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Abstract 

 

Local item dependence (LID) is a common violation of the local stochastic independence 

assumption for statistical models such as in item response models. LID may be induced by 

various factors and it can hardly be avoided in the practice of testing. Ignoring LID can have 

serious consequences for the goodness of fit of a model, for the parameter estimates and for 

confidence intervals. Suitable diagnostic methods are necessary to detect LID, so that 

appropriate action can be taken, such as an adapted model formulation. 

 

In a simulation study, several potential LID diagnostics are investigated on their performance. 

The focus is on LID stemming from minor dimensions additional to the common dimension 

in the data. A group of items may constitute an additional dimension, for example because 

they are all related to the same stimulus or to the same but rather specific underlying 

processes. The purpose of the present study is to compare several diagnostic methods for a 

kind of data that is rather common in psychology, with a small sample size and a rather small 

set of items, and for a model that is in correspondence with the use of sum scores (the Rasch 

model). The methods that will be investigated fall into three categories: pairwise diagnostics, 

clustering techniques and visual methods.  

 

From the pairwise diagnostics, the modified Mantel-Haenszel test seem to perform the best as 

an absolute detection criterion, and Yen’s Q3
 and the standardized log-odds ratio difference 

(τ) seem to perform the best as a relative criterion. Among the clustering techniques, the 

DETECT procedure was not successful in revealing the studied type of LID, while ADCLUS 

had a reasonable performance, which was at its best when applied to the standardized log-
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odds ratio difference (τ) or to the log-odds ratio. Finally, also the grey-scale matrices based on 

the pairwise statistics seem to be effective. 
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Local item dependence (LID) is a term to denote the remaining dependence in the data 

beyond the dependencies already explained by the model, often one with a general dimension. 

LID is a quite common violation of the assumptions of item response models and it can occur 

in many ways in practice. Because LID leads to unwanted effects, as it will be described later, 

it is important to have methods which can identify the problem. The aim of the present study 

is to investigate and compare a set of LID diagnostics for their performance in detecting a 

common kind of dependency in binary person by item data, and to study the data features 

which may affect their performance. First, a short general introduction will be provided to the 

theory of item dependencies, and afterwards a simulation study will be reported. 

 Local stochastic independence (LSI) is a basic assumption in item response theory, 

implying that the probability of an item response conditional on the general ability parameter 

is not influenced by other item responses (Hambleton & Swaminathan, 1985; Embretson & 

Reise, 2000; Jiao & Kamata, 2003; Lazarfeld & Henry, 1968; Lord, 1980, Lord & Novick, 

1968, Wilson & Adams, 1995). In other words, given the modeled relation between two 

items, no further relation may exist for LSI to apply. LSI is also termed conditional 

independence because the independence applies conditionally on the parameters (Hambleton, 

Swaminathan, & Rogers, 1991; Lord & Novick, 1968).  When the LSI assumption is violated, 

there are remaining local item dependencies (LIDs). 

Several different testing situations may lead to LID. Yen (1993) differentiates among 

numerous causes: external assistance, speededness, fatigue, practice, item or response format, 

passage dependence, items that require an explanation of the previous response, scoring 

rubrics, raters, content knowledge and abilities. In general, two main sources can be 

discerned. First, the dependency may stem from the items being located in an item chain 

where the success on an item can depend on the successes on previous items (Thissen et al, 

1992) or, more in general, on their position in the chain. Second, items may show item 
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overlap in terms of their parts (e.g., a common item stem) or in terms of the processes 

underlying the item response. Hoskens and De Boeck (1997) have used the terms order 

interaction and combination interaction for these two types (item chain and item overlap), 

respectively. 

As for the interpretation of LID, Ip, Wang, De Boeck and Meulders (2004) 

differentiate between LID as a side-effect of the design of items and tests, on the one hand, 

and more basic, substantive LID based on psychological processes, such as cognitive 

components, as discussed in Jannarone (1986) and Hoskens and De Boeck (1995, 2001), on 

the other hand. Chen & Thissen (1997) classified LID into surface local dependence (SLD) 

and underlying local dependence (ULD). SLD simply means that the examinees respond to a 

set of items very similarly, while ULD assumes a separate trait belonging to each locally 

dependent item group.  

