01FBF for the numerical integration and E04UCF for the optimization (NAG, 1993). In some
cases, besides ξ also the person specific effects θp, ηp and λp are of special interest. Estimates
of these parameters can be obtained from an empirical Bayes analysis of the postulated model.

3 Simulation study

In this section we discuss the results of a small simulation study. Four data sets, each containing
responses of 2000 examinees on 40 items were generated. Sample 1 was generated under model
(3)-(1) with extreme speededness (α = 2 and β = 2). Sample 2 was generated under model
(3)-(1) with moderately high speededness (α = 9 and β = 2). Sample 3 was generated under
model (3)-(1) with moderately low speededness (α = 20 and β = 2). In this case, E(ηp) = 0.50
for Sample 1, 0.82 for Sample 2 and 0.91 for Sample 3. Finally, a fourth sample was generated
from a 1PL with random guessing. For the fourth sample, no speededness was generated. For
all samples, the item difficulty parameters βi, i = 1, . . . , I, were assumed to be equal and fixed
at the value -1. The complete list of parameter values is given in Table 1. The random effects
are assumed to be independent. All computations were performed with the Fortran/NAG im-
plementation. Computation times varied between 8 and 48 hours (on an Intel Pentium 3 M,
1.13 GHz, 512 MB of RAM).

The effect of test speededness is illustrated in Figure 3 (a), Figure 4 (a), Figure 5 (a) and Figure
6 (a), where we plot the empirical proportions correct answers (solid lines) together with the
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Table 1: Parameter values for simulation study.

Parameter Sample 1 Sample 2 Sample 3 Sample 4
β1 - β40 -1 -1 -1 -1

c 0.2 0.2 0.2 0.2
σ2

θ 1 1 1 1
α 2 9 20 -
β 2 2 2 -
µλ 0 0 0 -
σ2

λ 1 1 1 -

theoretical ones (broken lines), given by

E(Ypi) = E[E(Ypi|θp, ηp, λp)]
= E(πpi)

= c + (1− c)
∫

R
Pi(θp)dG1(θp)

∫ 1

0

∫ ∞

0
min

{
1,

[
1−

(
i

I
− ηp

)]λp
}

dG3(λp)dG2(ηp),

(5)

in case of (3), and by

E(Ypi) = c + (1− c)
∫

R
Pi(θp)dG1(θp),

in case of 1PL with random guessing, where G1, G2 and G3 denote the distribution functions of
θp, ηp and λp respectively, versus item number. Since all βi are equal, these proportions should
not depend on item number in the absence of test speededness (see Figure 6 (a)). Clearly, test
speededness decreases the probability of a correct answer for end-of-test items. Of course, the
ultimate effect depends on the distribution of the speededness point and rate.

In Figure 3 (b) and (c) we illustrate the effect of test speededness on the βi estimates. For items
early in the test, the βi estimates obtained with the test speededness model (solid line) and
the 1PL with random guessing model (broken line) agree quite well. However, from a certain
point on the βi estimates obtained from fitting a 1PL with guessing model diverge from those
obtained under the speededness model. As is clear from the figures, ignoring test speededness
causes upward biased estimates of the item difficulty estimates, a result that is consistent with
the item response theory literature. In Figure 3 (d), (e) and (f) we show the theoretical density
functions (solid lines) of the person ability, speededness point and speededness rate respectively,
together with the fitted densities (dotted lines) and approximate 95% confidence intervals for
the true density function (broken-dotted lines). These approximate confidence intervals were
obtained by applying the delta method; for more details we refer to Appendix 3. In Figure 4,
Figure 5 and Figure 6 we present the corresponding estimation results for Sample 2, Sample
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3 and Sample 4 respectively. For the data generated from the 1PL with guessing model, the
observed information matrix of model (3)-(1) was ill-conditioned and could not be inverted. As a
consequence, we could not construct confidence intervals for the random effect density functions.

The fit of the speededness model can be further evaluated by comparing the estimated theo-
retical proportions correct answers, obtained by plugging the maximum likelihood estimates for
the model parameters into (5), with the corresponding empirical proportions. These estimated
theoretical proportions are drawn by broken-dotted lines in Figure 3 (a), Figure 4 (a), Figure
5 (a) and Figure 6 (a). Clearly, the estimated and empirical proportions correct answers are
almost indistinguishable, indicating a very good fit of the model.

