
T E C H N I C A L

R E P O R T

0686

A LATENT VARIABLE FRAMEWORK

FOR TERATOLOGY STUDIES

BRAEKEN, J., TUERLINCKX, F. and P. DE BOECK

*

I A P S T A T I S T I C S

N E T W O R K

INTERUNIVERSITY ATTRACTION POLE

http://www.stat.ucl.ac.be/IAP



A latent variable framework for teratology studies.

Johan Braeken
Francis Tuerlinckx

Paul De Boeck

Departement of Psychology
University of Leuven

Abstract

A latent variable framework is presented to model the characteristic rare
multivariate binary anomaly data as provided by some teratology studies.
The framework allows for a relaxation of two key assumptions underlying
traditional latent variable models. To acquire a more flexible and datadriven
way of specifying the distribution of the latent variable, finite mixture dis-
tributions and the inclusion of covariates are suggested to replace the more
standard, but restrictive, assumption of normality. A copula approach is
formulated to take into account possible violations of the conditional inde-
pendence assumption (i.e., residual dependencies), and hereby specifying a
more appropriate joint distribution of outcomes. It will be shown that these
more technical elaborations of the traditional latent variable models also
provide extra information and insight in the date, allowing the proposed la-
tent variable framework to answer substantive questions about for instance
general and anomaly-specific exposure effects of covariates, interrelations
between anomalies, and individual objective diagnostic measurement.

KEYWORDS: latent variable model; finite mixture; conditional inde-
pendence; copula; teratology.



1 Introduction

Several external agents such as chemicals, hyperthermia, radiation, or viruses,
can cause abnormalities during the development of a fetus. These external
agents (a.k.a., teratogens) play an important role in the domain of tera-
tology, where doctors and other researchers are diagnosing birth defects
and investigating the causal processes or etiology behind it (tera being the
Greek word for monster). About 7 to 10 % of all children will require exten-
sive medical care to diagnose or treat a birth defect. Although significant
progress has been made in identifying etiologic causes of some birth defects,
approximately 65% still have no known or identifiable cause [1]. This last
fact can be ascribed to the inherent complexity of the domain: Few hu-
man teratogens have one single well-defined effect, but rather generate a set
of (possibly partly overlapping) birth defects out of a variety of deficien-
cies, malformations, and anomalies. Therefore, multiple outcomes have to
be assessed in teratology studies, typically resulting in characteristic rare
multivariate binary data (e.g., defects present/absent).

One such example, which motivates this manuscript, is the Boston Anti-
convulsant Teratogenesis study (BAT;[2]). From the 687 infants in our BAT
dataset, there were 168 (24%) whose mothers took anticonvulsants during
pregnancy, 73 (11%) whose mothers did not continue the anticonvulsant
drug therapy (but were known to have a history of epileptic seizures), and
446 (65%) infants functioning as a control group (i.e., whose mothers didnt
suffer from epileptic seizures, nor took anticonvulsant drugs). Each infant
in the study was assessed on the presence or absence of several anomalies.
The data set under consideration consists of 10 anomalies, going from fa-
cial anomalies (e.g., a depressed nasal bridge) to growth indicators (e.g., a
small head) and other fysical features such as hypoplastic finger- and toe-
nails. Summary statistics are presented in Table 1. Although most of these
anomalies are not of clinical importance themselves, they are of clinical in-
terest due to their possible predictive power as indicators or markers of more
serious, but not yet emerged, anomalies and further developmental problems
[3]. Note that this dataset is very similar to the one analyzed by Legler and
Ryan[4], and based on the same clinical study.

This prototypical teratology study was set up with three goals in mind:
(1) The first goal is situated on an individual-specific diagnostic level and
based upon clinical experience indicating that the impact of teratogenic
exposure varies over a dimension from extremely severe (i.e., where diagnosis
is obvious) to mild (i.e., without major malformations, but still with an
impact on functioning and development). From this point of view each
infant can be given an underpinned position on this severity dimension.
The patterns of anomalies typical for severely affected infants can be helpful
in identifying or defining a syndrome, as well as providing new insights in
possible underlying biological processes. The severity measure can also serve
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as an objective quantified assessment that can be of later use for public
health and welfare support, and policy makers. (2) The second goal is
situated on a general etiologic level and motivated by the fact that newborns
of epileptic mothers have more chance of showing adverse birth outcomes.
Scientific interest goes out to differentiating two possible causes: Is this effect
due to the mere presence of maternal epilepsy or an artefact of the related
anti-convulsant drug therapy, and thus ascribed to in utero exposure to the
medication? (3) The third goal is situated on a general level as there is also
some interest in how these adverse birth outcomes relate to each other and
whether some particular pattern of anomalies can be grouped together (and
possibly be identified as a syndrome).

Legler et.al. [5] already partly discussed how the appropriate statistical
analysis depends on the specific context and goals of the clinical study. The
quantification of the unobserved severity at which an infant is affected, based
upon the assessment of multiple birth outcomes (cfr., the third goal of the
BAT), can be regarded as a measurement scale problem and is suited for a
latent variable modeling approach. The latent variable will be exactly this
unobserved severity dimension and allows for inference on the infant level
(see e.g, [4]). If the goal is comparing a control group and several exposed
groups (cfr., the second goal of the BAT) then a multiple comparison testing
approach with a global test for multiple outcomes is adequate (see e.g.,
[6, 7, 8]). To explore relations between the different outcomes (cfr., the
third goal of the BAT) cluster analysis techniques are the most common
approach.

In the next section we will propose a unified latent variable model frame-
work to tackle these three goals simultaneously. This by extending and
finetuning a basic latent variable model: (1) A finite mixture distribution
will be adopted both to identify groups of infants with similar patterns of
anomalies, and to allow for quantitative inter-infant differences in order to
obtain a suitable latent variable measurement scale. It should be stressed
that the finite mixture approach can be seen as a technique to reveal hid-
den groups of infants in the data, but that it can also be considered as a
way of avoiding the standard normality assumption for the distribution of
the latent variable. A normal latent distribution is often too restrictive and
chosen rather out of convenience, then based on substantive reasons/theory.
(2) Person covariates will be added to the model in a regression-like fashion
to comply to the interest in exposure group effects; (3) Because anomalies
may cluster together for various reasons, known and unknown, it can be
expected that the commonly made assumption of conditional independence
in latent variable models will be violated in this case study. Specific clusters
of anomalies will cause dependence over and above the one explained by the
latent variable. As will be explained below, when not handled carefully, this
conditional dependence can introduce bias into the model estimates and may
yield quite misleading information. Copula functions will be incorporated
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into the model to account for these specific associations between anomalies.
In the Application section this latent variable modeling framework will be
applied to the above-presented BAT study. Results and conclusions will be
presented, before turning to a more general discussion.

