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Detection of hidden item properties 

The detection of hidden item properties and multidimensionality  

 

Abstract 

 

It is not uncommon in psychometric modeling to consider the effects of item properties on the 

item responses, for example to explain item difficulties. An important reason is that knowing 

these effects contributes to a better understanding of the responses, and hence of what is being 

measured. The effects of item properties may be different depending on the person, and 

therefore the item properties can be a source of multidimensionality. When the item properties 

are known preliminary to the analyses, methods such as the random-weights LLTM, and 

alternating logistic regression (ALR), a GEE based method, can be used in order to take the 

individual differences into account. Here, a method is investigated for the case when there is 

no advance knowledge on the item properties, and when the properties are to be detected from 

the data instead (latent item properties). The method is based on an (1) additive clustering 

algorithm (ADCLUS) to extract binary properties from the pairwise association values, and 

(2) alternating logistic regression (ALR) to model the effects of the extracted item properties. 

 

In a first simulation study, the combination of ADCLUS for property extraction and ALR for 

modeling the property effects was investigated. The results show that ADCLUS can reveal the 

latent item properties, but also that it is difficult to decide on the exact number of latent item 

properties. The statistical significance of the ALR modeled effects of the ADCLUS extracted 

properties did not turn out to be a good criterion, but with the ADCLUS explained variance or 

with the ALR weights as a criterion much better results were obtained.  
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In a second simulation study with three different data structures, the performance of 

ADCLUS is compared to the performance of DETECT, a procedure for binary data that is 

developed to detect multidimensionality and to reveal item partitions. A combination of the 

two procedures is also considered. When a selection needs to be made, the combined method 

seems the most appropriate choice. However, when the item clusters are clearly overlapping, 

ADCLUS seems a better choice. 
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Detection of hidden item properties 

Depending on the domain in the social sciences where questionnaires or tests are used, 

a different importance is given to item properties. Item properties may evoke abilities and 

attitudes and play an important role in the response process and individual differences therein. 

The consideration of these aspects can provide valuable information on the underlying 

structure of the data and can lead to a deeper understanding of a phenomenon under study.  

The item properties may be known a priori to the analyses, when the items have an 

apparent structure or when the items are designed to have certain properties. For example, 

when a set of item properties is systematically manipulated in a test, the test has an apparent 

design (Embretson, 1985). In cognitive psychology, for example, a carefully controlled test 

design is not uncommon for the study of intelligence (Sternberg, 1977a), deductive reasoning 

(Sternberg, 1977b, 1979; Rijmen & De Boeck, 2002), analogies (Whitely, 1978), and spatial 

representations (Egan, 1979; Embretson, 1985, chap. 3). The idea of item properties is the 

basis of the cognitive diagnostic approach (Tatsuoka & Tatsuoka, 1982), which represents the 

item properties in the so-called Q-matrix (Tatsuoka, 1990). The difference with the previous 

approaches is that the Q matrix does not necessarily stem from a test design, but often is the 

result of expert judgments. 

 MIRT models such as the Multicomponent Latent Trait Model and the General 

Component Latent Trait Model formulated by Embretson (1980, 1984), the fusion model 

(DiBello, Stout, & Roussos, 1995; Hartz, 2002), the conjunctive Rasch model (Maris, 1995), 

the DINA (Junker & Sijtsma, 2001) and NIDA models (Junker, 2001; Junker & Sijtsma, 

2001), the random weights LLTM (Rijmen & De Boeck, 2002), alternating logistic regression 

(Hardin & Hilbe, 2003) and regular confirmatory versions of the multidimensional 2PL model 

(McKinley, 1989), all are methods which can be applied to a binary data matrix starting from 

a given item property matrix or Q matrix. 
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Person based random effects of the item properties or mastery probabilities based on 

these properties (as in the cognitive diagnostic approach), do explain individual differences in 

performance on the item properties. For instance, some may have problems with reasoning 

tasks because their performance is affected more than the performance of others by negations 

in the premises. Similarly, some examinees are very sensitive to the evaluative connotation of 

items in an attitude questionare, while others are much less sensitive. Individual differences 

based on the effects of item properties would lead to associations between items sharing the 

same property. 

As it has been mentioned, the potential of person-based effects of item properties is 

not recognized equally well in all fields of assessment. Nevertheless, researchers in domains 

such as personality psychology and cognitive psychology are often interested precisely in 

such individual differences because they define dimensions of individual differences. 

 In personality psychology, the study of individual differences based on situational 

features is called interactionism (e.g., Blumer, 1969; Pervin, 1977). In the domain of 

intelligence and cognitive tasks in general called the cognitive components approach. 

Following this approach, it is investigated how much a certain process (induced by an item 

property) contributes to the probability of success or to the response time (Embretson, 1985; 

Sternberg , 1977a). In the latter case, the weights of the item properties in the probability 

function or the response time function are assumed to show individual differences, referring 

to differences in accuracy or speed, respectively, associated with the processes that 

correspond to the item properties. 

In the previous approaches, the item properties are given and are therefore available 

for analysis of the data. However, the item properties can as well be unknown, so that 

explorative techniques would be required to reveal the underlying properties. The present 

study is planned to address this issue for binary data and binary latent item properties. The 
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aim is to reveal item properties which evoke processes that differentiate between persons and 

therefore are at the basis of the dimensions in the data structure. Consequently, the 

investigated problem can be considered as a special type of dimensionality analysis where the 

dimensions are linked to binary item properties. An approach will be presented which is based 

on a combination of additive clustering with marginal modeling (with GEE). Additive 

clustering is used in the first step, to extract item properties, and marginal modeling is used in 

the second step, in order to test the effects of the extracted item properties on the associations 

(as in the alternating regression approach, ALR; Hardin & Hilbe, 2003).  

First, it will be explained how one can proceed when the item properties are given, and 

next, a method will be presented to extract the item properties from the data when they are not 

given, but hidden instead. 

  

Approach for known item properties: GEE with ALR 

 

 When binary responses are collected from a test with known (manifest) item 

covariates, the random weights linear logistic test model (RWLLTM; Rijmen & De Boeck, 

2002) is an evident way within item response theory to model the random effects of a given 

set of item covariates: 

( ) ∑+==
k

ikpkppppi XYP βθθ ),1(itlog β ,                       (1) 

where ),1( pppiYP βθ= is the success probability of person p for item i, modeled as a function 

of covariates. Xki is the value of the k-th covariate (k=1,…, K) for item i (i=1,..., I), and 

the pkβ is the associated random weight for person p. θ p is the random intercept that is the so-

called ability of the person in the context of achievement tests. When the latter is the only 

source of individual differences, the resulting model is the Linear Logistic Test Model 
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(LLTM; Fischer, 1973). When, additionally, K=I, and the K vectors form an identity matrix, 

the equation yields the Rasch model (1960). Individual differences in the effects of item 

covariates are indicated with the subscript p for β , as in pkβ , and a multivariate normal 

distribution is assumed for ( )pp β,θ .  

This approach is rather cumbersome when the number of  item covariates is high and 

many combinations need to be tested to find out whether individuals differ with respect to the 

covariate effects. The estimation of models with a large number of dimensions involves a high 

number of quadrature points when the multidimensional integral is approached with a method 

such as the Gaus–Hermite method. One may consider a Bayesian approach instead (e.g., 

Bèguin & Glas, 2001; Segall, 2001), but the many combinations of item covariates would 

require a large number of analyses nevertheless. 

An alternative way of tackling this problem is a marginal modeling approach for the 

means and associations based on all item properties. Because with ALR (Hardin & Hilbe, 

2003) models with high dimensionality can be tested very easily, high numbers of item 

properties are not a problem. Individual parameter estimates for the persons cannot be 

obtained, but once the properties are identified which show individual differences, in a final 

step a RWLLTM model can be fitted, so that individual estimates are obtained. Here, the 

focus is not on measuring abilities but on identifying properties with an effect that differs 

between individuals. 

Generalized estimating equations (GEE; Liang & Zeger, 1986) form a specific group 

of marginal models. GEE models were developed for extending the Generalized Linear 

Models to correlated data. The term itself indicates that these estimating equations are not 

based on the likelihood, but that they are generalizations of other estimating equations instead 

(Hardin & Hilbe, 2003). Therefore, GEE approaches are less computationally intensive than 

the full likelihood approach. The effects of the covariates and the association parameters are 
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much simpler to estimate computationally with the GEE approach than with the full 

information likelihood, because GEE uses only part of the information of the data, such as the 

means, marginal correlations, and constrained marginal association parameters for binary data 

(Liang, Zeger, & Qaqish, 1992; Ziegler, Kastner & Blettner, 1998), so that there is no need to 

specify the full likelihood of the data. 

