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Abstract

This note analyzes the use and limitations of the sum score based (SSB) formulation of the

Rasch model, where items and sum scores of persons are considered as factors in a logit model.

After reviewing the evolution leading to the rather surprising equality between their maximum like-

lihood estimates, the SSB model is then discussed from the point of view of pseudo-likelihood and

of misspecified models. This is then employed to provide new insights into origin of the known

inconsistency of the difficulty parameter estimates in the Rasch model. The main result concerns

the relations between the estimated standard errors for both models. It is shown that the equality of

the point estimates also holds for the estimated standard errors of the difficulty parameters. For the

ability parameters, an exact formula and a useful upper bound are given for the estimated standard

errors of the Rasch model in terms of those for the SSB model, which are more easily obtained.

Key words: Rasch model, Standard error, Information Matrix, Pseudo-likelihood, Latent Class Mod-

els.

1 Introduction

The Rasch model has motivated a large field of psychometric research dealing not only with its multiple

extensions (see, e.g., Fischer and Molenaar, 1995; Van der Linden and Hambleton, 1997; Boomsma, A.,

van Duijn, M. A. J. & Snijders, T. A. B., 2001), but also with its theoretical properties. This note intends
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to be a contribution to the the theoretical understanding of some estimation aspects of the Rasch model,

whose standard specification is as follows:

Yij ∼ Bern(pij), i = 1, . . . , n; j = 1, . . . , k, ⊥⊥
i,j

Yij , logit(pij) = θi − βj , (1)

where ⊥⊥
i,j

Yij denotes the mutual independence of the Yij , and both the θi and the βj are unknown param-

eters. The n + k parameters of model (1) are identified after imposing a linear restriction on the βj , like∑k
j=1 βj = 0. In educational tests, Yij = 1 if person i answers item j correctly, θi ∈ R represents the

ability of person i, and βj ∈ R represents the difficulty of item j.

To make a distinction with the conditional (CMLE) and the marginal (MMLE) maximum likelihood

estimates, the MLE for model (1), say θ̂i, i = 1, . . . , n; and β̂j , j = 1, . . . , k, are called joint or un-

conditional MLE and will be denoted by JMLE. Andersen (1980) proved the inconsistency of the β̂j as

n →∞ for k = 2, while Ghosh (1995) extended this result for general k, using a proof by contradiction.

As a practical solution to this problem, Andersen (1980, p. 245) proposed the multiplicative bias cor-

recting factor (k− 1)/k. There is empirical evidence that the bias-corrected JMLE is close to the CMLE

or the MMLE for large k. Holland (1990) proposes a theoretical formulation that gives some intuition

on the closeness of both JMLE and CMLE to MMLE. Thus, for large-scale tests with many items the

biased corrected JMLE may be considered to be a reasonable alternative.

Using the + sign to indicate summation over all possible values of an argument, the sum score of

examinee i is Yi+. Letting It = {i | Yi+ = t} be the set of all examinees with sum score t, it is

easily shown that the JMLE θ̂i are constant within It, a fact already pointed out by Rasch himself (1960,

chapter VI). Based on this fact, Perline, Wright and Wainer (1979, p. 239) stated that “a practical

implementation of the model is that statistical estimates of abilities and item difficulties proceed as if

everyone with the same sum score has exactly the same ability”. This can be achieved by posing an

artificial statistical model, in which the sum score and the item appear as categorical factors, for the sole

purpose of obtaining point estimates. We refer to such a model as sum score based (SSB) and denote the

parameter estimates by SSBE.

Though the original spirit of the SSBE was to obtain an approximation of the JMLE, it turns out that

they are identical. Mellenbergh and Vijn (1981) used a log-linear formulation, in which items and person

sum scores are used as factors. These authors reported that the estimates of the item parameters and of

the score group parameters, computed using iterative proportional fitting, were very similar to the JMLE.
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An alternative SSB formulation, which will be used throughout this paper, is the additive logit model

Yij ∼ Bern(pij), i = 1, . . . , n; j = 1, . . . , k ⊥⊥
i,j

Yij , logit(pij) = γt(i) − βj , (2)

where γt(i) represents a proxy of the ability for any examinee i whose sum score is equal to t. The

equivalent grouped form of this model (obtained by a sufficiency reduction) is

Ntj ∼ Bin (nt, p
t
j), logit(pt

j) = γt − βj , t = 1, . . . , k − 1; j = 1, . . . , k, ⊥⊥
t,j

Ntj , (3)

where Ntj is the random variable indicating the number of persons with a sum score t who give a correct

response to item j, nt is the number of persons with sum score t and pt
j is the probability of a person

with sum score t to give a correct response to item j.