2 Method

2.1 Latent variable framework

Let Y p = (Yp1, Yp2, . . . , YpI)T represent the (I×1) binary anomaly outcome
vector for the pth infant, and Zp = (Zp1, Zp2, . . . , ZpJ)T the (J×1) covariate
vector for that same infant p. Assume Ypi is an indicator of the event
that some unobserved latent continuous variable Xpi (following a standard
logistic distribution, i.e., location 0 and scale 1) exceeds a threshold, which
can be taken to be zero without loss of generality. If Ypi = 1, it indicates the
presence of the ith anomaly in infant p and Ypi = 0 indicates the abscence.
Specifically let

Ypi = I(Xpi > 0), Xpi = αi(θp − βi) + εpi, (1)

such that

Pr(Ypi = 1|θp) = Pr(Xpi > 0|θp) = Pr(εpi > −αi(θp + βi));

with θp being an infant specific intercept representing the unobserved sever-
ity at which an infant p has been affected (higher being more severely af-
fected), the parameters αi and βi representing the discrimination ability
and threshold rate of the ith anomaly respectively. Figure 1 illustrates
the function of these parameters with respect to the logistic response curve
Pr(Ypi = 1|θp) over the range of the latent variable θp. The smaller the
threshold rate βi is, the higher the chance of having the ith anomaly for
an infant with severity θp. Notice that the value of βi is exactly the loca-
tion on the latent scale θp where the probability of having the anomaly i is
equal to a half (i.e., βi is the location of the logistic curve). The larger the
discrimination αi is, the higher the effect of the severity of affect θp on the
occurence of anomaly i. In a way, αi indicates how effectively the anomaly
i can discriminate between highly affected infants and less severely affected
infants.

The resulting model for the joint outcome vector Y p = (Yp1, Yp2, . . . , YpI)T

is in fact a Non-Linear Mixed Model (NLMM) that takes the dependency
within the multivariate binary outcome vector Y p of an infant p into ac-
count by introducing θp as a random effect and using a logit link function,
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leading to the following joint marginal probablity:

Pr(Y p = yp) =
∫

θp

f(yp|θp)h(θp; ζ)dθp

=
∫

θp

I∏
i=1

f(ypi|θp)h(θp; ζ)dθp

=
∫

θp

I∏
i=1

exp(ypiαi(θp − βi))
1 + exp(αi(θp − βi))

h(θp; ζ)dθp,

where h(θp; ζ) is the density of the latent distribution of the severity of affect
θp. This distribution is parameterized by the vector ζ. Note that because
of identfication reasons, the model should be restricted to fix the scale of
the latent variable. One option is to fix one αi, let’s say α1 at value 1.
Hence α2 until αI have to be interpreted in reference to the first anomaly.
However, we choose to put a restriction on the parametrization of the latent
distribution h(θp; ζ) leaving α1 until αI free and avoiding the hassle of a
relative interpretation.

In the next few subsections we will go into more detail about the assump-
tions behind this basic model, highlight possible problems and outline model
extensions to capture specific features of the data from the BAT study.

2.2 Specification of the latent distribution

The random intercept θp follows a density function h, which has a certain
form, generally assumed to be a Normal with mean zero and unknown vari-
ance σ2. The standard practice of choosing the specific parametric form
of a Normal distribution is mainly motivated by mathematical convenience,
tradition and the fact that it is provided by most commercial statistical
software packages. However, this assumption puts an important constraint
on the shape of the distribution of the random effect and a misspecification
of the distribution can lead to biased parameter estimates in the model (see
e.g., [9, 10, 11, 12]). Furthermore this assumption is difficult to check, be-
cause the random effect is a latent variable, and consequently unobservable.

In a teratogenesis study the majority of the infants are at most mildly
affected and thus scoring positively on few outcomes. Given that the overall
incidence of adverse birth defects is likely to be low, one can expect that the
common normality assumption of the random effect will be questionable. A
positively skewed distribution for the random intercept (i.e., the severity of
affect dimension) will be more suitable for these data. Note that this is the
exact reason why Legler and Ryan [4] turned to a Poisson distribution for
θp instead of the Normal distribution.

To accommodate for possible specification problems, one could choose
to rely on finite mixture distributions, which are a more data-driven semi-
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parametric way (thus, avoiding the specification of a parametric form) allow-
ing for a more flexible and appropriate latent distribution (see e.g., [13]). Let
the mixture distribution G(θp) consist of G normal distributions H(θp, σ

2),
with mean vector μ = [μ1, . . . , μG]T , common variance σ2, and compo-
nent probabilities π1, . . . , πg, . . . , πG such that

∑G
g=1 πg = 1. Note that the

common variance constraint is needed to avoid infinite likelihoods, as we are
working with a unidimensional latent variable ([14], p.199). Each component
distribution of the mixture will cover a local area of the true distribution,
hereby enabling the modeling of a quite complex distribution. The choice of
normal component distributions is arbitrary and chosen here for ease of im-
plementation, but in principle any other parametric distribution can be an
option. Extending our model with a finite mixture distribution of normals
for the random effect θp results in the following marginal probability of the
outcome vector:

Pr(Y p = yp) =
G∑

g=1

πg

∫
θp

f(yp|θp)Ng(μg, σ
2)dθp,

with μ1 restricted to be zero (to set the scale of the latent variable).
Additionally the use of mixture distributions also allows the clinical team

to investigate and reveal possible hidden grouping in the data. In this mix-
ture setting infants can be ascribed to the component for which they have
the highest posterior probability to belong to, resulting in a classification
of infants over components. By characterizing the typical infants belong-
ing to a specific component the researchers might attempt to interprete the
underlying reason of the component separation and hereby possibly gaining
new unexpected insights in the data and the teratogenic processes involved.
Thus, besides the technical advantages, a finite mixture distribution for the
latent variable can also provide new and more information at a general eti-
ologic and specific diagnostic level when trying to answer the goals of a
teratology study.