In Table 2 we compare model (3) with the 1PL model with random guessing in terms of −2 log L,
the Akaike information criterion (AIC) and the Schwarz Bayes information criterion (BIC). The
1PL model with random guessing is nested in the test speededness model and hence its values
for −2 log L will always be larger than the ones for model (3). The difference in −2 log L values
can be used to construct a likelihood ratio test for the 1PL model with random guessing. As
the hypothesis of interest is on the boundary of the parameter space, one has to adjust the
distribution of the likelihood ratio test under the null hypothesis. In general, the asymptotic
null distribution for the likelihood ratio test statistic for testing a null hypothesis which allows
for J correlated random effects versus an alternative of J + 1 correlated random effects, is a
mixture of a χ2

J and a χ2
J+1, with equal probability 0.5. For the more general case where one

compares models with J and J + q (q > 1) correlated random effects, the null distribution is
a mixture of χ2 random variables, the weights of which can only be calculated analytically in
a number of special cases (Raubertas et al., 1986, Shapiro, 1988). Finally, in case of testing a
model with J independent random effects versus a model with J +q (q ≥ 1) independent random
effects, as considered in this simulation, the asymptotic null distribution is a binomial mixture
of χ2 random variables, see Verbeke and Molenberghs (2003). Inference concerning the fixed
effects can be drawn on the basis of a classical likelihood ratio test or using a Wald test statistic.
For all cases considered, AIC selects the appropriate model, i.e. the test speededness model for
Sample 1, Sample 2 and Sample 3 and the 1PL with random guessing model for Sample 4. The
BIC penalizes complex models more heavily than the AIC and hence indicates also for Sample
3 the 1PL model with random guessing as the most appropriate one.

Table 2: Goodness-of-fit of test speededness model versus 1PL with guessing.

Sample 1 Sample 2 Sample 3 Sample 4
speeded 1PL guessing speeded 1PL guessing speeded 1PL guessing speeded 1PL guessing

−2 log L 93204 93882 86220 86379 84026 84035 82804 82808
AIC 93296 93966 86312 86463 84118 84119 82896 82892
BIC 93554 94201 86570 86698 84375 84354 83153 83127

Finally, we mention that, except for β, accurate estimation of the parameters related to the
distributions of the speededness random effects η and λ is getting more difficult if test speed-
edness comes in late. This is illustrated in Table 3 where we show the standard errors of all
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Figure 3: Results for Sample 1 (a) proportion correct versus item number: empirical (solid line),
theoretical with true parameter values (broken line), theoretical with estimated parameter values
(broken-dotted line), (b) estimated item difficulty parameters under (3)-(1) (solid line) and 1PL
with guessing (broken line), (c) difference between item difficulty estimates, (d) distribution of
θ: theoretical (solid line) and fitted (dotted line), (e) distribution of η: theoretical (solid line)
and fitted (dotted line) and (f) distribution of λ: theoretical (solid line) and fitted (dotted line).
In (d), (e) and (f) the broken-dotted lines are 95% confidence intervals.
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Figure 4: Results for Sample 2 (a) proportion correct versus item number: empirical (solid line),
theoretical with true parameter values (broken line), theoretical with estimated parameter values
(broken-dotted line), (b) estimated item difficulty parameters under (3)-(1) (solid line) and 1PL
with guessing (broken line), (c) difference between item difficulty estimates, (d) distribution of
θ: theoretical (solid line) and fitted (dotted line), (e) distribution of η: theoretical (solid line)
and fitted (dotted line) and (f) distribution of λ: theoretical (solid line) and fitted (dotted line).
In (d), (e) and (f) the broken-dotted lines are 95% confidence intervals.
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Figure 5: Results for Sample 3 (a) proportion correct versus item number: empirical (solid line),
theoretical with true parameter values (broken line), theoretical with estimated parameter values
(broken-dotted line), (b) estimated item difficulty parameters under (3)-(1) (solid line) and 1PL
with guessing (broken line), (c) difference between item difficulty estimates, (d) distribution of
θ: theoretical (solid line) and fitted (dotted line), (e) distribution of η: theoretical (solid line)
and fitted (dotted line) and (f) distribution of λ: theoretical (solid line) and fitted (dotted line).
In (d), (e) and (f) the broken-dotted lines are 95% confidence intervals.
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Figure 6: Results for Sample 4 (a) proportion correct versus item number: empirical (solid line),
theoretical with true parameter values (broken line), theoretical with estimated parameter values
(broken-dotted line), (b) estimated item difficulty parameters under (3)-(1) (solid line) and 1PL
with guessing (broken line), (c) difference between item difficulty estimates, (d) distribution of
θ: theoretical (solid line) and fitted (broken line), (e) fitted density function of η and (f) fitted
density function of λ.
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parameter estimates for random effect distribution parameters. As is clear, the standard errors
of α̂, µ̂λ and σ̂2