On the other hand, GEE models have drawbacks, which actually follow from their 

advantages compared to likelihood based methods. GEE does not provide the traditional fit 

statistics, although fit statistics have been developed (e.g., Barnhart & Williamson, 1998; Pan, 

2000; Zheng, 2000) for GEE1, which focuses on the first moment.  

Several extensions of the original GEE were developed for modeling the associations. 

In GEE1, the variables are treated as if they were orthogonal by way of working assumption 

(Liang, Zeger & Qaqish, 1992). The quality of the working assumptions on the association 

parameters does not detract from the consistency of the estimates, but the working 

assumptions can reduce the preciseness of the parameter estimates (Prentice & Zhao, 1991). 

 In the GEE2 variant (Prentice & Zhao, 1991; Zhao & Prentice, 1990), the mean and 

the association structure are jointly estimated, but the correctness of the assumptions to be 

made in order to estimate the structure, does affect the estimates (Hardin & Hilbe, 2003). The 

estimated variance of the parameters may not always be consistent when the associations are 

misspecified. Furthermore, GEE2 cannot handle very many items.  

Thus far, for our purpose, Alternating Logistic Regression  (ALR; Carey, Zeger, & 

Diggle, 1993; Liang, Zeger, & Qaqish, 1992) seems the most appropriate GEE variant. 

Alternating logistic regression combines a marginal logistic regression for the mean structure 

with a logistic regression for the association structure. The name of the method stems from 

the fact that the estimation process alternates between these two logistic regression steps: (1) 

the parameters of the mean structure, the βs (see Equation 2), are estimated in a marginal 

 8



Detection of hidden item properties 

logistic regression using a first order GEE, and the current association parameter estimates 

and (2) the parameters of the association structure, the αs (see Equation 5), are estimated 

using a logistic regression of on each (i>i’), and the current estimates of the mean 

structure parameters. 

piy 'piy

In this way, unlike in a regular GEE1, the association structure (second moment) is 

estimated. ALR requires association covariates but these can be derived easily from the single 

item covariates. Each single item covariate defines also an association covariate by taking the 

product of the single item covariate values, as in Equation 4. This procedure can handle a 

rather large number of items and it is implemented in many software packages (Hardin & 

Hilbe, 2003).  

In the first component of the ALR approach, the marginal odds are modeled as in 

∑
=

+=
K

k
kikpi XYP

1
0))((logit ββ               (2) 

where 0β is the overall difficulty parameter, is the k-th item covariate changing its value 

over items (i), and 

kiX

kβ is the corresponding weight.  

Because the αs from Equation 5 are included in the GEE equations for β, the current estimates 

for the αs are used. 

In the second component of the ALR approach, marginal odds ratios are used as the 

measure of association: 

)1,0()0,1(
)0,0()1,1(

)(
''

''
' ====

====
=

pipipipi

pipipipi
pipi YYPYYP

YYPYYP
YYOR  ,            (3) 

 

where p refers to a person, i and i’ are items of the same item pair. 
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A logistic regression model is fitted to obtain an estimation of the covariate effects on the log-

odds ratios: 

 

,))((log
1

'0' ∑
=

+=
K

k
kikikpipi XXYYOR αα                                      (4) 

 

where Xki  and Xki’ are the values of items i and i’ on the k-th binary item covariates, and kα is 

the association parameter belonging to the k-th item covariate, in other words kα is a weight 

that indicates how much item covariate k contributes to the log-odds ratio, and 0α is an overall 

association parameter for all the item pairs. The pairwise products of the binary item 

covariates define the so-called association covariates. Using these association 

covariates, ' , yields Equation 4. ' kikikii XXZ =

 

∑
=

+=
K

k
kiikpipi ZYYOR

1
'0' ))(log( αα                           (5) 

 

Because the βs from Equation 2 are included in the GEE for the estimation of the αs, the 

current values of the βs are used. 

  The parameter 0α represents a common underlying source of individual differences. 

For the Rasch model and the LLTM, only 0α would be different from zero. The K association 

covariates explain the association beyond this common source, so that the association 

covariates define possibly overlapping item clusters with an additional association, and 

therefore also an additional dimension. Given the random effects model the weight parameter 
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kα expresses the weight of the random effects pkβ  (see Equation 1) in explaining the log-odds 

ratio. 

The ALR variant of marginal modeling has been shown effective in detecting sources 

of person based heterogeneity in data with a RWLLTM type of true structure (Balazs, 

Hidegkuti, & De Boeck, 2006). The ALR approach is an attractive one because it is not time 

consuming and still gives stable and straightforward parameter estimations. Furthermore, it 

can be used as a basis for a full likelihood based analysis, where a random effects model is 

built in line with the obtained ALR results. 

 

How to extract unknown item properties: ADCLUS 

 

Even when a test is not constructed based on item properties, there might still be 

hidden or latent item properties with random effects and thus item properties functioning as 

sources of individual differences, each defining a different dimension. The detection of latent 

item properties with random effects is equivalent to the detection of item clusters. Note that 

the item properties may overlap, so that also the item clusters would overlap. In Study one, a 

method for overlapping clusters is used, called ADCLUS. Also DETECT (Stout, Habing, 

Douglas, Kim, Roussos & Zhang, 1996) aims at detecting dimensionality and item clusters, 

but DETECT requires a simple structure. A simple structure corresponds to non-overlapping 

clusters. DETECT will be investigated in comparison with ADCLUS in Study two. 

In order to be consistent with the previously described ALR approach, the clustering 

method for overlapping clusters should (1) concentrate on the marginal log-odds ratios such 

as ALR does, and (2) be based on an additive model. An additive clustering method called 

ADCLUS (see e.g., Arabie & Carroll 1980; Carroll & Arabie, 1983; Lee, 1999, 2001; 
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Shepard & Arabie, 1979) fulfills these two criteria when applied to the log-odds ratios as 

similarities. In the ADCLUS model, the similarity of two objects is described in the following 

equation: 

,
1

'0' ∑
=

+=
K

k
kikikii wws ξξ

                                                               
(6)

                                              

where  is the similarity between items i and i’. 'ii
s kiξ , is an underlying binary item property, 

so that its value is one if item i has property k, and zero otherwise; , the weight of product kw

'kikiξξ , denotes the importance of property k in the similarity, and is an additive constant.  

In Lee’s algorithm, the ADCLUS algorithm which will be focused on, the weights have 

always nonnegative values. 

0w

It is assumed in the proposed approach that the shared properties (common properties) 

contribute in an additive way to the similarity, and that the shared absence of properties does 

not contribute. Note that, except for the latent nature of the ξ s, when log-odds ratios are used 

as similarities, Equation 6 is formally equivalent to Equations 4 and 5. The equivalence of 

Equations 4, 5 and 6 enables us to use the properties obtained by additive clustering in an 

ALR model. Accordingly, a first step with ADCLUS can provide the required covariates for 

ALR in a second step. Applying ALR on the ADCLUS extracted properties provides an 

interesting statistical tool to investigate the effects of latent binary item properties, or in other 

words, the effective part of a Q matrix that is extracted from the data. One should be aware, 

however, that this procedure is vulnerable to the capitalization on chance, because the 

properties are extracted from the data, and next, they are tested using the same data. 

Therefore, we will also use a cross-validation method, with half of the data being used for the 

property extraction and the other half for significance testing in ALR. Furthermore, in 

ADCLUS, the dependence of the association parameters on the parameters of the mean 

 12



Detection of hidden item properties 

structure is not taken into account, so that the ADCLUS analysis must be considered as an 

approximate method. 

 

The ADCLUS algorithm 

 

Shepard and Arabie (1979) have proposed the original additive clustering algorithm, 

called ADCLUS. Based on their approach, several alternative algorithms have been developed 

(e.g., Arabie & Carroll, 1980; Carroll & Arabie, 1983; Chaturvedi & Carroll, 1994; Hojo, 

1983). 

Mirkin (1987, 1989) suggested a general algorithm, in which the clusters are extracted 

sequentially, as follows. After each extraction step, the weights of the item properties are 

recalculated including the newly extracted cluster, and the residual similarity matrix is 

determined in preparation of the extraction of the next cluster. From various methods 

suggested by Mirkin for the derivation of the clusters, the ADDI-S algorithm is the most 

prominent one (Mirkin, 1987).  