2.3 Specification of covariates

With the availability of additional covariate information as represented by
Zp = (Zp1, Zp2, . . . , ZpJ)T , it is of interest to estimate the extent to which
the severity of affect θp of an infant is determined by these infant characteris-
tics. For instance, we know that 24% of the infants have a mother that took
anticonvulsants during pregnancy, let us call these the drug exposure group.
One can hypothesise that this exposure group will have on average a higher
severity of affect θp than infants not belonging to this group. The connection
with the previously discussed finite mixtures is easily made. Instead of hid-
den groups and unknown group membership, we now have known groups and
known group membership (Zpj): if Zpj = 1 then H(θp; ζ) ∼ N(λj , σ + σ2

j ),
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else H(θp; ζ) ∼ N(0, σ2). This results in the following marginal probablity
for the joint outcome vector:

Pr(Y p = yp) =
∫

θp

f(yp|θp)Ng

⎛
⎝ J∑

j=1

Zpjλj , σ
2 +

J∑
j=1

Zpjσ
2
j

⎞
⎠ dθp. (2)

This can be seen as a form of multi-level modeling, where one decomposes
the severity of affect θp in a fixed part λj , representing the effect of the
known covariate, and a random part θ∗p, representing the remaining latent
infant specific severity:

Ypi = I(Xpi > 0), Xpi = αi

⎛
⎝[θ∗p +

J∑
j=1

Zpjλj] − βi

⎞
⎠+ εpi. (3)

The covariate effect λj can be interpreted as the change on the logit scale
one would expect when a newborn has the jth covariate or infant charac-
teristic, relative to when that characteristic is absent; this is equivalent to
a multiplication of the odds ratio by exp(λj). In the above model, it is
assumed that there is a general effect of the covariate; however, it can be
that even after controlling for this general effect on an infants severity of
defect the covariate still has an additional differential effect for some of the
anomalies.

To accommodate for these additional anomaly-specific covariate effects,
the model can be relaxed by constructing the covariate effect as the sum of
a general effect λj and a specific effect λji :

Ypi = I(Xpi > 0), Xpi = αi

⎛
⎝[θ∗p +

J∑
j=1

Zpjλj ] − [βi +
J∑

j=1

Zpjλji]

⎞
⎠+ εpi.

(4)
In this model λji can be interpreted as the change in log odds ratio for the
ith anomaly when a newborn has the jth covariate or infant characteristic,
relative to when that characteristic is absent. Note that to identify this
model and keep the scale of the latent variable comparable between the
covariate groups, one λji has to be fixed for each covariate j. Here λji

can be interpreted as the additional change (above the general effect λj) in
log odds ratio for the ith anomaly when a newborn has the jth covariate
or infant characteristic, relative to when that characteristic is absent (cfr.,
differential item functioning in item response theory; see e.g., [15]).

If one is not interested in the overall general effect of the covariates, but
only in anomaly-specific effects one can opt for the following formulation:

Ypi = I(Xpi > 0), Xpi = αi

⎛
⎝θp − [βi +

J∑
j=1

Zpjλji]

⎞
⎠+ εpi. (5)
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In this last case, λji can be interpreted as the log odds ratio for the ith
anomaly when a newborn has the jth covariate or infant characteristic, rel-
ative to when that characteristic is absent (see also, [16]). This last formula-
tion has the slight interpretational disadvantage that one can not formulate
a general θp, because an infant’s total severity of affect is now also anomaly
specific: θpi = θ∗p+λji. One can still consider θ∗p as being the infant’s residual
severity of affect not accounted for by the known covariates.

The inclusion of such covariate information on infants in the model has
the statistical advantage that more precise estimates for both the fixed
and random model parameters can be made [17], avoids multiple compar-
isons (hence, being statistically more efficient), and allows for general and
anomaly-specific exposure effects. From a clinical perspective this offers a
way of exploring possible risk and protective factors for teratogenesis (i.e.,
the development of anomalies).

2.4 Specification of the joint distribution

Traditionally latent variables model the joint distribution of the outcome
vector Y p as:

Pr(Y p = yp|θp) =
I∏

i=1

f(ypi|θp), (6)

indicating that there is conditional independence between the different out-
comes. This means that the anomaly outcomes are assumed to be indepen-
dent realizations conditional upon the latent severity variable θp (in addi-
tion to the covariates and other fixed effects). and thus, the dependency
in the data is ascribed to the fact that repeated measurements were taken
from the same infant p. Equivalently, this assumption can be written as
Fεp(εp1, . . . , εpI) =

∏I
i=1 Fεpi(εpi). Thus, another way to look at the condi-

tional independence assumption is having uncorrelated error terms εpi (over
items).

This assumption allows for a mathematical convenient way of modeling
the joint probability of the anomaly outcome vector, but might not always be
that plausible. In a teratology context it is likely that even after accounting
for the common dependence due to a person’s severity of affect, specific
anomalies will show some extra association or residual dependency. This
can be the case when they have a similar origin in common, like for instance
the same body part, a genetic link or some kind of environmental factor. In
the BAT, for instance, the growth indicators can be expected to show this
type of extra association.

When ignored, violations of the conditional independence assumption
may lead to biased estimates for both fixed and random effects [18, 19,
20]. To illustrate this intuitively, consider the extreme case wherein several
slightly differently phrased screening questions are used in one test; this
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is almost equivalent to assessing a single anomaly. This redundancy situ-
ation will lead to an inflation or double-counting of information. One of
the consequences are for instance the underestimation of the standard er-
ror of the infants severity estimate θp, resulting in a less reliable measuring
instrument. The estimation of the discrimination and baseline parameter
may be affected as well by unmodeled residual dependencies. The main em-
pirical finding (see e.g., [21, 20]) is that the discrimination parameters are
overestimated or even explode to an extreme value when positive residual
dependencies between anomalies are not taken into account.

Various types of diagnostic tools have already been developed to detect
residual dependencies (see e.g., [22, 23]; for a comparison see [24]). In this
manuscript the Mantel-Haenszel procedure ([25]; see also [26]) will be used
as a data-analytical tool to identify pairs of anomaly outcomes that exhibit
residual dependency beyond random chance. The main idea is to test for
equal odds ratio between groups of infants; the group division is based upon
a proxy for the severity of affect θp. Usually the somscore over anomalies
is taken as a rough approximation of θp, or one could also opt to use a
model-based estimate. The Mantel-Haenszel test will give an indication of
the presence of residual dependency between the anomalies while controlling
for the severity dimension θp. It is recommended to regard these Mantel-
Haenszel tests mainly as an exploratory screening tool and not as a formal
statistical test. In the current context, these Mantel-Haenszel tests and
other types of diagnostic tests are cumbersome due to the multiple testing
on the same interrelated data and the fact that they don’t take into account
the uncertainty as implied by the proxy θ̂p.