Zensky, Hambleton and Sireci (1991) pointed out that the problem of LID was already 

recognized in classical test theory: theorists knew that the estimates are not correct when item 

dependencies were not properly accounted for. Kelley (1924), Guilford (1936), Thorndike 

(1951) and Anastasi (1961) warned that items corresponding to a common stimulus should be 

placed in the same half of a test when computing split-half reliabilities. 

IRT models are not robust to the violation of local item independence. In case of LID, 

the parameter estimations may be biased and the reliability of the estimates may be 

overestimated (or underestimated) (Chen & Thissen, 1997; Tuerlinckx & De Boeck, 1998; 

Yen, 1993). LID may yield biased parameter estimation and deteriorates equating (Ackerman, 

1987; Chen & Thissen, 1997; Fennessy, 1995; Sireci, Thissen & Wainer, 1991; Spray & 

Ackerman, 1987; Thissen, Steinberg & Mooney, 1989; Tuerlinckx & De Boeck, 1998; Yen, 

1984). Item banking and item calibrations also become difficult when LID occurs (Ferrara, 
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Huynh, & Baghi, 1997). In case of computerized adaptive testing, the biased standard error 

estimates may lead to premature termination (Fennessy, 1995).  

Several approaches have been developed in order to account for local item 

dependencies. The most common approach to LID in psychometrics is the testlet approach 

(Keller, Swaminathan, & Sireci, 2003; Thissen, Steinberg, & Mooney, 1989; Wilson, 1988; 

Wilson & Adams, 1995) as will be discussed in the following. Examples are sets of items 

associated with the same stimulus or item stem, such as the same reading paragraph, and sets 

of items relying on the same type of knowledge. Bao and Mislevy (2003) argue that such 

items are desirable, for example, in testing science performance, because they reflect real life 

situations. The referred item groups are denoted as testlets (Wainer, & Kiely, 1987), item 

bundles (Rosenbaum, 1988) or superitems (e.g., Ferrara, Huynh, & Baghi, 1997). The sum of 

the items scores on a testlet can be treated as a score on a polytomous item. Consequently, 

polytomous item response models can be applied such as the partial credit model (Masters, 

1982), generalized partial credit models (Muraki, 1992), and graded response models 

(Samejima, 1969).  

Apart from a regrouping of the items, such as in the testlet approach, three basic types 

of modeling approaches are described in the statistical literature (Tuerlinckx & De Boeck, 

2004; Molenberghs & Verbeke, 2005): (1) random effect models (e.g., Bradlow, Wainer & 

Wang, 1999), (2) conditional models (e.g., Kelderman & Rijkes, 1994), and (3) marginal 

models (e.g., Ip, 2002), each of which will be described in the following.  

1. Random effect models Person based random effects corresponding to item clusters 

can account for associations of items, and hence, they can be sources of item dependencies. 

Random effects can be introduced for subsets of items, when there is a natural clustering of 

items, such as item groups concerning the same reading paragraph or the same type of 

cognitive processes. In case of K such item clusters, K+1 design factors (one per cluster, and 
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a general one; or only K if all items belong to a cluster) can be introduced each with a 

corresponding random weight. This random effect approach was used by Bradlow et al. 

(1999) as an alternative approach to testlets, and it is described also by Scott and Ip (2002).  

2. Conditional models The second type of item dependency models are conditional 

models which express the probability of a response on an item conditionally on the response 

on one or more other items. A prominent example of conditional models is the group of 

loglinear models with the items as factors in the loglinear design (Ip, Wang, De Boeck & 

Meulders, 2004; Kelderman & Rijkes, 1994). Tuerlinckx and De Boeck (2004) differentiate 

between recursive and non-recursive dependencies in conditional models, referring to 

structural equation modeling (Bollen, 1989). In case of recursive dependency, and given a 

particular ordering of the items, responses on items can affect the responses on items ordered 

after them, but not vice versa. For instance, learning effects during test taking produces a 

recursive type of item dependency with time as the natural basis of the ordering.  