Verhelst and Molenaar (1988) analyzed model (2) and developed an iteratively reweighted least square

estimation method starting from the proportions in (3) and showed that this method leads to a point

estimate that is equivalent to the JMLE (see also Molenaar, 1995, Section 3). Blackwood and Bradley

(1989) provided a formal proof that the likelihood equations for models (1) and (2) have the same solu-

tion, which we write as JMLE=SSBE. More recently, Haberman (2004) reported the same result in terms

of (3) and provided compelling evidence of the computational savings achieved by fitting this model

using standard software, particularly for large data sets. He also suggested that the JMLE can be used

as a starting point for a Newton Raphson algorithm that computes the CMLE. It may also be mentioned

that although MMLE is currently the most used, it is a matter of some controversy what the effect is of a

misspecification of the ability distribution.

In this note, Section 2 analyzes the equality JMLE=SSBE, interpreting SSBE as a pseudo-likelihood

estimate (PLE). In this context, this equality constitutes a remarkable behavior for a PLE. This is then

used to provide insight into the source of the inconsistency of the difficulty parameters in the Rasch

model. Section 3 shows that the equality of the point estimates can be extended to the asymptotic

standard errors of the difficulty parameters obtained with the JMLE and with the SSBE. As far as the

ability parameters are concerned, this section provides an exact formula and useful bounds that link the

asymptotic standard errors of the JMLE to those of the SSBE (for the parameters related with the sum

score factor in the SSB model). The theoretical results in this section 3 are new, and they may be of

interest not only in practice if one would use the SSB model, but also as additional properties satisfied

by estimation methods for the Rasch model.
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2 The SSB formulation of the Rasch model as a pseudo-likelihood

Since the statistical assumptions of the SSB model (2) are in contradiction with those of the original

Rasch model, the SSBE can be considered as an instance of a pseudo-likelihood estimate (PLE) in the

sense of Besag (1975),as the MLE for a misspecified model. The motivation for the PLE is that it is

computationally easier to obtain than the MLE for the original model. In the case of the SSBE, the

misspecification arises from ignoring the randomness involved in defining the groups It by the sum

scores, and the resulting correlation between the Yij and the Yi+; see Verhelst and Molenaar (1988,

Section 6). In general, the PLE does not coincide with the MLE, except asymptotically, so that the

equality SSBE = JMLE constitutes a remarkable exception. This equality also provides a new insight

into the source of the bias and inconsistency of the JMLE for β̂j . Unlike the Rasch model, the SSB

model has no incidental parameters, i.e. the number of parameters does not change with the number of

subjects. The bias and inconsistency of the JMLE can now be explained by the fact that the SSB model

is misspecified.

Another view on the inconsistency and bias of the β̂j is obtained by assuming that the examinees fall

into k + 1 latent classes, that is, as many classes as there are sum scores (each with a constant ability

ωt, t = 0, 1, . . . , k. ) For known class probabilities, these parameters can be consistently estimated from

the frequencies of the sum scores. Assuming these class probabilities, γ̂t converges in probability to

some value γt. Then the consistency of the JMLE β̂j can only be achieved if γt = ωt, for t = 0, 1, . . . , k.

But this is not the case, since the SSB model implicitly assumes that any examinee with sum score t

falls in the class with ability parameter ωt, thus ignoring the possibility of misclassification. The more

extreme cases are t = 0 and t = k, where γ0 = −∞ and γk = ∞

3 Information Matrices and Standard errors

3.1 Main results and illustrations

The (asymptotic) standard errors of SSBE and JMLE are the square root diagonal elements of the in-

verses of the corresponding information matrices. Since (1) and (3) are generalized linear models with a

canonical link, their information matrices coincide with the negative Hessian of the corresponding log-

likelihoods (McCullagh and Nelder, 1989). When evaluated at the MLE we denote these matrices by
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IJMLE and ISSBE, respectively. Under the general identification restriction
∑k

j=1 cjβj = 0 the following

key equalities are straightforward:

[ISSBE]tt = nt [IJMLE]ii , i ∈ It, 1 ≤ t < k; [ISSBE]tt′ = 0, 1 ≤ t 6= t′ < k

[ISSBE]jj = [IJMLE]jj , 1 ≤ j < k; [ISSBE]jj′ = [IJMLE]jj′ , 1 ≤ j 6= j′ < k

[ISSBE]tj = nt [IJMLE]ij , i ∈ It, 1 ≤ t, j < k.