λ all increase from Sample 1 to Sample 2 and Sample 3. Caution is in order when
comparing the standard errors of α̂ across samples, as this parameter increases from 2 in Sample
1 up to 20 in Sample 3. For this reason we also included the coefficient of variation (CV) of this
parameter in the final row of Table 3. The other parameters were fixed in the simulation design
and hence their standard errors can be safely compared across samples. Note that the standard
errors of the β estimates are quite stable over the samples. This is not completely unexpected
as the β parameter governs the shape of the right tail of the Beta distribution and hence, unlike
the α estimates, is less sensitive to the point where test speededness starts.

Table 3: Standard errors of parameter estimates related to random effect distributions.

Parameter Sample 1 Sample 2 Sample 3
σ̂2

θ 0.040 0.044 0.046
α̂ 0.156 1.037 10.679
β̂ 0.177 0.171 0.178
µ̂λ 0.093 0.278 0.318
σ̂2

λ 0.105 0.761 0.911
CV (α̂) 0.078 0.115 0.534

4 Application to mathematics placement test

Data from Form 1 of the 2004 administration of a mathematics placement test at a large, selec-
tive Midwestern university were analyzed for test speededness using model (3)-(1). The data set
contains response profiles of 3447 students. The mathematics placement test included 75 oper-
ational and 10 pilot items covering mathematics basics, college algebra and trigonometry and is
designed to be completed in 90 minutes. All items had 5 alternatives. Because the item-total
correlations for the last five pilot items (locations 45, 55, 65, 75 and 85) were poor, these items
were dropped, resulting in an analysis of 80 items.

In Table 4, we compare the test speededness model and the 1PL model with guessing in terms
of −2 log L, AIC and BIC. As is clear, all criteria indicate the test speededness model as the
most appropriate one to describe these data. We now further evaluate the fit of the proposed
test speededness model. In Figure 8 (a) we plot the empirical (solid line) and estimated the-
oretical (broken line) proportions correct answers versus the item number. The proportions
correct answers clearly tend to decrease when considered as a function of item number. This
does not necessarily indicate test speededness as the items may simply be ordered according to
item difficulty, with the more difficult items near the end of the test. Note however that the
test speededness model produces an almost perfect fit to the data: in Figure 8 (a) the esti-
mated theoretical and empirical proportions correct answers are almost indistinguishable. This
goodness-of-fit evaluation clearly only involves marginal probabilities and hence only gives a
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partial picture of the absolute model fit. To evaluate the absolute goodness-of-fit we have used
a parametric bootstrap approach. In this we compare the empirical item characteristic curves
(ICCs) with those obtained from repeated sampling from the proposed test speededness model
with parameters replaced by their maximum likelihood estimates. If the model really fits the
data, the observed ICCs should be in line with the simulated ones. The bootstrap procedure was
implemented with a uniform (-4,4) distribution for the person ability parameters. This choice
was made in order to obtain also reliable estimates of the ICCs in the lower and upper ranges of
ability. In Figure 7 we show for some items the empirical ICCs (solid lines) together with those
obtained from 100 bootstrap iterations (dots). As is clear from this plot, all empirical ICCs are
contained in the confidence band based on the bootstrap samples, giving further evidence in
favour of the model fit. The bootstrap goodness-of-fit results for the other items are similar to
those given in Figure 7.