Figure 2 shows a matrix made up by a pairwise crossing of all anomalies
and contains a color representation of the value of the Mantel-Haenszel test
statistic for each of these pairs. The cell at row 4 and collumn 9 contains
the Mantel-Haenszel test statistic for the anomalies 4 and 9 (i.e., tapered
fingers and clinodactyly of the hand, respectively; cfr. Table 1). Dark
colors represent high values and indicate much residual dependency, light
colors represent low values and indicate little residual dependency; Because
the order of the anomaly pair is not relevant, as the residual dependency
is considered symmetrical, the lower triangle of the matrix is left open as
it only mirrors the values of the upper triangle. Upon visual inspection
we pick out the pair {1, 2}, i.e., the anomalies involving hypoplasia. Their
Mantel-Haenszel statistic is extremely high (M-H Z = 4.57), indicating that
extra association above the dependency explained by the common severity
of defect dimension is present between these two anomalies. Note that the
average expected value of the Mantel-Haenszel test statistic is zero, as the
standardized test statistic is reported. As expected the anomalies 6, 7, and 8,
a.k.a. the growth indicators, form a residual dependent subset of anomalies
(M-H: Z > 6.88 for the 3 pairwise combinations). Most other cells formed
by a combination of an anomaly with one of the growth indicators also seem
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to be influenced by this cluster. However, the values of the Mantel-Haenszel
statistic for these cells are rather low compared to the two prominent clusters
(exception should be made for cell {3, 6}, M-H Z = −5.08) and the pattern
of residual dependencies is not consistent (in direction or over the different
combinations).

These preliminary findings clearly imply that further analysis of the BAT
study has to take into account the presence of these residual dependen-
cies. Consequently a more appropriate dependence structure will be re-
quired than the one proposed by the conditional independency assumption.
In this manuscript we propose the use of copula functions to overcome the
abovementioned bias problems by modeling detected (or theoretical) resid-
ual dependencies in the data, and thus providing a more proper formulation
of the joint distribution. In order that this manuscript should be reasonably
self-contained, an Appendix has been added for people less familiar with
copula functions. A more thorough overview of copula theory can be found
in the reference works by Nelsen[27], and Joe[28].

The main idea in our approach is to use copula functions to construct
a more appropriate joint distribution function Fεp(εp1, . . . , εpI) that takes
into account the association between the errorterms εpi, hereby modeling
the residual dependencies. The marginal distributions Fεpi are distributed
following the general model proposed in Equation 1. The unknown I-variate
joint distribution Fεp(εp1, . . . , εpI) will be constructed from these margins
by means of copula functions.

Consider S disjoint subsets of {1, . . . , I} denoted as J1, . . . , JS , where
Js has cardinality Is. The vector of errorterms εp is similarly divided into
subsets ε

(1)
p , . . . , ε

(S)
p where ε

(s)
p = (εpi, i ∈ Js). The different subsets are

independent, and the variables in a subset ε
(s)
p are assumed exchangeable.

Subsets of anomalies can be chosen based upon diagnostic tests for residual
dependency, or substantive theory.

The joint probability of the outcome vector of an infant p is:

Pr(Y p|θp) =
S∏

s=1

Pr(Ypi = ypi, i ∈ Js|θp),

with the joint probability of responses on anomaly subset Js equal to:

Pr(Ypi = ypi, i ∈ Js|θp) = Pr(d(1)
pi < εpi ≤ d

(2)
pi , i ∈ Js|θp),

where for ypi = 1, d(1)
pi = −θp +βi and d(2)

pi = ∞, and for ypi = 0, d(1)
pi = −∞

and d(2)
pi = −θp+βi. If the cardinality of subset Js is larger than one (Is > 1),

Pr(d(1)
pi < εpi ≤ d

(2)
pi , i ∈ Js|θp) is evaluated from the copula CS(.; δs) for
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(εpi, i ∈ Js) as:

Pr(d(1)
pi < εpi ≤ d

(2)
pi , i ∈ Js|θp) =

2∑
k1=1

. . .

2∑
kIs=1

(−1)k1+...+kIsCs

(
Fεp1(d

(k1)
p1 ), . . . , Fεpi(d

(ki)
pi ), . . . , FεpIs

(d(kIs )
pIs

)
)
.

For clarity, assume I = 2 and Js = {1, 2}, the equations above simplify as
follows for a (0, 0)-outcome:

Pr(Yp1 = 0, Yp2 = 0|θp)

= Pr(d(1)
pi < εpi ≤ d

(2)
pi , i ∈ Js|θp)

= Pr(d(1)
p1 < εp1 ≤ d

(2)
p1 , d

(1)
p2 < εp2 ≤ d

(2)
p2 |θp)

= Pr(−∞ < εp1 ≤ −θp + β1,−∞ < εp2 ≤ −θp + β2)
= Cs

(
Fεp1(−∞), Fεp2(−∞)

)− Cs

(
Fεp1(−θp + β1), Fεp2(−∞)

)
−Cs

(
Fεp1(−∞), Fεp2(−θp + β2)

)
+ Cs

(
Fεp1(−θp + β1), Fεp2(−θp + β2)

)
= 0 − 0 − 0 + Cs

(
Fεp1(−θp + β1), Fεp2(−θp + β2)

)
= Cs

(
FXp1|θp

(0|θp), FXp2|θp
(0|θp)

)
.