The most flexible recursive model allows for effects of all preceding responses on all 

following responses. Several simplifications of this model exist (Verhelst & Glas, 1993). The 

most common is a restriction to main effects of earlier responses (Tuerlinckx & De Boeck, 

2004). Although in recursive models, the dependence of later item responses on earlier ones is 

a component of the model, and not vice versa, it can be shown mathematically that the 

response probabilities of earlier items are also affected by the responses on later items 

(Tuerlinckx & De Boeck, 2004; Verhelst & Glas, 1995).  

In case of nonrecursive dependency, feedback loops are allowed among the items, and 

hence, mutual effects are possible. The fully parameterized model includes the effects of all 

item responses on all other item responses (Kelderman & Rijkes, 1994). A common 

restriction is to ignore interactions of a higher order than two-way interactions (Tuerlinckx & 

De Boeck, 2004).  
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The conditional model approach and the random-effect approach suffer from some 

common problems (Tuerlinckx & De Boeck, 2004). The marginal probability of item 

responses depends on the dependency parameters, and the item difficulty parameter loses its 

natural interpretation.  

3. Marginal models The marginal model approach is a way to deal with these 

problems. Marginal models do have reproducible marginals, which means that the marginal 

probability of a correct response does not depend on LID. Examples are the multivariate 

probit model (Ashford & Sowden, 1970; Lesaffre & Molenbergs, 1991) and Ip’s (2000, 2001, 

2002) hybrid models for item dependencies.  

Generalized estimating equations (GEE; Liang & Zeger, 1986) form a specific 

approach to marginal modeling. GEE models were developed for extending the Generalized 

Linear Models to correlated data where estimating equations are generalizations of other 

estimating equations (Hardin & Hilbe, 2003) and concentrate on only certain aspects of the 

data such as means and covariances. Alternating Logistic Regression (ALR; Carey, Zeger, & 

Diggle, 1993; Liang, Zeger, & Qaqish, 1992) is a specific GEE variant which combines a 

marginal logistic regression for the mean structure with a logistic regression for the 

association structure.   

Item clusters can easily be introduced in this structure. Ideally, the marginal 

probabilities are independent of the association structure and the item difficulty parameters 

have their natural interpretation, but depending on the approach, the means and associations 

put restrictions on one another. The disadvantage of the marginal modeling approach is that it 

may become very computationally intensive if there are many items or if the model cannot be 

reformulated as a random effects model (Tuerlinckx & De Boeck, 2004).  

The focus of this study is LID of the random-effects type which is created by a small 

additional dimension, independent of the substantive origin of the dependency (based on a 
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common item stem or overlap of cognitive processes, etc.). This is the type studied also by 

Bradlow et al. (1999). The Rasch model is used as the basic model. In the next section, 

several candidates for item dependency diagnosis are described which will be further used in 

a simulation study where their performance is assessed and compared. The approach of the 

study relies on the Rasch model, which is the model that corresponds best with using sum 

scores, as is commonly the case for tests.  

 

The investigated dependency diagnostics 

 

Three main types of diagnostics are distinguished in the following: pairwise 

diagnostics, clustering techniques and visual methods. Four pairwise diagnostics were 

selected: the modified Mantel-Haenszel test (Verguts & De Boeck, 2001), the likelihood ratio 

G2 (Bishop, Fienberg & Holland, 1975), the standardized log-odds ratio difference τ( ; 

Haberman, 1978), and Yen’s Q3 (1984). All four provide a significance test for the decision 

about dependency of single item pairs. The latter three were investigated in an earlier study by 

Chen and Thissen (1997), where it was found that Yen’s Q3 performs better for 

multidimensionality based LID (ULD) in data with an underlying 2PL and 3PL structure, and 

that Yen’s Q3 performs equally well as the other LID diagnostics when the LID is not 

dimensionality based (SLD). Chen and Thissen (1997) noted that the distribution of Yen’s Q3 

is not as close to its theoretical distribution than of the likelihood ratio G2.  