Table 4: Mathematics placement test data: Goodness-of-fit of test speededness model versus
1PL with guessing.

speeded 1PL guessing
−2 log L 256018 256954

AIC 256190 257118
BIC 256719 257622

Further estimation results are graphically represented in Figure 8. In Figure 8 (b) and (c) we
compare the estimates for the item difficulty parameters obtained under the test speededness
model (3) with those obtained under 1PL with random guessing. The βi under (3) are in the
range [−3.95; 2.68]. The estimated difficulties of end-of-test items are clearly larger under the
1PL with random guessing model than under the test speededness model. Moreover, the dif-
ference between the two item difficulty estimates tends to increase in item number, see Figure
8 (c). In Figure 8 (d), (e) and (f) we plot the fitted random effect density functions (solid
lines) together with 95% confidence intervals (broken-dotted lines). For the speededness point
parameter ηp, we obtained α̂ = 1.312 and β̂ = 0.767, yielding a Beta distribution with mean
0.631 and variance 0.076. Concerning the speededness rate λp, the estimates are µ̂λ = −1.127
and σ̂λ = 1.140, resulting in a log-normal distribution with mean 0.621 and variance 1.029.

5 Discussion and conclusion

In this paper we proposed an item response theory model dealing with test speededness. The
model can be seen as consisting of two random processes, a Rasch process and a random guess-
ing process, with the random guessing process gradually taking over from the Rasch process.
Both change point and change rate are considered as random effects in order to model exam-
inee differences in both respects. The model improves on the hybrid model of Yamamoto and
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Figure 7: Mathematics placement test data: empirical ICCs of the real data (solid line) plotted
against bootstrap results: (a) item 16, (b) item 34, (c) item 60 and (d) item 79.

Everson (1997) in the sense that examinees do not switch immediately to random guessing once
they become speeded. The model also extends the mixture Rasch model of Bolt et al. (2002),
by allowing examinees to become speeded at different points in the test. From the simulation
study we may conclude that recovery of the parameter values of the test speededness model is
rather good and that the model can be differentiated from 1PL with guessing or 3PL by using
information criteria such as AIC and BIC. Inference concerning the fixed effects of the proposed
model can be drawn using Wald tests.

The model we presented is an instantiation of a more general category of models with gradual
change in a series of repeated observations. For example, in a learning experiment one may
start with guessing because one has no insight in how to solve the items, whereas later in the
series a gradual shift may occur to a more appropriate strategy to actually solve the items,
thanks to learning. This change process could be modeled in a way that is complementary to
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Figure 8: Mathematics placement test data: (a) proportion correct versus item number: empir-
ical (solid line), theoretical with estimated parameter values (broken line), (b) estimated item
difficulty parameters under (3)-(1) (solid line) and 1PL with guessing (broken line), (c) difference
between item difficulty estimates, (d) fitted distribution of θ, (e) fitted distribution of η and (f)
fitted distribution of λ. In (d), (e) and (f) the broken-dotted lines are 95% confidence intervals.
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the speededness model, with a transition from guessing to solving instead of a transition from
solving to guessing as for the case of speededness. From a general perspective, one may consider
any transition between two strategies or two principles during a series of repeated observations,
given that the two strategies or principles correspond to models that can also be estimated
separately. This opens up a rather broad category of applications in psychology and in other
disciplines.

The model considered assumes a dichotomous response (incorrect/correct) with test speededness
gradually degrading responses towards incorrect answers. However, besides more frequent wrong
answers, test speededness may also result in omitted answers. This omission may, next to test
speededness, also depend on ability and hence dropout is, using the terminology of Little and
Rubin (1987), missing not at random (MNAR). An early attempt to model dropout in test
data can be found in Lord (1983), where a trinomial response model (omit/incorrect/correct)
is proposed with dropout being examinee specific. Extensions of this model including test
speededness are worthwhile considering. Next to this model, the selection and pattern-mixture
models (see e.g. Glynn et al., 1986), two popular dropout models in the biomedical sciences,
may also deserve attention in this respect. This is a topic of ongoing research.
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Appendix 1: Example SAS code

data simdata1;
infile ’c:\irm\speeded\paper\simdata1.txt’;
input y
nr person x1-x40;
nr_n=nr/40;
run;