(4)

Relationships between the inverse information matrices lead to the following results on the estimated

standard errors s.e.(β̂j) and s.e.(θ̂i) with i ∈ It, and s.e.(γ̂t) with t ∈ T :

s.e.(β̂j) are identical for the SSBE and the JMLE, (5)(
s.e.(θ̂i)

)2
= (s.e.(γ̂t))

2 +
nt − 1
[ISSBE]tt

= (s.e.(γ̂t))
2 +

nt − 1
ntvt+

, (6)

1√
vt+ s.e.(γ̂t)

≤ s.e.(θ̂i)
s.e.(γ̂t)

≤
√

nt for all i ∈ It, t ∈ T , (7)

with vtj = u′′(η̂ij), where η̂ij = θ̂i − β̂j = γ̂t − β̂j when i ∈ It and t ∈ T , and u(η) = log(1 + eη).

Note that s.e.(θ̂i) ≥ s.e.(γ̂t), with equality only attained when there is just one examinee with a

sum score equal to t. The upper bound in (7) is a useful approximation to s.e.(θ̂i), since it tends to

be quite sharp for large-scale tests with many items. Moreover, (7) implies that 1√
vt+

≤ s.e.(θ̂i); here
1√
vt+

coincides with the estimated standard error when the item parameter estimates are taken as if they

were the true values. The proof of these results comes actually from analytic equalities and inequalities

involving the inverse information matrices for the Rasch and SSB models.

Before sketching a proof of (5), (6) and (7) we illustrate their use, as well as the structure of the inverse

information matrices, with a small example. Assume there are n = 10 examinees and k = 5 items,

with response patterns: Y1 = (0, 1, 0, 0, 0), Y2 = (1, 0, 1, 0, 0), Y3 = (0, 1, 1, 0, 0), Y4 = (1, 0, 0, 0, 1),

Y5 = (1, 0, 1, 0, 0), Y6 = (1, 0, 1, 0, 0), Y7 = (0, 1, 1, 1, 0), Y8 = (1, 1, 1, 0, 0), Y9 = (1, 1, 1, 1, 0) and

Y10 = (1, 1, 1, 1, 0). To obtain the SSBE, the data are stored in the 20× 4 array obtained by stacking the

4 blocks in Table 1 under each other.

With the identification restriction β5 = −
∑4

j=1 βj , S-PLUS produces the following matrix [ISSBE]
−1 ≡
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Table 1: Data matrix used for the SSBE with n = 10 and k = 5

t j nt ntj t j nt ntj t j nt ntj t j nt ntj

1 1 1 0 2 1 5 4 3 1 2 1 4 1 2 2

1 2 1 1 2 2 5 1 3 2 2 2 4 2 2 2

1 3 1 0 2 3 5 4 3 3 2 2 4 3 2 2

1 4 1 0 2 4 5 0 3 4 2 1 4 4 2 2

1 5 1 0 2 5 5 1 3 5 2 0 4 5 2 0

Ĉov(γ̂1, . . . , γ̂4, β̂1, . . . , β̂4):

ˆ
ISSBE

˜−1 =

0BBBBBBBBBBBBB@

1.636 0.089 −0.002 −0.160 0.140 0.083 0.206 −0.095

0.089 0.317 0.016 −0.114 0.112 0.109 0.086 −0.028

−0.002 0.016 0.750 −0.005 0.004 0.046 −0.052 0.108

−0.160 −0.114 −0.005 1.186 −0.174 −0.134 −0.225 0.106

0.140 0.112 0.004 −0.174 0.557 −0.029 −0.048 −0.129

0.083 0.109 0.046 −0.134 −0.029 0.511 −0.054 −0.108

0.206 0.086 −0.052 −0.225 −0.048 −0.054 0.668 −0.168

−0.095 −0.028 0.108 0.106 −0.129 −0.108 −0.168 0.590

1CCCCCCCCCCCCCA
. (8)