In this study, beyond using these pairwise statistics for testing the LID for single item 

pairs, these pairwise statistics will also be used for deciding on the relative size of the 

pairwise dependencies. Furthermore, the pairwise statistics are also used as an input for the 

clustering methods and the grey-scale based visual approach. 
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As clustering techniques, DETECT (Kim, 1994; Stout, Habing, Douglas, Kim, 

Roussos & Zhang, 1996) and ADCLUS (Lee, 1999, 2001) were included. DETECT provides 

non-overlapping subgroups of items, while ADCLUS offers overlapping item clusters using 

similarities of the item pairs as input. The four above mentioned pairwise statistics will be 

used as input to ADCLUS. DETECT is applied on the raw data, hence one has not the choice 

to use these statistics. DETECT and ADCLUS not only extract the clusters, but also provide a 

decision on the number of clusters, so that the performance of these methods can be assessed 

on both, the recovery of the clusters, given the true number of clusters, and the recovery of the 

true number of clusters.  

Finally, also a visual method will be investigated, with grey-scale matrices based on 

the four pairwise diagnostics. The inspection of the grey-scale matrices provides a rather 

quick and easy technique to explore and to visualize the underlying structure of data. In the 

following section, each of the above listed methods will be described in a more elaborated 

way.  

 

Pairwise diagnostics 

 

The modified Mantel-Haenszel test (MH) was proposed by Verguts and De Boeck 

(2001) as a distribution-free test for LID given the Rasch model as a null hypothesis. When it 

is suspected that two items (i and i’) are dependent, conditional on the latent trait, a 

contingency table can be created for each rest score group (the total score minus the score on 

item i). In each contingency table, the possible scores on item i define the rows and the scores 

on item i’ define the columns. The observed frequencies of the item score patterns of the item 

pair in each rest score group are used to calculate the MH statistic, which is defined by 

Equation 1. 



  Detecting local item dependence 

 11

∑
∑ ∑ ⎟

⎠

⎞
⎜
⎝

⎛
−

=

rs
rs

rs rs
rsrs

O

EO
iiMH

)(
)',(

11
2

2

1111

σ
,                     (1) 

where rsO11 is the frequency in the rest score group rs of responding correctly to both items of 

the item pair (i and i’). rsE11 denotes the corresponding expected frequency, and )( 11
2

rsOσ  

denotes the variance of the observed frequency in the rest score group rs. In general, abO (Eab) 

is the observed (expected) frequency of item i having value a and item i’ having value b at the 

same time. Furthermore, 

rsrsrsrsrsrs nOOOOE /))(( 0111101111 ++= , 

]/))][(1/()[()( 000100101111
2

rsrsrsrsrsrsrsrs nOOnOOEO +−+=σ , 

and 

rsrsrsrsrs OOOOn 00011011 +++= . 

Given LSI of item i and item i’, the MH is asymptotically χ2 distributed with one degree of 

freedom. High MH values indicate item dependency. 

The likelihood ratio G2 (Bishop, Fienberg & Holland, 1975; Chen & Thissen, 1997) 

for item dependency is calculated here based on the conditional frequencies and their 

expectations as defined for the modified MH test:  
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where abO is the observed and abE is the expected frequency that item i has a value of a and 

item i’ has a value of  b at the same time, so that Oab=ΣrsOabrs, and Eab=ΣrsEabrs. In the way the 

test is defined here, it is also a distribution free test for LID given the Rasch model as a null 

hypothesis, just as the modified MH test. Under the model with LSI, the G2 statistic is 

expected to be χ2 distributed with one degree of freedom. 
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The standardized log-odds ratio difference τ( ) is proposed by Haberman (1978). The 

formulas are given in Equations 3 and 4. 
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and exp
'iiτ is the expected log-odds ratio. abO and abE  are defined as for the previous test. For 

independent item pairs, theτ statistic is expected to be normally distributed with zero mean 

and a variance of one (Chen & Thissen, 1997; Tate, 2003).  

Yen’s Q3 (1984) is developed for investigating local item dependency based on an 

earlier statistic described by Kingston and Doran (1982).  Q3 is basically the correlation of the 

residuals for item i and for item i’. The residuals are calculated as the discrepancy between the 

observed values and corresponding expectations which in this study are estimated with the 

Rasch model. Q3 is calculated as described by Equation 5 and Equation 6. 