The last equality follows from the definition of Xpi. The other probabilities
are then:

Pr(Yp1 = 1, Yp2 = 1|θp) = 1 − FXp1|θp
(0|θp) − FXp2|θp

(0|θp) + Cs

(
FXp1|θp

(0|θp), FXp2|θp
(0|θp)

)
Pr(Yp1 = 1, Yp2 = 0|θp) = FXp2|θp

(0|θp) −Cs

(
FXp1|θp

(0|θp), FXp2|θp
(0|θp)

)
Pr(Yp1 = 0, Yp2 = 1|θp) = FXp1|θp

(0|θp) −Cs

(
FXp1|θp

(0|θp), FXp2|θp
(0|θp)

)
Figure 3 offers an intuitive insight in these calculations by presenting the
contour lines of bivariate logistic densities constructed by means of Frank
copula, Cook-Johnson copula, and Gumbel-Hougaard copula. Each contour
plot is divided into quadrants made up by the solid lines drawn at the latent
thresholds (the dashed lines indicating the marginal means θp−βi). In order
to calculate the joint probabilities from the joint distribution functions of
the latent random variables Xp1|θp and Xp2|θp, the volume under the density
for the corresponding quadrant needs to be calculated (see e.g., [29], and see
also Appendix: Equation 7).

The regular conditional independence model arises as a special case when
S = I and each subset Js has size 1; or when the different C are assumed
to be the product copula Π (equivalent to independence). As an exam-
ple, consider a teratology study with I = 7 anomalies where anomalies 1
and 2 exhibit some symmetric residual dependence, the set of anomalies 3
to 5 also form a dependent subset (independent of the first) and anoma-
lies 6 and 7 do not show any violation of the general conditional inde-
pendence assumption and are independent of the first two subsets. Thus,
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{1, . . . , 7} is partitioned as: J1 = {1, 2}, J2 = {3, 4, 5}, J3 = {6} and J4 =
{7}. The proposed I-variate distribution for the error component vector
εp = (εp1, . . . , εpI)T is then: Fεp(εp1, . . . , εpI) = C1

(
Fεp1(εp1), Fεp2(εp2)

) ×
C2

(
Fεp3(εp3), Fεp4(εp4), Fεp5(εp5)

)× Fεp6(εp6) × Fεp7(εp7).
Because a copula model is a form of marginal modeling, a broad range of

association structures (by means of different copula functions) for the sub-
sets showing residual dependency can be compared without fundamentally
changing the base model of the marginal probabilities. In the previous exam-
ple, C1 could be either Frank copula or Cook-Johnson copula, and the same
holds for C2. The parametrisation of each margin (i.e., anomaly) preserves
its natural interpretation independent of other observed anomaly outcomes.
This reproducibility property (see [30, 31, 32]), or what McCullagh[33] calls
upward compatibility’ allows for complex changes to the joint (i.e., multi-
variate) model without having to leave the attractive modeling framework
as described by the latent variable model proposed in Equation 1. Figure 3
illustrates the degree and kind of dependence for several latent bivariate
distributions FXp|θp

with standard logistic margins FXp2|θp
and FXp1|θp

con-
structed by means of Frank copula (upper 4 panels), Cook-Johnson copula
(middle 4 panels), and Gumbel-Hougaard copula (lower 4 panels) for varying
values of the association parameter δ. Notice that the copulas can capture
a broad range of dependency and differ in the type of dependence they in-
duce; for instance, Cook-Johnson copula has a prominent lower tail (i.e.,
more formally, C(u, . . . , u)/u converges to a constant c in [0, 1] as u → 0;
[34, 27]), while the Gumbel-Hougaard copula has a prominent upper tail.
On the other hand Frank copula leads to a similar kind of dependence in
both tails.

In order to illustrate that the introduction of the copula can take residual
dependencies into account, the odds ratio (conditional on θp) for anomalies
1 and 2 involved in the copula C can be computed as follows:

OR(θp) =
Pr(Yp1 = 1, Yp2 = 1|θp) Pr(Yp1 = 0, Yp2 = 0|θp)
Pr(Yp1 = 1, Yp2 = 0|θp) Pr(Yp1 = 0, Yp2 = 1|θp)

=

(
1 − FXp1|θp

(0|θp) − FXp2|θp
(0|θp) + C

)
C(

FXp2|θp
(0|θp) − C

) (
FXp1|θp

(0|θp) − C
) ,

with C = C
(
FXp1|θp

(0|θp), FXp2|θp
(0|θp)

)
. Using Frank copula, the value of

the log odds ratio is then computed for several values of δ and for θp ranging
from -4 to 4 and the result is shown in the upper panel of Figure 4. For
Cook-Johnson copula, and the Gumbel-Hougaard copula, the same proce-
dure is followed and this result is shown in the middle and lower panel of
the same figure, respectively. For ease of demonstration the two margins
were set equal to one another, with anomaly parameters αi = 1 and βi = 0
(i = 1, 2) and no covariate information, so that the log odds ratio (condi-
tional on θp) was only a function of the copula’s association parameter and
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the marginal probabilities as determined by θp. From all three panels it can
be seen that when the value of the copula parameter δ rises the log odds
ratio also increases, indicating the copula parameter’s function as an asso-
ciation measure. Furthermore it appears that for a fixed value of the copula
parameter δ, there is a dependency between the log odds ratio and the value
of the latent trait. Frank copula shows a more static residual dependence
between the two anomalies (the log odds ratio is more or less constant, unless
for large values of δ). On the contrary, Cook-Johnson copula has a dimen-
sional residual dependence structure because the log odds ratio increases as
θp increases, whereas for the Gumbel-Hougaard copula the log odds ratio
increases as θp decreases. Our attention is restricted in this manuscript to
these three Archimedean copulas because they are comprehensive (i.e., they
can capture the whole range from independency towards absolute positive
dependency), have existing multivariate extensions, simple form and parsi-
monious parametrization (i.e., only one parameter), and because they show
such distinct, interesting, and contrasting patterns of association.

On a more general level, one might consider the copula function cap-
turing anomalies containing similar additional information above the part
they provide to the common severity of affect of an infant (similar, i.e.,
when restricting our attention to the case of positive residual dependency).
Hence, besides its use as a technical vehicle to take into account severe vi-
olations of the conditional independency assumption, the copula can also
be used as a measure or indicator of association between specific anomalies.
The specific type of association induced by the copula can provide extra
information about the underlying processes behind the occurence of these
residual dependencies.

3 Model inference

Once the partitioning of anomalies into subsets is given, and the copula
families are given, the following set of parameters has to be estimated: the
anomaly parameters αi and βi (i = 1, . . . , I), the distributional parame-
ters of the latent trait, and the association parameters δ1, . . . , δS . Over all
anomalies and infants the marginal maximum likelihood under the copula
latent variable model is:

P∏
p=1

∫
θp

S∏
s=1

[
Pr(d(1)

pi < εpi ≤ d
(2)
pi , i ∈ Js|θp)

]
φ(θp|σ2)dθp.