In ADDI-S algorithm, the cluster extraction begins with the selection of the pair of 

items with the highest similarity. After selecting the first item pair, the algorithm selects from 

the remaining items the item with the largest average similarity to the selected items. The 

expansion of a cluster terminates based on a criterion using the internal and external similarity 

measures. The internal similarity is the average similarity within the cluster, the external 

similarity is the average similarity between elements not belonging to a cluster. When an item 

has an average similarity with the cluster items that is larger than halfway the difference 

between the external and internal similarity, than the item is included in the cluster. If none of 

the item fulfills this criterion, then the expansion of the cluster terminates. After the 
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extraction, the residual similarities are calculated, and the process of extracting a next cluster 

is started based on the same principles.  

As a new development, Lee (2001) proposed an algorithm where the BIC measure is 

used to define model complexity of additive clustering models. Lee’s approach offers an 

interesting kind of control over the trade-off between model preciseness and complexity. Lee 

(2001) uses a formulation of the maximum likelihood for additive clustering as provided by 

Tenenbaum (1996), that is, the probability of a similarity matrix given the derived cluster 

structure and the corresponding weights. The proposed BIC formula is presented in the 

following.  

∑
≤<≤

⎟
⎠
⎞

⎜
⎝
⎛ −

+−=
Iii

iiiiADCLUS
IIKss

pre
BIC

 '  1 

2
''2 2

)1(log)(1 ,          (7) 

where I is the number of items, K is the number of clusters and thus K+1 is the number of 

parameters in the model (counting also wo),  is the observed and 'iis 'iis  is the estimated 

similarity between items i and i’. The proposed BIC measure is basically the sum of squared 

errors (SSE), scaled by the precision (pre) (see e.g., Tenenbaum, 1996). The precision (pre) is 

defined as follows:  

( )
∑

∑
≤<≤

=

−

−

−
=

 '  1

1

2
''

12/)1(
1

Iii

P

p
ii

p
ii

P

ss

II
pre ,           (8) 

where  P is the number of persons,  and p
iis ' 'iis are the similarities of item i and item i’ for 

person p, and on average, respectively. Note that lower precision values mean smaller 

variance of  across similarity matrices and hence a higher precision, as can be seen in 

Equation 8. A condition for the precision number to be determined, is that similarity values 

for different entries (persons, groups) are available. In practice, the similarities often stem 

from direct ratings by individual persons. 
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Lee (2001) applied an additive clustering algorithm with the BIC measure as a 

criterion and consisting of five steps. Steps from Step 2 to 4 are repeated several times.  

Step 1: The BIC measure is calculated for a model with only a general cluster. By 

definition, the model in Step 1 always explains zero percentage of the variance of the 

similarities. 

 Step 2: A new cluster is generated based on Mirkin’s (1987) ADDI-S algorithm.  

Step 3: The aim of this step is to avoid local minima. It starts with a combinatory part 

based on stochastic hill-climbing. Starting from a random ordering of the elements of the 

cluster membership vector, the value of  each element in turn is changed from zero to one or 

from one to zero, depending on the original value. After each change, the property weights 

and the additive constant are derived by a non-negative least-square optimization (Lawson & 

Hanson, 1974), and the sum of squared error (SSE) is calculated. If the SSE decreases by 

changing the cluster membership, the new cluster structure is accepted, and a new random 

ordering of the cluster memberships is generated and the membership change starts following 

the new order. Otherwise, the original cluster membership is kept and the next membership 

value is changed. When all cluster memberships changes has been tried out, three cluster 

memberships are replaced randomly, and the hill-climbing restarts. The hill-climbing process 

restarts till this change of the randomly selected three items is carried out as many times as the 

predefined patience number is without any improvement during the process. In the studies 

described in the following, the patience number was set to 50. 

 Step 4: If the BIC of the new model is smaller than that of the previous model with at 

least the value of the evidence parameter, the program calculates the residual similarities and 

returns to Step 2, and an additional cluster is added, otherwise it continues with Step 5. Kass 

and Raftery (1995) proposed a scale for the BIC differences which is called the evidence 
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parameter. Lee’s algorithm uses an evidence parameter of 6 as a default stopping rule, but it 

can be changed by the user.  

Step 5: The algorithm terminates. The additive clustering model with the lowest BIC is 

selected, and the cluster memberships and the corresponding weights are shown. 

A similar ADCLUS algorithm is also available for a prespecified number of clusters. 

The algorithm with a prespecified number of clusters is much simpler. First,  a random cluster 

membership matrix is generated with as many clusters as the predefined number of clusters. 

Afterwards, the weights of the clusters are calculated, and different from the earlier described 

algorithm, before the hill-climbing, three randomly selected elements of the least weighted 

cluster are changed. Next, the hill-climbing starts as it has been described for the other 

algorithm in Step 3. In this algorithm, the overall process terminates when the procedure have 

changed three randomly selected elements of the least weighted cluster without an 

improvement as many times as the patience number is.  

Because it was observed that the ADCLUS algorithm with fixed cardinality sometimes 

terminates at a local minimum, a small change of the algorithm has been implemented. After 

trying out the change of each element of the cluster matrix, instead of changing three elements 

of the least weighted cluster, a new cluster membership matrix is generated. According to our 

observations, at a given patience number, the modified algorithm performs better. In the 

simulation studies described in the following, when a pre value is not calculated, the modified 

algorithm is used for item property extraction. 

An additional complication is that in our application there is not a set of similarities 

available for each person, because the log-odds ratios cannot be determined for each 

individual separately. Hence the precision number cannot be determined. In such cases, an 

approximation of the precision can be used based on former experience. Lee (2002, p. 43) 
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suggests to apply pre values of  0.05, 0.1, 0.15 with normalized similarity matrices, 

corresponding to ‘precise’, ‘average’ and ‘imprecise’ data sets, respectively.  

Two simulation studies are planned. In Study one, the performance of ADCLUS in 

combination with ALR is studied, as an approach to extract and test hidden item properties. In 

Study two, ADCLUS and DETECT (an algorithm for detecting partitions) are compared in 

revealing latent overlapping and non-overlapping structures, although DETECT is meant only 

for the latter. However in practice one does not have advanced knowledge of the underlying 

structure before the analysis, hence, it is interesting to see how the two methods perform for 

both structures. These two simulation studies are described in detail in the following sections. 

 

Study one 

 

 The performance of ADCLUS was studied for binary data with an underlying overall 

random effect and two additional random effects related to the item properties. The design 

was planned in agreement with common data set features in psychological applications: (1) 

Often the sample size is rather small, as small as 100 or several hundreds. (2) Often the 

number of items is rather small, as in single-trait or single-attitude scales. (3) Often there is a 

common dimension, and in addition a few, possibly less important dimensions. Besides, 

several challenging conditions were also looked at, such as highly correlated dimensions, 

dimensions based on a relatively small number of items, and dimensions which overlap (lack 

of simple structure). 

The data were generated based on the following RWLLTM structure: 
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( ) iipipppppi xxYP βββθθ +++== 2211),1(itlog β ,                 (9) 

The structure as defined in (9) is one with a general dimension and two, possibly overlapping, 

more specific dimensions, to be described further. In Study one, all data sets were generated 

with 24 items and with two possibly overlapping item properties. The sample size was 100, 

250, 500, 750 or 1000. iβ , the item difficulty parameter was generated with a normal 

distribution (over the items) with a mean of zero and a variance of one. The probability that a 

property is present (has a value of 1 instead of 0) in the item was .3, .5 or .7 for both 

properties, yielding smaller or larger item clusters. The properties were generated 

independently. The random weights of the properties (weights are random over persons) had a 

normal distribution with zero mean and a variance of either 1 or 2 for both properties. The 

correlation among the three random effects was either 0 or .5. Given that one of the three 

random effects (the random intercept) contributes to all items, there is always a general 

dimension present in the data. This issue will be investigated in a following section. The 

overall success probability was .5. The general ability of person p, pθ , had a normal 

distribution with zero mean and a variance of one. The three probability values of the 

properties, the two variance values for the random effects of the properties, the two 

correlation values among the random effects, and the five sample sizes were fully crossed in 

the design. Ten data sets were generated per design cell, so that 600 data sets in total were 

generated. 