''3 pipiddii rQ = ,         (5) 

where 
'pipiddr is the correlation of the residuals pid  and 'pid  for item i and item i’ and 

))(( ppipipi YPEyd θ−= .       (6) 

In Equation 6, piy is the response of person p on item i and ))(( ppiYPE θ denotes the 

expected probability of person p to solve item i correctly, given the common dimension, pθ . 

For the independence case, the Fisher’s z transform of Q3 is normally distributed with a zero 

mean and a variance of 1/(N-3) (Yen, 1984). In order to test the significance, the standardized 

Fisher’s z transformation is used, dividing Fisher’s z by the square root of 1/(N-3), so that a  

standard z-score is obtained. Q3 has been used successfully in several studies (Chen & 
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Thissen, 1997; Fennessy, 1995; Yen 1993), suggesting it is a rather robust method. For the 

present study, the pθ estimates were obtained by the PROC NLMIXED procedure of SAS for 

the random effects Rasch model, with quasi-Newton optimization and 20 quadrature points 

(SAS/STAT User’s guide). For a decision on LID, the standardized Fisher’s z transform of 

the Q3 values were used. 

Ferrara, Huynh, and Baghi (1997) noted that Yen’s Q3 method is somewhat limited by 

the fact that it requires a point estimate of the common ability parameter, and hence a 

relatively well fitting IRT model. The other three methods are nonparametric, although in 

principle, they can be derived also on a parametric basis. It is also worth noting that 

asymptotically, both, the Mantel-Haenszel test and the G2 statistic are χ2 distributed, while the 

standardized log-odds ratio difference (τ) and the Fisher’s z transform of Q3 are normally 

distributed. Besides, the first two LID statistics do not take the direction of the association 

into account, whereas the latter two do. 

 

Clustering techniques 

 

DETECT (Dimensionality evaluation to enumerate contributing traits; Kim, 1994; 

Stout, Habing, Douglas, Kim, Roussos & Zhang, 1996) is a method for revealing 

homogeneous item subgroups that represent a separate dimension. Therefore, it can in 

principle also be used for detecting the type of LID focused on this study. It is a method based 

on the conditional covariance of the item pairs (conditional on the general dimension).  

A simple structure, or in other words, non-overlapping item clusters, is a requirement 

for DETECT (Stout, Habing, Douglas, Kim, Roussos & Zhang, 1996). A simple structure is 

realized when non-overlapping item subgroups can be identified and the items within 

subgroups measure the same ability (Tate, 2003; Zhang & Stout, 1999). The method is 
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expected to give a good estimate of the item clusters also for an approximate simple structure. 

DETECT provides an index for simple structure, called the R index. When its value is higher 

than 0.8, then an approximate simple structure can be assumed, and consequently, the 

DETECT index should give an accurate indication of the dimensionality of the data, and the 

accompanying item partition is assumed to be an accurate indication of the item clusters.  

The DETECT software also offers cross-validation (Zhang & Stout, 1999). In the 

cross-validation procedure, one half of the data is used to obtain a partition of the items, 

which is then further used for the second subset of the data, providing the cross-validated 

DETECT index. In general, cross-validation must be recommended unless the sample size is 

too small to divide the data set into two parts. 

Additive clustering (ADCLUS) can be used even if the simple structure is not realized, 

because for ADCLUS the item clusters overlap. Here, ADCLUS will be used as developed by 

Lee (1999, 2001). The version of the program used here, produces an item cluster matrix with 

the requested number of possibly overlapping item clusters. ADCLUS requires similarity 

measures as input, and the four types of pairwise statistics will be used for that purpose. For a 

decision on the number of clusters, a scree test will be applied on the weights of the item 

clusters. From a former study (Balazs, Schepers, & De Boeck, 2006; see Chapter 3) it could 

be concluded that ADCLUS may be used effectively to extract item clusters, even when 

theoretically the clustering results may depend on the marginals (see a remark in Chapter 3). 