Usually the log is taken for numerical reasons. The negative of this log-
likelihood is minimized using a quasi-newton optimization algorithm. The
approximation of the intractable integral with respect to the distribution of
θp will be carried out with a Gauss-Hermite quadrature. Estimates of the
latent variable θp are acquired in a second step using empirical Bayes. In
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case of a finite mixture specification of the latent variable θp optimization
is performed using a generalized Expectation-Maximization algorithm with
a quasi-newton iteration to solve the M-step (see e.g., [35, 36]). Note that
one can best apply a multiple-rerun strategy for the EM algorithm as it is
highly sensitive to initial starting values in this type of context. A program
in Matlab has been written to estimate these copula models.

Comparing a conditional independence model against it’s copula coun-
terpart has a straightforward solution, as the independence copula is a spe-
cial case of all copulas considered in this manuscript. Hence, likelihood
tools usually applied in mixed models are available (i.e., Wald, score and
likelihood ratio tests). Compared to the independence case, the only ad-
ditional parameter in the copula functions applied here is the association
parameter that defines the degree of dependency within a set of anomalies
(conditional on θp). Note that for Frank copula Meester [37] showed that
once R exceeds 2, the lower bound of the copula parameter δ needs to be
adapted in function of R. For any R this adapted lower-bound is always
strictly less than zero, thus not restricting the positive association range
and technically leaving the position of the independence point in the inte-
rior of the parameter space. The range of negative dependency in the case
that R > 2 is rather limited and attaching a meaningfull interpretation to
negative dependency between three or more anomalies is not very likely.
Hence, we do not consider the use of Frank copula for negative residual de-
pendency between more than 2 anomalies for reasons of clarity. However
for Cook-Johnson copula the independence case lies on the boundary of the
parameter space since δ cannot be lower than zero. Therefore the appro-
priate reference distribution for the likelihood ratio test statistic comparing
the independence and the Cook-Johnson model is not a chi-square with 1
degree of freedom but a mixture of two chi-square distributions, with 0 and 1
degree of freedom respectively. When more copulas and consequently more
association parameters are involved, deducing the appropriate mixture of
chi-square distributions to function as reference distribution may get very
complicated (see e.g., [38]). Therefore, we will rely in all cases on the tra-
ditional reference distribution, which yields a more conservative test of the
null hypothesis. Attention has to be given to the selection of a particular
copula function. The 3 copulas considered in this manuscript do not have
a nested relation and consequently, the selection is best based on methods
such as the AIC [39] or BIC [40]. Given the comprehensive nature of these
copulas and their shared boundary cases (i.e., the Fréchet bounds and the
independence copula, see Appendix), one can expect that differentiation be-
tween the types of copula functions will get more difficult near the extremes
of independence or deterministic positive dependence.
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4 Application: Boston Anticonvulsant Teratogen-
esis study

As a start the base model in Equation 1 was fitted on the BAT data. The
results, as shown in Table 2, clearly indicate that there are some estimation
problems: The standard error of the threshold rate (i.e., βi) for anomalies
3 and 5 is large, and the discrimination parameter (i.e., αi) of anomalies 6,
7 and 8 takes quite extreme values. This last fact, together with the results
of the Mantel-Haenszel tests, leads to the conclusion that the problem of
residual dependencies in the data can not be ignored and have to be taken
into account in our model. Of course these model estimates can still be influ-
enced by another factor, being a possible misspecification of the distribution
of the latent variable θp. To verify this and clear up any possible confounding
between the two misspecification factors (i.e., joint distribution and latent
distribution) a finite mixture version of the base model was fitted to ac-
quire a more flexible and appropriate specification of the latent variable’s
distribution. The mixture model results in a better fit, but the previously
mentioned problems remain. However, this part of our modeling effort can
already give some more information and insight in the data. A finite mixture
with two components, with means 0 and -5.14, and component probabilities
0.61 and 0.39 respectively, gave the best fit (see Table 2). The infants were
classified into these two components based upon their maximum posterior
component probability and a characterization of the resulting classification
in terms of the available data is given in Table 3. Notice that the second
component mainly contains unaffected infants and also has a lower percent-
age of infants belonging to the anticonvulsants-exposed group relative to the
infants classified in the first component.

Furthermore, when adding the available covariates (i.e., exposed in utero
to anticonvulsants, gender, and seizure-history of the mother) to the mix-
ture model, it reduced to the regular one component case. The results of the
one-component model with general covariate effects included are presented
in Table 2 (Note that adding covariate effects to the variance of the latent
distribution did not improve the model fit, and thus were excluded from the
presented model). Only one of the available covariates resulted in an overall
effect on an infant’s severity of affect. Being exposed in utero to anticonvul-
sant drugs, relative to not being exposed to such drugs, raises the odds of
having an anomaly by 3.67 (i.e., exp(λ1)). Gender or having a mother with
a seizure history had no significant influence on an infant’s severity of affect.
We checked for the possibility of noticeable anomaly-specific effects of the
covariates, but these models did not provide a better fit to the data com-
pared to the more parsimonious model with general anomaly effects. Thus,
these results suggest that the higher prevalence of anomalies in children of
epileptic mothers is mainly due to their anticonvulsant medication therapy.
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In comparison with the variance of the latent variable θp that was fixed at 1,
the variance explained by anticonvulsant exposure is equal to: the variance
of anticonvulsant exposure (0.19) multiplied by it’s squared effect λ2

1 is 0.27,
which is 21% when added to latent variable’s variance. These results indi-
cate that for this data set incorporating the known covariates into the model,
results in an appropriate specification of the latent variable’s distribution,
and suggest that a relatively large part of the between-infant variability is
accounted for by these known covariates.

To take into account the detected residual dependencies in the data,
a copula model was fitted. A Gumbel-Hougaard copula for for anomaly
subset {1, 2}, and a Frank copula for anomaly subset {6, 7, 8} resulted in
the best fitting models. Both copula association parameters were significant
(p < 0.0001). This suggest that the infants who are less severely affected
(low θp), have a higher tendency to have both finger- and toenail hypoplasia
anomalies present. For the growth indicators the residual dependency is
more equally spread out over the severity of affect scale, but the high value
of the association parameter δ2 implies that the general tendency is that
these growth indicators co-occur. If one type of growth deficiency is present,
it is very likely that the other two are present as well.