 The two research issues are: (1) can the true properties be recovered from the data 

given that the true number of properties is known, and (2) can the true number of properties 

be determined from the data. For all data sets, two is the true number of item properties. 

 First, the performance of ADCLUS was studied, in order to find out whether it can 

reveal the true item properties given that the number of true properties is known. In addition 

to the additive constant, two properties were estimated for each data set. The adjusted Rand 
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index (Hubert & Arabie, 1985; see also, Fowlkes & Mallows, 1983; Rand, 1971; Yeung, & 

Ruzzo, 2006), a measure of agreement of two partitions, was calculated for comparison with 

the true structure. In our application, the two properties define a partition corresponding to 

four patterns: 11, 10, 01, 00. Steinley (2004) has shown in a simulation study that the correct 

classification rate is mostly higher than the adjusted Rand index value. He also provided a 

rough guide to assess the quality of partition agreement: an adjusted Rand index value greater 

than 0.9 is excellent, between 0.8 and 0.9 is good, between 0.65 and 0.8 is moderate, and 

smaller than 0.65 is poor.  

 Second, it was studied whether the correct number of item properties can be found 

from the ALR analyses when a larger number than the true number of properties is extracted 

through ADCLUS. The ALR method is considered to be the best candidate for modeling the 

effect of the extracted item properties, because the model formulation of ALR is equivalent to 

that of ADCLUS, and because ALR is a very convenient method for modeling associations. 

In addition, also ADCLUS itself was investigated on its potential to reveal the true number of 

clusters.  

 

Results  

Recovery of the true properties 

 

For all data sets, pairwise log-odds ratios were calculated. The log-odds ratios were 

used as input to ADCLUS with a prespecified number of two clusters.  

When the extracted item properties are compared to the true ones, it is not always 

evident which combination one should use. Therefore, the adjusted Rand index was calculated 

for both possible combinations and the higher value was chosen of the two. The overall mean 

of the adjusted Rand index values comparing the extracted properties to the true ones was 
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0.72, the variance was 0.08. The obtained adjusted Rand index values have a negatively 

skewed distribution. Considering all data sets, and following Steinley’ s (2004) 

categorization, the recovery was excellent for 41.5% of the data sets, good for 9.3%, moderate 

for 12.5% and poor for 36.7%. However, the performance is clearly a function of the design 

factors as it will be demonstrated in the following. 

Based on a linear regression analysis, the sample size has significant linear, quadratic 

and cubic effects on the adjusted Rand index values. Figure 1 shows the effect of the sample 

size. The average adjusted Rand index values for samples of 100, 250, 500, 750, 1000 are 

0.38, 0.66, 0.81, 0.88, and 0.89, respectively, meaning that from a sample size of 750 on, an 

almost excellent average recovery is obtained. Based on the results, a sample size of at least 

500 is to be recommended in order to obtain a good recovery. Hence, for further analyses in 

this section, only the data sets with a sample size of at least 500 are considered. For these 

data, the average adjusted Rand index value was 0.86, and the variance of the adjusted Rand 

index values was 0.05. Taking into account only the data sets with a sample size of 500 or 

higher, the recovery was excellent for 61.7%, good for 8.9%, moderate for 12.8%, and poor 

for 16.7% of the data. Given that the design contains some rather challenging cases (e.g., a 

correlation of 0.5 and a property probability of 0.3, implying correlated and small clusters), it 

can be considered a very good performance. Note that even when the correlation between the 

two random effects is zero, there is still a positive correlation between all items because of the 

random intercept or general dimension (see Equation 9). 

__________________________ 

Insert Figure 1 about here. 

__________________________ 
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From a multiple regression with all main effects, pairwise and triple interactions (for 

sample sizes from 500 on), it turns out that all main effects are significant with p<.05. The 

probability of the item property, the sample size and the variance of the random effects all 

have positive effects, while the correlation of the random effects has a negative effect on the 

adjusted Rand index. In addition, the following five interactions were also significant (p<.05): 

(1) the interaction of the sample size and the correlation of the random effects (p<.001), (2) 

the interaction of the dimensional variance and the sample size (p<.01), (3) the interaction of 

the dimensional variance and the probability of the item properties (p<.001), (4) the 

interaction of the dimensional variance and the correlation of the random effects (p<.05), (5) 

the interaction of the probability of the item properties, the correlation of the random effects 

and the sample size (p<.05). The results are described further in the following.  

From Figure 1 to 4, the results are presented in box plots. The dark boxes represent the 

middle half of the data, the white lines in the black boxes mark the median. The lines outside 

the boxes marking an interval, show the upper and lower quartiles excluding the outliers. The 

outliers are represented by separate lines outside the interval. It is clear from Figure 1 that 

after omitting the data sets with small sample sizes (100 and 250), the sample size still has an 

effect, but a less strong one than before. Note that in Figures 2 to 4, the results relate to 

sample sizes of at least 500.  

It is not surprising that the more items share an item property, the better the recovery 

is. Accordingly, it can be seen in Figure 2 that a higher probability of the item properties leads 

to higher adjusted Rand index values. A probability of .5 yields an equal probability 

distribution of item property patterns (.25 for each of the four patterns 11, 10, 01, 00). The 

probabilities of .3, .5, and .7 yield average adjusted Rand index values of 0.77, 0.87, and 0.95, 

respectively. 
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__________________________ 

Insert Figure 2 about here. 

__________________________ 

 

 The dimensional variance also has a positive effect on the Rand index values. As it is 

shown in Figure 3, the larger the variances of the random effects linked to the item properties 

are, the more effective ADCLUS is in revealing the true properties. The average recovery is 

good (0.81) for a variance of 1, and it is excellent (0.92) for a variance of 2.  

__________________________ 

Insert Figure 3 about here. 

__________________________ 

 

In general, the correlation of the random effects reduces the performance of ADCLUS, 

as it can be seen in Figure 4. The average adjusted Rand index is 0.94 for uncorrelated 

random effects and 0.78 for correlated random effects (with a correlation of 0.5). 

 __________________________ 

Insert Figure 4 about here. 

__________________________ 

  

In the following, the significant interactions are discussed. Also these Figures are 

based on a sample size of  at least 500. A larger sample size leads to a better recovery, but the 

effect is slightly different depending on the correlation, as it is shown in Figure 5. The 

average adjusted Rand index values for data with a sample size of 500, 750 and 1000 are 0.75, 

0.78 and 0.82 in case of correlated random effects and 0.88, 0.97, 0.97 in case of uncorrelated 
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random effects, respectively. When the correlation is zero, a ceiling value is reached from N= 

750 on. 

__________________________ 

Insert Figure 5 about here. 

__________________________ 

 

The interaction of the dimensional variance and the sample size is of a kind that the  

sample size has a stronger effect when the variance is small, as is shown in Figure 6, but the 

smaller variance is not fully compensated by the sample size up to a level that is reached for a 

large variance.   __________________________ 

Insert Figure 6 about here. 

__________________________ 

 

Furthermore, there is also an interaction of the probability of the item properties with 

the variance of the random effects (Figure 7). The smaller the variance is, the stronger the 

effect of the probability is. In this case, the probability does (almost) compensate for a small 

variance. The combination of .7 as a probability and two as a variance yields an average 

adjusted Rand index of 0.97, and when the variance is only one and the probability is still .7, 

an average adjusted Rand index of .94 can be reached.  

__________________________ 

Insert Figure 7 about here. 

__________________________ 
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Finally, also the correlation interacts with the variance, as shown in Figure 8. The 

correlation has a stronger effect for a smaller variance. For a correlation of zero and .5, when 

the dimensional variance is one, the average adjusted Rand index values are 0.90 and 0.71, 

respectively, while when the variance is two, the corresponding Rand index values are 0.98 

and 0.85, respectively. It is a general phenomenon for the pairwise interactions that the effect 

of a factor is larger for the level of the other factor with a lower performance. 

      __________________________ 

Insert Figure 8 about here. 

__________________________ 

 

Finally, also a triple interaction was found, which can be interpreted in a similar way. 

When the correlation is high and the sample size is small, the effect of the probability of the 

item properties is stronger. 

In sum, given that the true number of item properties is known, ADCLUS reveals the 

underlying item properties rather well if certain conditions are met. In general, a sample size 

of 500 seems to be sufficiently high to effectively reveal the unknown item properties, 

especially for a large variance (2) or a high probability of the item properties (from .5 on). 