 

Visual methods 

 

 Visual inspection of grey-scale matrices (Tuerlinckx & De Boeck, 2004) is another 

way to detect dependencies. The result of the association measures can be represented with 

grey-scale matrices, darker cells indicate higher values. The items form the rows and also the 



  Detecting local item dependence 

 15

columns of the grey-scale matrix, so that both the upper and lower triangle shows the pairwise 

LID. When the observed grey-scale matrix resembles quite well to the matrices derived from 

the model, it is concluded that there is no LID in the data, but when clear differences are 

found, they indicate LID.  

If the true model of the data structure is the Rasch model, one would expect uniform 

grey-scales matrices. A clear differentiation within an observed grey-scale matrix indicates 

LID and where it occurs. The method is used for the modified MH statistic, the likelihood 

ratio G2, the standardized log-odds ratio, and Yen’s Q3.  

 

     Simulation study 

 

A simulation study was set up in order to compare the above-mentioned methods for 

detecting dimensionality based LID, while LID is defined in comparison to the Rasch model. 

The data structure was a random weights LLTM (Rijmen & De Boeck, 2002) for 24 items and 

sample sizes of 100, 500, and 1000. For all data sets, a general underlying dimension was 

used, and for half of the data sets a cluster of three items defines a second dimension, while 

for the other half of the data sets an additional second cluster of three items defines a third 

dimension. See Equation 7 for the first half of the data sets and Equation 8 for the second half 

of the data sets: The model of Equation 7 leads to a two-dimensional data structure, while the 

model of Equation 8 leads to a three-dimensional data structure. In the former, there is one 

LID cluster of three items, and in the latter there are two such clusters: 

( ) 11011logit ipippppipi Xββθ),βθ(YP ++== ,                           (7) 

( ) 2211021 ),,1(logit ipipipppppipi XXYP βββθββθ +++== ,                         (8) 
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where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ),,1( 21 ppppipi YP ββθ  is the success probability of person p for solving item i 

correctly, modeled as a function of two item covariates (Xi1 and Xi2). θ p is the common latent 

dimension. Xi1 and Xi2 are the covariates for item i (i=1,..., I), and 1pβ and 2pβ are the 

associated random weights for person p. The formulation in Equation 7 is analogous for the 

case of one cluster of three items.  The distributions of (θ p , 1pβ ), and of (θ p , 1pβ , 2pβ ), are 

multivariate normal with mean zero, and the variance of θ p is one.  

For all data sets, Xi1=1 for items 4, 5, and 6, and for half of the data sets, Xi2=1 for 

items 19, 20, and 21, while Xi1=0 and Xi2=0 in all other cases. The variances of the covariate 

based dimension(s), 1pβ and 2pβ , are either 0.5, or 1, or 2. The correlation of all three random 

effects is either 0 or .5. The design is fully crossed in the simulation study. Three sample sizes 

(100, 500, 1000), two dimensionality values (two, three), three variance values (0.5, 1, 2) and 

two correlation values (0, .5) yield 36 design cells. For each cell in the design, 10 data sets 

were generated. 

A larger variance of the minor dimension(s) increases the LID in the corresponding 

item pairs, and the correlation of the minor dimension(s) with the general dimension 

decreases the amount of LID in the corresponding item pairs. On the other hand, the sample 

size and the dimensionality do not affect the amount of LID in the item pairs. Therefore, an 

ideal LID diagnostic for dependent pairs would show sensitive to the variance and the 

correlation of the dimensions, but not to the sample size, except as far as the statistic also 

reflects the power of the method. 

 

Results 
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 Before discussing the results, it is important to note that the data structures of the 

simulation study lead to three different types of item pairs. Type 1 concerns pairs within the 

same LID cluster, called the dependent item pairs. This is the kind of pairwise dependence 

focused on in this study. Type 2 concerns pairs with items belonging to different clusters. This 

type is of importance only if the two item clusters are correlated, and it is by definition 

restricted to data sets with two LID clusters. Type 3 concerns pairs with one or two items not 

belonging to any LID cluster, called the independent item pairs.    