To illustrate that ignoring residual dependencies leads to a less reliable
measurement scale, a plot was made from the empirical Bayes standard er-
rors of θp under the conditional independence model and the corresponding
copula model (see Figure 6). To ease interpretation the difference between
the standard errors under both model was set out on the Y-axis. If resid-
ual dependencies would not have an effect, one would expect no significant
difference and all points in Figure 6 should be roughly lying around the
zero-point reference line of the Y-axis. Clearly this is not the case, and one
can see that in the presence of positive residual dependencies the double
counting of information under a conditional independence model leads to an
artificial, but systematic, underestimation of the standard error of θp. When
comparing the discrimination parameter estimates (αi) under the covariate
model with conditional independence and the model with copula functions,
one can observe that the αi of the residual dependency subsets {1, 2} and
{6, 7, 8} are corrected downwards under the copula model. This corresponds
with [20], who showed that ignoring the presence of positive residual depen-
dency leads to an overestimation of the discrimination parameters αi.

When looking at the results of our final copula model, it shows that the
anomalies with the highest threshold rate (i.e., they are ’hardest’ to get)
are the growth indicators and a broad nasal bridge (i.e., anomalies 6, 7, 8
and 10, respectively). Hypoplastic and tapered fingernails and anteverted
nostrils (i.e., anomalies 2, 4 and 5, respectively) are the anomalies that best
differentiate between less and more severly affected infants. Typical anomaly
patterns for the less severly affected infants in this dataset as indicated by
our measurement scale (θp <= 1;n = 561) are having at most one anomaly
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present or a combination of growth indicators. The most severly affected
infants in this dataset as indicated by our measurement scale (θp > 1;n =
126) show anomaly patterns with on average 4 anomalies present. Figure 5
shows the observed distribution of empirical bayes estimates of the infants
severity of affect.

5 Discussion

The more general goal of this manuscript was to highlight the strong re-
lation between statistically ’biased’ models and substantively ’unrealistic’
models. The specification of the latent distribution and the joint distribu-
tion given a latent variable model received focus. Instead of rashly accepting
the standard approach of a normal distributed latent variable, a more flexi-
ble data-driven way of specifying the latent distribution can be obtained by
adopting a finite mixture approach and by incorporating covariates into the
model. Besides its statistical efficiency advantages, this approach can also
provide new insights and more information to the clinical researchers. The
same can be said about the traditional conditional independence assump-
tion in the joint specification of latent variable models. A copula approach
to take into account specific violations of this assumption, leads to more
solid models and provides at the same time a measure of association be-
tween specific subsets of anomalies. Both these extensions of the standard
approach to latent variable modeling, allow to work further within the inter-
pretational attractive latent variable framework for teratology studies, and,
should greatly improve the quality of the constructed measurement scale
and model-based inferences. In other words, it is the believe of this authors
that the here presented framework offers a viable alternative available to
the standard approach taken. In principle, the approach suggested in this
manuscript can also be applied to categorical and continuous variables. A
limitation that has to be taken into account as the copula approach, as
presented here, considers only a symmetrical type of dependencies.

Appendix: copula theory

In this section we will introduce the mathematical concept of copula func-
tions and indicate their use for the modeling of dependency, and the con-
struction of multivariate distributions. In mathematics, a copula (Latin for
link or tie) defines a function that relates, or couples’ a multivariate distri-
bution function to its univariate margins.

An R-dimensional copula is a function C : [0, 1]R → [0, 1] with the
following properties:

1. For every vector u ∈ [0, 1]R, C(u) is increasing in each component ur

with r ∈ 1, 2, . . . , R.
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2. For every vector u ∈ [0, 1]R, C(u) = 0 if at least one coordinate of the
vector is 0 and C(u) = ur if all the coordinates of the vector are equal
to one except the r-th one.

3. For every a, b ∈ [0, 1]R with ∀r ∈ {1, 2, . . . , R}, ar ≤ br, given a hyper-
cube B = [a, b] = [a1, b1]× [a2, b2]× . . .× [aR, bR] whose vertices lie in
the domain of C, and with VC(B) ≥ 0. The volume VC(B) is defined
as:

VC(B) =
2∑

k1=1

2∑
k2=1

. . .
2∑

kR=1

(−1)k1+k2+...+kRC
(
d

(k1)
1 , d

(k2)
2 , . . . , d

(kR)
R

)
,

(7)
where d(1)

r = ar and d(2)
r = br (r = 1, . . . , R).

An important result from the theory of copulas is Sklar’s Theorem [41].
The theorem states that for any R-dimensional distribution function FX

with univariate margins FX1 , FX2 , . . . , FXR
there exists a copula function C

such that this multivariate distribution FX can be represented as a function
of its margins through this copula: FX = C (FX1 , FX2 , . . . , FXR

). While
the key idea behind Sklar’s theorem is that any existing multivariate distri-
bution can be reformulated according this copula presentation, we used in
this manuscript the fact that the opposite also holds. Starting from given
univariate distributions, we will construct a multivariate distribution us-
ing copulas. As a result the univariate marginals of this newly constructed
multivariate distribution are still the original univariate distributions we
started from. In this way the copula truly couples several univariate dis-
tributions. Thus, given the univariate margins FX1 , FX2 , . . . , FXR

and a
choice for the copula function C, we construct a multivariate distribution
FX = C (FX1 , FX2 , . . . , FXR

). Making use of the second property of the
copula definition, it can easily be deduced that the univariate marginal dis-
tribution for Xr equals C (1, . . . , 1, FXr , 1, . . . , 1) = FXr . Hence, in this way
an association between the R random variables is allowed while preserving
the univariate margins.