proc nlmixed data=simdata1 method=gauss noad technique=newrap
maxiter=500 maxfu=5000 qpoints=5;

parms b1-b40=-1 c=.2 s2t=1 a=9 b=2 ml=0 s2l=1 ;

beta =
b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7+b8*x8+b9*x9+b10*x10+
b11*x11+b12*x12+b13*x13+b14*x14+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19+b20*x20+
b21*x21+b22*x22+b23*x23+b24*x24+b25*x25+b26*x26+b27*x27+b28*x28+b29*x29+b30*x30+
b31*x31+b32*x32+b33*x33+b34*x34+b35*x35+b36*x36+b37*x37+b38*x38+b39*x39+b40*x40;

eta=betainv(probnorm(et),a,b);

lambda=exp(la);

r=exp(theta-beta)/(1+exp(theta-beta));

s=(1-(nr_n-eta))**lambda;

if (s >=1) then pr=c+(1-c)*r;

else pr=c+(1-c)*r*s;

model y ~ binary(pr);

random theta la et ~ normal([0,ml,0],[s2t,0,s2l,0,0,1])
subject=person;

run;
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Appendix 2

Definition 1 A n-copula is a function C : [0, 1]n → [0, 1] with the following properties

1. for every u ∈ [0, 1]n with at least one coordinate equal to 0, C(u) = 0,

2. if all coordinates of u are 1 except uk then C(u) = uk,

3. for all a, b ∈ [0, 1]n with a ≤ b the volume of the hyperrectangle with corners a and b is
positive, i.e.

2∑

i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(ui1 , . . . , uin) ≥ 0

where ui1 = ai and ui2 = bi.

So essentially a n-copula is a n-dimensional distribution function on [0, 1]n with standard uniform
marginal distributions. The next theorem, due to Sklar, is central to the theory of copulas and
forms the basis of the applications of that theory to statistics.

Theorem 1 Sklar (1959) Let X ′ = (X1, . . . , Xn) be a random vector with joint distribution
function FX and marginal distribution functions Fi, i = 1, . . . , n. Then there exists a copula C
such that for all x ∈ Rn

FX(x) = C(F1(x1), . . . , Fn(xn)). (6)

If F1, . . . , Fn are all continuous then C is unique, otherwise C is uniquely determined on
Ran F1 × · · · × Ran Fn. Conversely, given a copula C and marginal distribution functions
F1, . . . , Fn, the function FX as defined by (6) is a joint distribution function with margins
F1, . . . , Fn.

As is clear, Sklar’s theorem separates a joint distribution into a part that describes the de-
pendence structure (the copula) and parts that describe the marginal behavior (the marginal
distributions). For further details on copula functions we refer to Joe (1997) and Nelsen (1999).

Proposition 1 Consider a n-dimensional random vector X with joint distribution function G
and continuous marginal distribution functions G1, . . . , Gn. Assume that G is characterized by
a normal dependence function (copula) C i.e.

G(x1, . . . , xn) = C(G1(x1), . . . , Gn(xn))

with

C(u1, . . . , un) =
∫ Φ−1(u1)

−∞
· · ·

∫ Φ−1(un)

−∞

1
(2π)n/2|R|1/2

e−
1
2
z′R−1zdz

in which R denotes a (positive definite) correlation matrix and Φ−1 is the inverse standard
normal distribution function. Then the random variables

Yi = Φ−1(Gi(Xi)), i = 1, . . . , n,

are jointly distributed as multivariate normal.
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Proof: Denote the joint distribution function of Y1, . . . , Yn by H. Then

H(y1, . . . , yn) = P (Y1 ≤ y1, . . . , Yn ≤ yn)
= P (Φ−1(G1(X1)) ≤ y1, . . . , Φ−1(Gn(Xn)) ≤ yn)
= P (X1 ≤ G−1

1 (Φ(y1)), . . . , Xn ≤ G−1
n (Φ(yn)))

= C(Φ(y1), . . . ,Φ(yn))

=
∫ y1

−∞
· · ·

∫ yn

−∞

1
(2π)n/2|R|1/2

e−
1
2
z′R−1zdz,

which is the distribution function of a multivariate normal distribution.