Using (4) we obtain IJMLE, with the following inverse
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 .636 0.089 0.089 0.089 0.089 0.089 −0.002 −0.002 −0.160 −0.160 0.140 0.083 0.206 −0.095

0.089 1 .293 0 .073 0 .073 0 .073 0 .073 0.016 0.016 −0.114 −0.114 0.112 0.109 0.086 −0.028

0.089 0 .073 1 .293 0 .073 0 .073 0 .073 0.016 0.016 −0.114 −0.114 0.112 0.109 0.086 −0.028

0.089 0 .073 0 .073 1 .293 0 .073 0 .073 0.016 0.016 −0.114 −0.114 0.112 0.109 0.086 −0.028

0.089 0 .073 0 .073 0 .073 1 .293 0 .073 0.016 0.016 −0.114 −0.114 0.112 0.109 0.086 −0.028

0.089 0 .073 0 .073 0 .073 0 .073 1 .293 0.016 0.016 −0.114 −0.114 0.112 0.109 0.086 −0.028

−0.002 0.016 0.016 0.016 0.016 0.016 1 .470 0 .031 −0.005 −0.005 0.004 0.046 −0.052 0.108

−0.002 0.016 0.016 0.016 0.016 0.016 0 .031 1 .470 −0.005 −0.005 0.004 0.046 −0.052 0.108

−0.160 −0.114 −0.114 −0.114 −0.114 −0.114 −0.005 −0.005 2 .175 0 .197 −0.174 −0.134 −0.225 0.106

−0.160 −0.114 −0.114 −0.114 −0.114 −0.114 −0.005 −0.005 0 .197 2 .175 −0.174 −0.134 −0.225 0.106

0.140 0.112 0.112 0.112 0.112 0.112 0.004 0.004 −0.174 −0.174 0.557 −0.029 −0.048 −0.129

0.083 0.109 0.109 0.109 0.109 0.109 0.046 0.046 −0.134 −0.134 −0.029 0.511 −0.054 −0.108

0.206 0.086 0.086 0.086 0.086 0.086 −0.052 −0.052 −0.225 −0.225 −0.048 −0.054 0.668 −0.168

−0.095 −0.028 −0.028 −0.028 −0.028 −0.028 0.108 0.108 0.106 0.106 −0.129 −0.108 −0.168 0.590

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

which matches the results produced when computing directly the JMLE. The equality of the bottom

right blocks of these matrices illustrates (5). I−1
JMLE exhibits many equal values, which corresponds to the

property of invariance under permutations within a group of persons with a common sum score. This

induces a block decomposition of this matrix and it can be observed that the entries in most blocks are

identical to some entry in the smaller matrix (8). The exception concerns the nt × nt diagonal blocks,

shown in italics. That the diagonal elements are constant within each block just reflects the fact that the

standard errors of θ̂is depend only on the sum score. It is also seen that s.e.(θ̂i) ≥ s.e.(γ̂t) with equality

for nt = 1. Applying (6), the standard errors of the JMLE can be recovered from those of the SSBE,
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as illustrated in Table 2, where the sixth column is the sum of the fourth and fifth columns. Finally, a

comparison of the last two columns shows how good the upper bound (7) is.

Table 2: Computation of (s.e.(θ̂i))2 from (s.e.(γ̂t))2 and illustration of the upper bound (7)

t nt [ISSBE]tt (s.e.(γ̂t))2 (nt − 1)/ [ISSBE]tt (s.e.(θ̂i))2 Quotient
√

nt

1 1 0.665 1.636 0 1.636 1.0000 1.0000

2 5 4.097 0.317 0.976 1.293 2.0196 2.2361

3 2 1.389 0.75 0.720 1.470 1.4000 1.4142

4 2 1.011 1.186 0.989 2.175 1.3542 1.4142

The upper bound derived in (7) is much better for larger data sets. To illustrate it, a data set of n = 100

examinees and k = 30 items was simulated. The abilities were generated from a standard normal

distribution, and the difficulties were chosen to be equally spaced between -2.5 a 2.5. Both the SSBE

and the JMLE were separately and directly computed using the glm function of S-PLUS. Table 3 shows

that the bound is actually quite tight.