The design factors interact in such way that the effect of a factor is larger for the level of the 

other factor with the poorest performance, but often a full compensation is not possible. 

 

Correlation between the item clusters 

The correlation of the two random effects that are linked to the item properties were 0 

or .5 in this simulation. However, the actual correlation between the item clusters was higher 

because all items share an overall random effect. Considering this common effect, the 
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correlations between the logits of the two clusters are .5 and .83 for a covariate weight 

correlation of 0 and .5, respectively. 

 In order to investigate the effect of the associations induced by the intercept, 

additional data sets were generated with a model as in Equation 9, but without a random 

intercept (without θp). This formulation of the model leads to a special case of the 

multidimensional  two-parameter logistic model (2PL), with the discrimination parameters  

being restricted to the values of 0 and 1 and without a general random effect. In the 

simulation, the same design factors were used as earlier.  

The distribution of the adjusted Rand index values for the original data (including all 

sample sizes) and for the data without a common ability is shown in Figure 9. As expected, 

ADCLUS is clearly more effective in revealing the latent structure when the correlation 

between the item groups is smaller.    

           

                                      __________________________ 

Insert Figure 9 about here. 

__________________________ 

 

The mean and the variance of the obtained adjusted Rand index value were 0.85 and 

0.05, respectively. The ADCLUS procedure led to excellent recovery in 59.2% of the data 

sets, good recovery in 12% of the data sets, moderate recovery in 9.5% of the data sets and 

poor recovery in 19.3% of the data sets. When only the data sets with sample sizes from 500 

on are considered, the mean of the adjusted Rand index values was 0.94 and the variance was 

0.01. ADCLUS yields excellent, good, moderate and poor recovery in 78.6%, 10.8%, 5.6% 

and 5% of the data sets, respectively. 
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In sum, the presence of an overall ability somewhat deteriorates the performance of 

ADCLUS. Furthermore, it can be expected that the smaller the variance of the common 

random effect, the better the performance of ADCLUS, but this issue was not investigated 

here. 

 

Determining the true number of hidden item properties 

 

In practice, the number of properties is often unknown, and a decision rule is needed 

for deciding upon the number of hidden item properties to work with. The present section is 

devoted to this issue. The data with sample size of 100, 500 and 1000 from the original study 

are used for this purpose.  

Given that ADCLUS can reveal the hidden item properties reasonably well, the 

proposed next step is to extract more item properties than the true number is, and to include 

all these item properties into the ALR model formulation in order to estimate the association 

weights. Two ALR-based methods are proposed. First, the significance of these estimates 

could be a basis for determining the number of hidden item properties. Second, an elbow 

criterion can also be used for the estimates of the property weights. 

However, ADCLUS itself may be an effective method to determine the true number of 

hidden item properties, without any further modeling through ALR. In principle, the BIC 

measure can be used for deciding upon the number of clusters in ADCLUS, but in our case, 

there is not a similarity matrix available per person. As it has been already mentioned, 

according to Lee (2002) one can rely on expert opinion about estimating the data precision of 

the standardized similarity matrix expressed on a scale: precise, average, imprecise. The 

corresponding suggested precision numbers are .05, .10, .15, respectively. However, using 

these values, the correct number of item properties is rarely found for the data generated for 
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Study one. When larger precision numbers are considered, corresponding to less precise data, 

a precision number of .4 leads to reasonable results: the correct number of item properties is 

found for 27.5%, 59.2 % and 66.7 % of the data sets, with a sample size of 100, 500, and 

1000, respectively. However, the appropriate prespecified precision number may vary in 

practice. Consequently, for the type of data under investigation, there is no obvious, 

straightforward method to define the pre value and to determine the number of properties.  

Therefore, alternative methods are studied for ADCLUS. Because the ADCLUS 

weights should be very similar to the ALR weights, except for a scaling factor, they would not 

be a basis for a separate method. Two other ADCLUS-based methods are presented here. First, 

although there is not a similarity matrix available per person, the precision number might be 

derived from a random split of the data, so that two matrices of log-odds ratios are obtained, 

and a pre value can be determined. Second, the explained variance of different ADCLUS 

models with an increasing number of properties can be compared using an elbow criterion. A 

scree test is applied on the explained variance as the function of the number of item 

properties. 

All in all, four methods were studied for revealing the true number of clusters: (1) the 

significance of the association estimates in ALR, (2) the elbow criterion for the ALR weights, 

(3) ADCLUS with a precision number derived from a random split, (4) the elbow criterion for 

the ADCLUS explained variance. Methods 1 and 2 are applied with and without cross-

validation. The four proposed methods (not counting the methods with cross-validation as 

separate ones) are described in detail in the following. 

Method 1 (ALR significance). Four item properties were extracted from ADCLUS for 

each data set. Using ALR with the four ADCLUS clusters, the significance values of the 

associations were used to decide which item properties do have an effect (α=.01). In each 

model, five association parameters were estimated, one for the intercept and one for each of 
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the four extracted item properties. Three of the association estimates are expected to be 

significant (two related to item covariates and one to the intercept). Overall, the procedure 

resulted in 78.6% hits and 21.4% missers. Unfortunately, this approach also yields 71% false 

alarms and only 29% correct rejections. The success rates for identifying the correct number 

of item properties are summarized in the first column of Table 1 (ALR significance). The 

number of item properties is mostly overestimated (for 66.9% of the data sets), and rarely 

underestimated (for 6.7% of the data sets), hence with a significance level of .05, the success 

rate is worse. In sum, the significance test largely overestimates the number of hidden item 

properties. Possible reasons for the overestimation are discussed later. 

__________________________ 

Insert Table 1 about here. 

__________________________ 

 

Method 2 (ALR weights). Based on the ordered association estimates from ALR, an 

elbow criterion was used to decide upon the number of latent item properties. For these 

analyses, six item properties were needed from ADCLUS to be comparable to the previous 

method, as will be explained. Following a principle explained by Ceulemans and Van 

Mechelen (2005), a discrepancy difference measure is calculated per weight; the discrepancy 

with the following weight is subtracted from the discrepancy with the previous weight. The 

first measure is therefore determined for the second weight and the last one is determined for 

the fifth weight. The maximal discrepancy difference is selected, as the elbow, and the 

number of properties is the order position of the selected weight minus one. As a result, the 

possible outcomes for six properties are one to four item properties, just as for the previous 

method. 
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 The results are summarized in the column “ALR weights” in Table 1. As it can be 

concluded from the table, it is a more successful method than the previous one. However, 

even for the larger sample sizes (at least 500), the procedure gives correct decisions for only a 

bit more than half of the data sets. When all data sets are taken into account and the method 

led to incorrect decisions, the number of item properties was rather underestimated (30.3% of 

all data sets) than overestimated (22.2% of all data sets).  

It is important to note that when the item properties are ordered based on their ALR 

weights, and when the sample size is sufficiently large (from 500 examinees on), the first two 

estimated item properties are mostly the ones most similar to the true item properties 

(measured by the adjusted Rand index). In case of a sample size of 500, and 1000, the 

estimated item properties which were the most similar to the true item properties come first in 

75.8% and 84.2% of the data sets, respectively. The average adjusted Rand index values were 

0.79 and 0.89 for these item properties compared to the true ones, respectively. This means 

that the ordering is mostly correct, but that the gap with the following weights is not 

sufficiently large to create an elbow effect. 

Because the same data sets are used to extract the item properties by ADCLUS which 

are used to test these item properties with ALR, the Methods 1 and 2 capitalize upon chance. 

Therefore, a cross-validation was implemented. The data sets are randomly splitted and half 

of the data was used for cluster extraction with ADCLUS, and the other half for testing the 

weights of the extracted clusters with ALR. The results are shown in columns “Method 1 

cross-validation”, and  in “Method 2 cross-validation”.  

Method 1 with cross-validation resulted in correct decisions about the number of the 

item properties for 10%, 46.7% and 45.8% of the data sets with a sample size of 100, 500, and 

1000, respectively, when a significance level of .01 is used. The overall performance is better 

than it was without cross-validation, but not for data with a sample size of 100. Consequently, 
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although cross-validation may improve the performance in general, when the sample size is 

small, half of the data may not be enough for obtaining reasonable parameter estimates, and 

hence may weaken the results.  

 The performance of Method 2 is not improved by a cross-validation for these data. 

Actually, the percentage of correct decisions decreased for smaller sample sizes such as 100 

and 500, when cross-validation was applied (see Table 1). However, for a sample size of 

1000, the performance is slightly improved by cross-validation. 