Appendix 3

In this appendix we elaborate on the construction of approximate 100(1 − α)% confidence in-
tervals for the random effect density functions. Let g(x; ω) denote a density function depending
on an unknown parameter vector ω. A straightforward point estimator for g at a point x is
obtained by replacing ω by an estimator ω̂. To construct an approximate confidence interval for
g(x;ω) we need the limiting distribution of

√
n(g(x; ω̂)− g(x; ω)). The following general result,

often referred to as the delta method, provides the limiting distribution of functions of limiting
normal random vectors (see e.g. Lehmann and Casella, (2003) and Tanner, (1996)).

Theorem 2 Let θ̂n denote an estimator of the p-dimensional vector θ satisfying
√

n(θ̂n − θ) D→ Np(0,Σ),

as n →∞. Suppose g a real valued function of θ, defined on and continuously differentiable in
a neighborhood δ of the parameter point θ and set κ(θ) = ∂g(θ)/∂θ. Then, for n →∞,

√
n(g(θ̂n)− g(θ)) D→ N(0, κ(θ)′Σκ(θ)),

provided κ(θ) is not equal to zero.

Corollary 1 Consider a density (or probability) function g(x; ω) depending on a parameter
vector ω and assume that g satisfies all conditions of Theorem 2. Let ω̂ denote the maxi-
mum likelihood estimator for ω based on a sample X1, . . . , Xn of independent and indentically
distributed random variables from g and suppose that all regularity conditions for asymptotic
normality of

√
n(ω̂ − ω) are satisfied. Then, denoting by I(ω̂) the observed Fisher information

matrix of ω, i.e.

I(ω̂) = − 1
n

n∑

i=1

∂2 ln g(Xi; ω)
∂ω∂ω′

∣∣∣∣
ω=ω̂

,

the interval
[
g(x; ω̂)− Φ−1

(
1− α

2

)√
κ(ω̂)′I−1(ω̂)κ(ω̂)

n
; g(x; ω̂) + Φ−1

(
1− α

2

)√
κ(ω̂)′I−1(ω̂)κ(ω̂)

n

]
,
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with Φ−1 denoting the standard normal quantile function, is an approximate 100(1− α)% con-
fidence interval for g(x; ω).

In the following subsections we provide the elements to compute confidence intervals for the
random effects density functions. The elements of the observed information matrix and the
associated Fortran code can be obtained on request from the first author.

Density function of person ability

Concerning the examinee ability θp, we assumed a normal density function. To be specific

g1(θp; σ2
θ) =

exp[−θ2
p/(2σ2

θ)]√
2πσθ

,

and hence

κ =
∂g1(θp; σ2

θ)
∂σ2

θ

=
g1(θp; σ2

θ)
2σ2

θ

(
θ2
p

σ2
θ

− 1

)
.

Density function of speededness point

The change point ηp was assumed to be Beta distributed:

g2(ηp;α, β) =
Γ(α + β)
Γ(α)Γ(β)

ηα−1
p (1− ηp)β−1.

Let κ1 = ∂g2(ηp; α, β)/∂α and κ2 = ∂g2(ηp;α, β)/∂β. Then

κ1 = g2(ηp; α, β)[ψ(α + β)− ψ(α) + ln ηp],
κ2 = g2(ηp; α, β)[ψ(α + β)− ψ(β) + ln(1− ηp)],

where ψ denotes the digamma function, i.e. ψ(x) = d
dx ln Γ(x) = Γ′(x)

Γ(x) .

Density function of speededness rate

For the decay rate λp we proposed a lognormal distribution:

g3(λp; µλ, σ2
λ) =

exp[−(lnλp − µλ)2/(2σ2
λ)]√

2πσλλp

.

Let κ1 = ∂g3(λp;µλ, σ2
λ)/∂µλ and κ2 = ∂g3(λp;µλ, σ2

λ)/∂σ2
λ. Then

κ1 = g3(λp; µλ, σ2
λ)

lnλp − µλ

σ2
λ

,

κ2 =
g3(λp;µλ, σ2

λ)
2σ2

λ

[
(lnλp − µλ)2

σ2
λ

− 1
]

.
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