3.2 Sketch of the proof of (5), (6) and (7)

Let n =
∑

t∈T nt, n = (nt : t ∈ T ), and m = k − 1. Denote the matrices IJMLE, ISSBE and their

corresponding inverses as:

IJMLE =

[
D A

A′ H

]
, I−1

JMLE =

[
X B

B′ W

]
, ISSBE =

[
D A

A′ H

]
, I−1

SSBE =

[
E F

F ′ S

]
,

where D is n × n, A is n × m, H and S are m × m, D is T × T , and A is T × m. Denote by C(n)

the class of all matrices with the structure shown in the numerical example. The proof consists in the

following steps:

• IJMLE ∈ C(n): It follows from (4).

• C ∈ C(n) implies that C−1 ∈ C(n): Performing the same permutation for those rows and columns

of C corresponding to persons with raw score t leads to a matrix of the form PtCPt
′. The condition

7



C ∈ C(n) is equivalent to PtCP
′
t = C for all such Pt. Taking the inverse in both sides and using the

fact that P−1
t = P

′
t , it follows that PtC

−1P
′
t = C−1.

•W = S: this proves (5) and it follows from W = (H −A′D−1A)−1 and S = (H −A
′(D)−1A)−1.

• Let B̃ be the T ×m matrix with B̃jl coinciding with an entry of the l-th column of the t block of B.

Then F = B̃: It follows from CC−1 = I(n+k−1)×(n+k−1) and C(C)−1 = I(T+k−1)×(T+k−1).

• Equality (6): It follows from combining the equations DX + AB′ = In×n and (DE) + A F ′DE +

A B̃′ = IT×T . This proves the relation between s.e.(θ̂i) and s.e.(γ̂t) with i ∈ It.

• Inequality (7): It follows from (6) and the fact that for any positive definite matrix M , 1
Mii

≤ M ii,

where M ii denotes the ii-entry of its inverse. This proves the bounds for the ratio s.e.(θ̂i)/s.e.(γ̂t) with

i ∈ It.

Table 3: Numerical illustration of relationship 7

t nt Est. Value s.e.(bγt) s.e.(bθi) Quotient
√

nt

2 1 -3.856 0.799 0.799 1.000 1.000

3 1 -3.319 0.688 0.688 1.000 1.000

6 4 -2.211 0.283 0.558 1.972 2.000

7 3 -1.914 0.313 0.537 1.719 1.732

8 3 -1.636 0.303 0.521 1.722 1.732

9 3 -1.373 0.295 0.508 1.723 1.732

10 6 -1.122 0.205 0.497 2.422 2.449

11 5 -0.880 0.220 0.489 2.218 2.236

12 7 -0.646 0.184 0.482 2.615 2.646

13 3 -0.417 0.276 0.477 1.726 1.732

14 4 -0.192 0.238 0.473 1.988 2.000

15 9 0.030 0.160 0.471 2.953 3.000

16 8 0.251 0.169 0.471 2.788 2.828

17 5 0.472 0.213 0.472 2.216 2.236

18 7 0.695 0.182 0.475 2.609 2.646

19 7 0.922 0.184 0.480 2.606 2.646

20 3 1.154 0.283 0.487 1.722 1.732

21 5 1.394 0.225 0.496 2.209 2.236

22 3 1.645 0.296 0.509 1.720 1.732

23 4 1.909 0.266 0.525 1.977 2.000

24 3 2.193 0.318 0.546 1.717 1.732

25 1 2.504 0.575 0.575 1.000 1.000

26 1 2.854 0.617 0.617 1.000 1.000

27 4 3.267 0.347 0.681 1.965 2.000
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4 Concluding Remarks

This note provides additional relationships between the JMLE in the Rasch model and sum square based

estimates (SSBE). The SSBE are seen to be an example of pseudo-likelihood estimates, who satisfy

the very special property that they coincide with the corresponding MLE in the original Rasch model.

Since the SSB model is misspecified, this known equality allows to attribute the well-known bias and

inconsistency of the JMLE to this misspecification, rather than to the presence of incidental parameters.

Concerning the estimated standard errors of the JMLE and the SSBE, they are shown to be equal for

the difficulties, but not for the abilities. In this second case, an exact formula is provided, and it is

supplemented by upper and lower bounds on their ratio. The sharpness of the upper bound is illustrated.

The importance of these new relationships is primarily theoretical, but they may have some practical

value as well. As suggested by Haberman (2004), the SSBE could at least be used as initial points for

other estimation procedures, and it is useful to have an idea of precision to compare the new estimates

with the SSBE.
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