Method 3 (ADCLUS estimated pre). The precision value was also calculated from the 

data. All data sets were divided into two subsets and the log-odds ratio was calculated for 

each subset separately. From the obtained two similarity matrices the pre value could be 

calculated. However, based on the obtained pre values, the correct number of clusters could 

not be found for any of the data sets, as it is indicated in column “Estimated pre” in Table 1. 

The number of item properties was overestimated for all data sets. 

Method 4 (ADCLUS variance accounted for). Following a principle explained by 

Ceulemans and Van Mechelen (2005) for fit statistics, a discrepancy ratio is determined for 

each property, as the ratio of the discrepancy with the previous versus the discrepancy with 

the following. The first ratio is the ratio of the discrepancy of the explained variance of one 

property with the explained variance of just an intercept (zero explained variance) versus the 

discrepancy of the explained variance of two properties with the explained variance of one 

property. The last ratio is the one with 4 minus 3 versus 5 minus 4. The elbow is identified by 

the maximum ratio, and so is the number of item properties. Because the ratio can be 

determined for the properties one to four, four outcomes are possible: one to four properties, 

as for the previous methods. In order to have four possible outcomes, five properties were 

needed.    
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The results can be seen in column ‘VAF’ in Table 1. The method performed well for 

large sample sizes, and it seems slightly better than the Method 2. The overall percentage 

correct is still not very high. Considering all sample sizes, when not the right number of item 

properties is chosen, the number is mostly underestimated (for 43.1% of the data), not 

overestimated (for 11.1% of the data). 

As a basis for the evaluation of the results, the method of principal component analysis 

(PCA) was applied on the raw data, as an alternative for revealing the number of underlying 

dimensions. Although it is not an orthodox method for binary data, it has been successfully 

applied on similar data in a comparative simulation study (Balazs, Hidegkuti & De Boeck, 

2006). For this simulation study, the eigenvalues were calculated up to six item properties 

and, in order to be consistent, the earlier described scree test, based on the discrepancy 

difference measure was applied to the eigenvalues. The PCA leads to a correct decision only 

in 26.7%, 27.5% and 33.3% of the data sets for a sample size of 100, 500 and 1000, 

respectively. Consequently, the ALR weights method (Method 2) and the ADCLUS explained 

variance (Method 4) are much better criteria for revealing the number of item properties than 

the PCA is.  

The overall percentage of correct decisions (45.8%) is only moderate for the best 

methods (ADCLUS variance accounted for and ALR weights), but it varies a lot depending 

on the design factors. For example, considering Method 4, correct decisions were obtained for 

24.2%, 48.3% and 65% of the data when the probability of the item property was .3, .5 and .7, 

respectively. The effect of the variance and the correlation was smaller. The recovery rate was 

45% for a variance of 1 and 46.7% for a variance of 2 and it was 58.3% for uncorrelated 

random effects and 33.3% for correlated random effects. Considering data with a sample size 

of at least 500, the recovery rate is 73.3% for uncorrelated random effects and 39.2% for 

correlated random effects of the two properties. When the sample size is at least 500 and the 
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probability of the item properties is .7, the recovery rate is 82.5%. When data sets with a 

sample of at least 500 are considered, the effect of the variance is not prominent. However, 

when the sample size is 1000, the effect of the variance becomes remarkably large. The 

recovery rate is 30% for a variance of one, and 63.3% for a variance of two. 

In sum, the results largely depend on the specific features of the data set. Besides, 

given the fact that many challenging data structures are included, the recovery rates are rather 

good, and certainly they are in comparison with PCA.  

 

Note on the significance of the extracted property effects 

Because the number of false alarms with the ALR significance method generated was 

remarkable, some additional analyses were carried out in order to understand this result. Apart 

from the approximate nature of ADCLUS to decompose log-odds ratios into additive sources 

of random effects, there are two possible reasons for this phenomenon (1) capitalization on 

chance, and (2) extraction of disjunctive clusters. 

In order to test for the first possibility, a cross-validation was performed, as it has been 

reported earlier. Accordingly, although for Method 1 the cross-validation was useful from 

already a sample size of  500 on, for Method 2 it seems to be beneficial only from a sample of 

1000 on. Implementing cross-validation improved the results for larger sample sizes, but 

Method 2 without cross-validation, and Method 4, still do perform better. In sum, 

capitalization upon chance can be a reason for the overestimation of the number of significant 

item properties when ALR is used after ADCLUS and the sample size is small. 

The second possibility is that more than one item property is extracted related to the 

same true property, for example if the extracted properties are disjoint fragments of the same 

true property. If the algorithm produces disjoint clusters, it may be expected that a too high 

number of clusters is found. In order to test for the second possibility, stepwise generalized 
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Boolean regression analyses were used, as implemented in the Combination Rule Analysis 

program (CRA; Van Mechelen, 1990). The CRA program constructs logical combinations of 

binary variables to predict a binary criterion. The conjunctive and the disjunctive 

combinations were considered in the analyses. In 28.9% of the data sets, the prediction of a 

true property was more successful with a conjunctive combination of extracted properties than 

with any of the extracted item properties separately. In 17.1% of the data sets, the disjunctive 

combination of the extracted item properties was a more successful predictor of the true item 

properties than any of the extracted item properties separately. Because less disjunctive 

combinations were found, the second possibility (tendency to favor property fragments), must 

be rejected. However, because in 46% (28.9% +17.1%) a better prediction of the true 

properties was obtained, it seems that the additional extracted properties are related to the true 

ones nevertheless. This may be the consequence of the approximate nature of ADCLUS for 

log-odds as a way to detect sources of random effects, just as a PCA for binary data is an 

approximate method and yields a too high number. 

 

Conclusions 

 

Based on the analysis with two extracted properties for each data set, ADCLUS seems 

to work well for the recovery of the true properties, but a sample of 500 or higher is desirable 

for good results. The  effectiveness of the method clearly depends on some important data 

features. The most challenging data sets are those with a few items per property, with a small 

variance of the random effects combined with a high correlation between the random effects. 

When the sample size is 1000, when the probability of the item properties is 0.7, when the 

variance is 2, and when the correlation is zero, the mean adjusted Rand index is 0.97. 
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In order to investigate the possibility discussed by Bechger, Verstralen, and Verhelst 

(2002) for the LLTM, that different solutions may exist, in this case for ADCLUS, both the 

set of two true properties, and the first two extracted properties are regressed on the log-odds 

ratios. When the item clusters were not revealed perfectly, that is, when the Rand index was 

smaller than one, the two multiple correlations were never nearly identical, hence the 

possibility of equivalent solutions must be rejected. 

Determining the correct number of properties seems a difficult challenge. The 

proposed method of testing the significance of the property weights using ALR generated a 

large number of false alarms. The reason is partly capitalizing on chance. The extracted item 

properties result in an overestimation of the number of properties with a significant weight, so 

that the number of properties is overestimated in comparison with the true number. When the 

sample size is large (from 500 on), cross-validation can improve the recovery. Partly, the 

reason of the overestimation of the number of the item properties when using ADCLUS is that 

the dependency of the association structure on the structure of the means is not taken into 

account, as explained earlier. 

 However, the best investigated methods seem to be the discrepancy difference method 

applied on the ALR weights and the discrepancy ratio method applied on the variance 

accounted for using ADCLUS. The performance of the ALR weights may be further 

improved by implementing cross-validation when the sample size is large (at least 1000). The 

results vary largely as a function of the data features (design factors). They are clearly better 

for a combination of a large sample size and uncorrelated random effects of the properties.  

Finally, using a derived precision value for ADCLUS does not seem to work at all, 

whereas it is the recommended method from the point of view of the algorithm. 

 

Study two 
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In a second simulation study, the performance of ADCLUS was compared to 

DETECT for revealing the underlying data structures with non-overlapping and overlapping 

item properties, and also a combination of the two methods was studied.  

DETECT (Dimensionality evaluation to enumerate contributing traits; Kim, 1994; 

Stout, Habing, Douglas, Kim, Roussos & Zhang, 1996) is a method for revealing data 

structures with hidden non-overlapping dimensions. It is a nonparametric method, which is 

based on the conditional covariance of the item pairs (conditional on the general dimension).  