For each joint distribution with margins FX1 , FX2 , . . . , FXR
, and con-

structed by means of a copula the following applies:

W (FX1 , . . . , FXR
) ≤ C (FX1 , . . . , FXR

) ≤M (FX1 , . . . , FXR
) ,

where W (FX1 , . . . , FXR
) = max (FX1 + . . .+ FXR

−R+ 1, 0), and
M (FX1 , . . . , FXR

) = min (FX1 , . . . , FXR
). The functions W (FX1 , . . . , FXR

)
and M (FX1 , . . . , FXR

) correspond to the Fréchet-Hoeffding lower and upper
bound [42, 43] and define the maximum negative and positive dependency
of a joint distribution that can be obtained given fixed margins. These
bounds can be used to indicate the range of dependency a copula function
can capture.
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A variety of possible copula functions exist which allow for fitting a
wide range of dependency types (see e.g., [34, 27]). Our modeling approach
will focus mainly (but not exclusively) on the class of Archimedean copulas
[44, 34, 27]. Archimedean copulas have a simple structure and can be written
as:

C(u1, . . . , uR) = ψ−1

(
R∑

r=1

ψ(ur)

)
, (8)

where ψ : [0, 1] → [0,∞] is a continuous strictly decreasing function, called
the generator function, such that ψ(0) = ∞ and ψ(1) = 0, and ψ−1 is com-
pletely monotonic on [0,∞), such that (−1)k dk

dtk
ψ−1(t) ≥ 0 ∀t ∈ [0,∞) and

k ∈ N. Archimedean copulas have nice symmetry properties, as there are
permutation symmetry, C(u1, u2) = C(u2, u1), and associativity, C(u1, u2, u3) =
C(u1, C(u2, u3)) = C(C(u1, u2), u3); which makes them especially attrac-
tive for modeling symmetrically dependent data. Furthermore, notice that
the independence case can also be rewritten in a convenient way under an
Archimedean copula representation:

FX =
R∏

r=1

FXr = C(FX1 , . . . , FXR
) = exp

(
−

R∑
r=1

[− log(FXr)]

)
,

with ψ(u) = − log(u) and ψ−1(t) = exp(−t). This copula is also known as
the product copula, denoted by Π [45, 27]. Table 4 presents three important
instantiations of the class of Archimedean copulas: Frank copula [46], Cook-
Johnson copula [47, 48], and Gumbel-Hougaard copula [49, 50]. For each
of the presented copula functions in Table 4, the parameter δ captures the
degree of association between the random variables. For instance, when
the value of δ increases, the dependence captured by all copulas in Table 4
gets closer to the theoretical maximum positive dependence for FX (i.e.,
M , the Fréchet-Hoeffding upper-bound). The table also mentions possible
constraints on this dependency parameter δ, the range of the dependency
that can be captured by the copula, and their generator functions are given
as well.
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Tables

Table 1: Summary statistics for 10 anomalies from the BAT.

Anomaly Percentage (n = 687)
1 Hypoplastic toenails TNHYP 0.179
2 Hypoplastic fingernails FNHYP 0.108
3 Depressed nasal bridge DBN 0.138
4 Tapered fingernails TAPF 0.108
5 Anteverted nostrils NATV 0.102
6 Small head SMHEAD 0.112
7 Short birth length SHORT 0.058
8 Low birth weight LOWBT 0.131
9 Clinodactyly of the hand CLIN 0.128

10 Broad nasal bridge BRBRDG 0.133
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Table 2: Models for the BAT data.

base mixture covariate copula
β1 2.46 0.52 2.82 0.65 1.94 0.20 2.25 0.28
β2 2.43 0.40 2.67 0.54 1.97 0.16 2.10 0.19
β3 4.97 2.02 4.79 1.09 2.85 0.39 2.56 0.31
β4 2.54 0.42 3.07 0.64 2.40 0.23 2.47 0.25
β5 3.37 0.81 3.97 0.87 2.61 0.27 2.52 0.26
β6 1.32 0.08 1.02 0.11 3.44 0.65 8.40 3.97
β7 1.65 0.09 1.39 0.12 3.53 0.57 5.74 1.69
β8 1.30 0.09 0.97 0.12 3.06 0.51 4.82 1.22
β9 3.14 0.72 4.11 0.91 3.41 0.57 3.62 0.66
β10 18.25 18.71 6.51 1.46 4.77 1.26 4.26 0.95
α1 0.67 0.16 0.37 0.07 1.30 0.20 0.99 0.17
α2 1.02 0.21 0.63 0.13 2.72 0.58 2.22 0.45
α3 0.38 0.16 0.30 0.06 0.85 0.16 1.02 0.18
α4 0.96 0.20 0.55 0.11 1.43 0.22 1.39 0.23
α5 0.70 0.19 0.44 0.09 1.26 0.21 1.40 0.23
α6 3.95 0.93 3.06 0.70 0.75 0.19 0.26 0.13
α7 4.85 1.08 4.12 1.25 1.05 0.26 0.54 0.19
α8 3.01 0.56 2.35 0.48 0.79 0.18 0.44 0.13
α9 0.66 0.17 0.36 0.07 0.69 0.15 0.65 0.15
α10 0.10 0.11 0.23 0.05 0.44 0.13 0.51 0.14
μ2 . . -5.14 0.76 . . . .
π2 . . 0.39 0.03 . . . .

λanticonvulsants . . . . 1.19 0.14 1.30 0.15
λgender . . . . 0.00 0.11 -0.01 0.12

λseizurehistory . . . . 0.46 0.19 0.39 0.20
G-H: J1{1, 2}; δ1 . . . . . . 1.42 0.15
F: J2{6, 7, 8}; δ2 . . . . . . 13.51 1.99

-LogL 2317 2305 2286 2153
20 22 23 25

AIC 4674 4654 4618 4356
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Table 3: Characterization of the Mixture components.

percentage component1 (n1 = 355) component2 (n2 = 332)
1 TNHYP 0.35 0
2 FNHYP 0.21 0
3 DBN 0.27 0
4 TAPF 0.21 0
5 NATV 0.20 0
6 SMHEAD 0.22 0
7 SHORT 0.11 0
8 LOWBT 0.25 0
9 CLIN 0.25 0

10 BRBRDG 0.15 0.11
anticonvulsants exposed 0.34 0.14
male 0.51 0.47
seizure history mother 0.12 0.10
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Figures

Figure 1: Illustration of the model parameter interpretation.
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Figure 2: Mantel-Haenszel statistic gray map for the 10-by-10 matrix of
anomaly pairs.
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Figure 3: Bivariate logistic density contour plots for 3 Archimedean copulas.
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Figure 4: log odds ratio plots for 3 Archimedean copulas in the latent vari-
able model.
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Figure 5: Observed distribution of the severity of affect for infants in the
BAT study.
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Figure 6: Standard erros of θp in the presence of residual dependencies under
a conditional independence model and a copula model.
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