In the case of a simple structure, DETECT is expected to provide the correct 

partitioning of the items. A simple structure is realized when non-overlapping item subgroups 

can be identified and the items within subgroups measure the same ability (Tate, 2003; Zhang 

& Stout, 1999). For an approximate simple structure with clearly separable item subgroups, 

the method is expected to give a good estimation of the partitioning. The DETECT procedure 

provides the R index for identifying  simple structure, a value greater than .8 indicating 

approximate simple structure, a value of one simple structure. An important condition for the 

validity of the DETECT index is that the structure is at least an approximate simple structure; 

therefore when the R value is smaller or equal to .8, the DETECT results should not be taken 

into account. 

Using DETECT, a structure is considered unidimensional if the DETECT value is 

smaller than 0.1 according to the manual (The William Stout Institute for Measurement, 

2003), or smaller than 0.2 according to some other authors (van Abswoude, van der Ark, & 

Sijtsma, 2004; Uribe-Zarain, Nandakumar, & Yu, 2005). However, for the data sets of Study 

two, the conclusions were not different for the two cut-off values. If the conclusion from 

DETECT is unidimensionality, then, in fact, the true number of properties is zero, because the 

one dimension is a general one and refers to the random intercept. If the conclusion from 

 35



Detection of hidden item properties 

DETECT is multidimensionality, DETECT results in a partition with at least two clusters, and 

hence, the corresponding number of properties must be at least two. Consequently, there is no 

room for one property in addition to a general dimension, since this kind of structure would 

certainly not be a simple structure. From two on, the number of clusters should directly reflect 

the number of properties. Only the maximal number of clusters can be specified by the user, 

and the algorithm determines the optimal number within the range between two and the 

specified maximum. 

Of course, it can also be expected that DETECT does not perform so well for 

overlapping cluster structures as for a partition, because overlapping clusters contradict 

simple structure. Nevertheless, it is interesting to compare the performance of the two 

methods for both kinds of structures, since in practice it is not known in advance whether the 

true clusters overlap. In theory, when the item clusters do not overlap, both methods may be 

suitable; but when the item clusters do overlap, ADCLUS should be more appropriate, 

although DETECT can still be considered as an approximate method. Additionally, the 

performance of a combined method is investigated. In the combined method, the R value from 

DETECT is used to indicate the presence of absence of simple structure. When simple 

structure is indicated, the DETECT results are accepted, otherwise ADCLUS is applied on the 

data, and the ADCLUS results are considered. 

The model with two covariates in Equation 9 was used for data generation, but this 

time the covariates were either overlapping or non-overlapping, and their value was not 

determined in a stochastic way. When the structure was non-overlapping, the first half of the 

24 items had item property one and the second half had item property two; or the first 8 items 

had item property one and the remaining 16 items had item property two. When the covariates 

had an overlapping structure, the first eight items had item property one, the next eight items 
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had both item properties, and the last set of eight items had item property two. Hence, three 

structures were used, two non-overlapping ones and an overlapping one.  

The effects of both covariates had a random distribution. The intercept and both 

random weights were normally distributed with a zero mean. The variance of the intercept 

was one. The variance of the covariate weights was either 1 or 2. The correlation of the three 

random effects was either zero or .5. The overall mean success probability was .5. The sample 

size was 100, 500 or 1000. The three basic structures, the two variance values for the random 

weights of the covariates, the two correlation values among the random effects, and the three 

sample sizes were the factors of a fully crossed design. Again, ten data sets were generated 

per design cell, so that in total 360 data sets were generated.  

Both, ADCLUS and DETECT were applied to these data. Another possible approach 

is using ADCLUS in combination with DETECT which was also studied. If the R index is not 

higher than .8, the ADCLUS results should be chosen. If the R value is higher than .8, the 

DETECT result should be chosen. For all three procedures (ADCLUS, DETECT and the 

combined method) the extracted clusters (given the true number of clusters) were compared to 

the true ones by calculating the adjusted Rand index and it was also investigated whether the 

correct number of item properties is found. 

 

Results  

  

  Also for Study two it is investigated to what extent the true item properties can be 

recovered when the true number of item properties are extracted. Please note that DETECT 

may not provide results for all data sets, since the lack of simple structure implies that the 

results should not be considered. 
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 First, the results are discussed for non-overlapping properties with an equal number of 

items per property. For data sets with equally distributed items (12/12), DETECT indicated at 

least an approximate simple structure for 30%, 87.5% and 100% of the data sets for a sample 

size of 100, 500, and 1000, respectively.  

In case of non-overlapping properties, two item clusters correspond to the item 

property patterns (01, 10). Therefore, DETECT was used to obtain two item clusters, and  the 

adjusted Rand index was derived from a two-by-two contingency table. But, because 

ADCLUS permits the clusters to overlap, two clusters can yield four property patterns (11, 10, 

01, 00), and hence, a four-by-two contingency table is used for the recovery evaluation of 

ADCLUS.  

The extracted item properties had to be linked to the true item properties. For that 

reason, the similarity of each extracted item property to each true item property was expressed 

by the adjusted Rand index. The sum of the adjusted Rand index values corresponding to all 

possible combinations of the extracted and true item cluster pairs were calculated. The 

combination with the highest sum of adjusted Rand indices was selected. 

The mean of the adjusted Rand index values for the three methods (DETECT, 

ADCLUS and combination of the two) are shown in Table 2 for each sample size. For 

DETECT, the mean Rand index value is only calculated for those data sets where 

approximate simple structure was indicated. Based on these results, DETECT was more 

successful in revealing the true structure than ADCLUS, however the difference is not large 

when the sample size is 500, and not remarkable when the sample size is 1000. Furthermore, 

one should note, that for 41.3% of the data with a sample size smaller than 1000, the 

DETECT procedure indicated lack of simple structure, while it did not occur for a sample size 

of 1000. The combined method resulted in an improved performance in comparison with 
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ADCLUS. Considering that the combined method provides results for all data sets, this seems 

the best performing method. 

__________________________ 

Insert Table 2 about here. 

__________________________ 

 

The second issue is whether the procedures find the true the number of latent 

properties. For deciding on the number of item properties, DETECT was implemented with a 

maximal number of 12 clusters. Therefore the possible conclusions are zero and from two to 

twelve clusters. The solution zero is equivalent with a one-dimensional structure. The 

procedure never resulted in a number of clusters larger than three. Using ADCLUS with a 

maximum number of five clusters, the number of properties was determined based on the 

discrepancy ratio method applied to the variance accounted for (as for Method 4 in Study 

one). The possible conclusions from ADCLUS are from one to four item clusters. 

As it can be seen in Table 3, the combined method was the most effective for revealing 

the true number of latent item properties. The performance of ADCLUS seems to be the 

second best. However, one should note that, when DETECT did not find the correct number 

of item properties, it either gave the wrong conclusion or no conclusion could not be drawn 

based on DETECT because the R value was not sufficiently large. 

__________________________ 

Insert Table 3 about here. 

__________________________ 

 

 It was also investigated whether the inequality of the dimensions plays a role. 

Therefore, the three methods were also compared for non-overlapping data structures with 
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unequally distributed items (16/8). Again, the item properties define either a 01 or 10 pattern, 

hence the adjusted Rand index values and the estimations of the number of item properties are 

obtained in the same way as before for the determination of the similarity of the extracted 

properties to the true ones.  

DETECT indicated at least approximate simple structure for 22.5%, 77.5% and 92.5% 

of the data sets for a sample size of 100, 500, and 1000, respectively.  

Again, DETECT extracted clusters most similar to the true ones (see Table 2), but still 

for many data sets DETECT did not provide estimates. From the other two methods, the 

combined method performed slightly better than ADCLUS. 

Both DETECT and ADCLUS were applied in the same way for determining the true 

number of item clusters, as for equally distributed items. As can be seen in Table 3, the 

combined method performed as the best. From the other two methods, DETECT performed 

somewhat better than ADCLUS in terms of percentage of correct decision on the number of 

item clusters. Again, it should be noted that if DETECT does not find the number of 

properties, it is either because the conclusion on the number of properties is wrong or because 

no conclusion could be drawn because of lack of simple structure. 

The performance of all methods was worse for unequally distributed item than for 

equally distributed items. From a closer inspection of the data, it can be stated, that the 

performance of ADCLUS became worse especially for correlated data.  

It has been also considered that the comparison between ADCLUS and DETECT, as 

far as based on the Rand index, may not be fair in the way as it was made, because the 

contingency tables differ in their size: four-by-two for ADCLUS, and two-by-two for 

DETECT. In order to make a fair comparison, the adjusted Rand index values were 

recalculated for the first and for the second covariate separately. In this way, two two-by-two 
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contingency tables were available both for DETECT and ADCLUS. The results were slightly 

better for ADCLUS than before, but the basic conclusions remain the same.  

Finally, the performance of the three methods for overlapping clusters were also 

investigated. DETECT correctly indicated lack of simple structure for 70% of the data with 

overlapping structure.  

The true structure is one with  three item subgroups, corresponding to the patterns 11, 

10 and 01. Therefore, when the agreement of the extracted and true item clusters was 

investigated, DETECT was used with a prespecified number of three clusters, so that 

DETECT would not be handicapped for the recovery of the true structure with three patterns. 

This results in a three-by-three contingency table to determine the adjusted Rand index. On 

the other hand, because two overlapping clusters estimated with ADCLUS can yield four 

patterns (11, 10, 01, 00), corresponding to the true properties, a four-by-three contingency 

table was used to determine the adjusted Rand index for ADCLUS. 

The adjusted Rand index values are the highest for ADCLUS (see Table 2), but the 

combined method performed similarly well. Even in those cases when DETECT indicated 

simple structure, the adjusted Rand index values are much worse for DETECT than for the 

other two methods. It is not surprising, given the fact that DETECT is not a valid method, 

since its aim is to detect non-overlapping clusters. In general, in each design cell for 

DETECT, the means of the adjusted Rand index values are mostly about half of the values for 

non-overlapping covariates.  

In order to obtain results from contingency tables with an equal size for both methods, 

the adjusted Rand index values were recalculated, separately for the two covariates, and 

hence, with two-by-two contingency tables. Again, the obtained results were not remarkably 

different from the original results. 
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For the determination of the true number of properties, the methods were used in the 

same way as before: DETECT was allowed to extract maximum 12 clusters, but it never 

extracted more item clusters than three; and ADCLUS was allowed to chose for maximum 

four item clusters (five item properties were extracted and the discrepancy ratio method was 

used). Based on the idea behind DETECT, the items with the 00 and 11 patterns may appear 

randomly in clusters based on the 01 and 10 patterns, or the 11 pattern may appear in a 

separate cluster.  

ADCLUS performed better than DETECT and the combined method in terms of 

determining the correct number of item properties for data with overlapping properties, as it 

can be seen in Table 3. The combined method performed worse for sample sizes of 500 and 

1000. The performance of DETECT was even worse. Although DETECT is not developed for 

this kind of structure, when DETECT is used in practice, the user would not know whether 

the properties overlap. Therefore, it is still meaningful to investigate how many clusters 

DETECT derives when the adjusted Rand index value indicates approximate simple structure.  

 

Conclusions 

  

In general, for the investigated three data structures the combined method seems to 

perform the best. The performance of ADCLUS is somewhat worse for data with non-

overlapping item clusters, but it is somewhat better for data with overlapping clusters.  

When the item properties are non-overlapping, DETECT performs well, but it often 

does not provide conclusions about the data structure, when the sample size is small and its 

performance is poor for data with overlapping item clusters. In practice, item properties can 

be overlapping, and in such cases ADCLUS and the combined method perform better. When 

the item covariates are non-overlapping, it is usually the result of a carefully and successfully 
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controlled item structure with item properties which are known in advance to the analyses, 

and with a categorical design. Note that an orthogonal design does yield overlapping 

properties.  

Therefore, it may be recommended to use the combination of DETECT and ADCLUS 

whenever it seems reasonable that the underlying item properties may be non-overlapping, 

whereas ADCLUS is to be recommended when one knows that the properties overlap. 

 

General conclusions  

 

Based on the results, ADCLUS can be effectively used for the detection of unknown 

underlying binary item properties which are sources of individual differences in binary, 

person by item data. It was demonstrated in Study one, that given the true number of 

properties, ADCLUS may find the correct underlying structure, but for a good performance, a 

sample size of at least 500 is needed. For deciding upon the number of item clusters, the 

discrepancy ratio method applied on the variance accounted for using ADCLUS and the 

discrepancy difference method applied on the ALR weights performed the best. The 

performance may be further improved by implementing cross-validation when the sample size 

is large, but for small sample sizes half of the data is not enough for a good performance of 

the method, hence cross-validation actually deteriorates the performance. The effectiveness of 

the methods varies depending on the design factors. However, the ADCLUS based method 

must at best be considered an approximate method. 

In Study two, the performance of three methods: ADCLUS, DETECT and a 

combination of the two was compared for three kinds of data structure. Based on Study two, 

and considering data with non-overlapping item clusters, a combination of ADCLUS with 

DETECT seems to perform better than ADCLUS or DETECT separately. However, when 
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overlapping item-clusters are expected ADCLUS performs better. When the kind of structure, 

overlapping or not, is not known, the combined method is a good choice. 
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Table 1 

Percentage of correct decisions on the number of latent properties 

Sample 

size 

Method 1 

ALR 

Significance 

α<0.01  

Method 2 

ALR 

Weights 

 

Method 1 

Cross-

validation 

Method 2 

Cross-

validation 

Method 3 

ADCLUS 

Estimated 

pre 

Method 4 

 ADCLUS 

VAF 

 

100 28.3 33.3 10.0 29.2 0 25.0 

500 25 50.8 46.7 36.7 0 50.8 

1000 25.8 58.3 45.8 60.0 0 61.7 
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Table 2 

Average adjusted Rand index values 

Structure Non-overlapping,  

equal (12/12) 

Non-overlapping, 

unequal (16/8) 

Overlapping 

(8/8/8) 

Sample size 100 500 1000 100 500 1000 100 500 1000 

DETECT 0.99 1 1 0.96 0.99 1 - 0.48 0.56 

ADCLUS 0.57 0.89 0.96 0.50 0.84 0.95 0.44 0.88 0.96 

Combined 0.60 0.93 1 0.50 0.89 1 0.44 0.73 0.71 
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Table 3 

Percentage of correct decisions on the number of properties 

Structure Non-overlapping,  

equal (12/12) 

Non-overlapping, 

unequal (16/8) 

Overlapping 

(8/8/8) 

Sample size 100 500 1000 100 500 1000 100 500 1000 

DETECT  27.5 87.5 100 20.0 77.5 92.5   0.0 10.0 25.0 

ADCLUS 60.0 85.0 100 22.5 65.0 82.5 45.0 82.5 90.0 

Combined 67.5 92.5 100 32.5 82.5 92.5 45.0 65.0 55.0 
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Figure captions 

Figure 1 

The adjusted Rand index values as a function of the sample size 

Figure 2 

The adjusted Rand index values as a function of the probability of the covariates 

Figure 3 

The adjusted Rand index values as a function of the variance of the random effects 

Figure 4 

The adjusted Rand index values as a function of the correlation of the random effects 

Figure 5 

The adjusted Rand index values as a function of the correlation of the random effects and the 

sample size 

Figure 6 

The adjusted Rand index values as a function of the variance of the random effects and the 

sample size 

Figure 7 

The adjusted Rand index values as a function of the probability of the item properties and the 

variance of the random effects  

Figure 8 

The adjusted Rand index values as a function of the correlation of the random effects and the 

variance of the random effects  

Figure 9 

The distribution of the adjusted Rand index values for data sets with a general random effect 

(left panel) compared to data sets without a general random effect (right panel) 

 54



Detection of hidden item properties 

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

100 250 500 750 1000

Sample size  

Figure 1 

The adjusted Rand index values as a function of the sample size 
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Figure 2 

The adjusted Rand index values as a function of the probability of the covariates 
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Figure 3 

The adjusted Rand index values as a function of the variance of the random effects 
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Figure 4 

The adjusted Rand index values as a function of the correlation of the random effects 
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Figure 5 

The adjusted Rand index values as a function of the correlation of the random effects and the 

sample size 
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Figure 6 

The adjusted Rand index values as a function of the variance of the random effects and the 

sample size 
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Figure 7 

The adjusted Rand index values as a function of the probability of the item properties and the 

variance of the random effects  
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Figure 8 

The adjusted Rand index values as a function of the correlation of the random effects and the 

variance of the random effects  
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Figure 9 

The distribution of the adjusted Rand index values for data sets with a general random effect 

(left panel) compared to data sets without a general random effect (right panel) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 63


	Balazs_S_DB2006.pdf
	The detection of hidden item properties and multidimensionality  
	The detection of hidden item properties and multidimensionality  
	 