 

Pairwise statistics 

 

 First, the performance of the pairwise statistics is investigated in terms of hits and 

false alarms, with α = .05 to determine the statistical significance. The hit rates and false 

alarm rates are estimated on the basis of the Type 1 and Type 3 pairs, respectively. Second, 

the effects of the design factors have on the values of the pairwise diagnostics are summarized 

(in terms of the mean values of the statistics), and the relative performance of the diagnostics 

is evaluated (in terms of percentiles of the dependent item pairs indicating their place in the 

distribution of all item pairs). Finally, the methods are compared with one another.  

 

The modified Mantel-Haenszel test 

 

The Mantel-Haenszel test could not be calculated for 12 item pairs in total, all 

occurring in data sets with sample size 100. The reason for the problem was that the 

)( 11
2

rsOσ term became zero. For these 12 cases out of 99360 cases, no data are available.  

Applying a significance level of .05 on the Mantel-Haenszel values, 54.5% hits and 

5.6% false alarms are observed. The hit and false alarm rates (percent of significant dependent 
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and independent item pairs, respectively) vary depending on the design factors; see Table 1. 

With an increasing sample size, the hit rate improves considerably, up to 81.7% for N=1000, 

and the false alarm remains slightly above the theoretical 5%. As expected, the hit rate also 

increases with the variance, and it decreases with the correlation. The dimensionality does not 

seem to have much of an effect. The false alarm rate seems to increase slightly as a function 

of the variance, but not really as a function of the sample size.     

        __________________________ 

Insert Table 1 about here. 

__________________________ 

 

When the means of the MH values for the dependent item pairs are looked at, it must 

be concluded that they vary as a function of the same design factors as the hit rates; see Table 

2. For dependent item pairs, the values are higher for a larger sample size, for a larger 

variance, and for a smaller correlation, whereas the difference is only small between two and 

three dimensions. For the independent pairs, the values do not vary with the design factors, as 

expected. 

__________________________ 

Insert Table 2 about here. 

__________________________ 

 

The relative performance of the MH test is evaluated through the minimum percentile 

of MH values for dependent item pairs. For each MH test value, a corresponding percentile 

value defines the percent of the distribution with a value equal to or below to it. As shown in 

Tables 5 and 6, for two and three-dimensional data, the minimum percentiles are high if N is 

500 or larger and the variance is 2. Assuming there are no ties among the dependent item 
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pairs with the smallest dependency value, ideally, the minimum percentile is 99.3 for two-

dimensional data, and 98.2 for three-dimensional data. The values of 99.3 and 98.2 are 

actually also established when N=1000, the variance is 2 and the correlation is zero. 

__________________________ 

Insert Table 5 about here. 

__________________________ 

 

__________________________ 

Insert Table 6 about here. 

__________________________ 

 

Likelihood ratio G2  

 

Likelihood ratio G2 estimates have been obtained for all item pairs. The G 2 test 

resulted in 48.5% hits and 2.2% false alarms. Both the hit and the false alarm rates are lower 

than those obtained with the MH test. The hit and false alarm rates vary depending on the 

design factors; see Table 1. With an increasing sample size, the hit rate improves 

considerably, up to 77.0% for N=1000, and the false alarm rate increases slightly but even for 

N=1000, it does not approach the theoretical 5%. As expected, the hit rate, but not the false 

alarm rate, also increases with the variance, and it decreases with the correlation. The 

dimensionality does not seem to have an effect. 

When the means of the likelihood ratio G2 values for the dependent item pairs are 

looked at, it must be concluded that they vary as a function of the same design factors as the 

hit rates; see Table 2. The dependency values of the dependent pairs are smaller than those of 

the MH test, and they increase with the sample size and with the variance, and they decrease 
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with the correlation, whereas the difference is only small between two and three dimensions. 

The means for the independent pairs seem to increase slightly with a larger sample size, but 

do not vary with the rest of the design factors.  

The relative performance of the likelihood ratio G2 statistic seem to be about the same 

as the relative performance of the MH test both for two- and three-dimensional data, as it can 

be seen in Tables 5 and 6. 

 

Standardized log-odds ratio difference (τ) 

 

Standardized log-odds ratio difference (τ) estimates have been obtained for all item 

pairs. The results of the method are very similar to those obtained with the likelihood ratio G2 

method. The test resulted in 46.7% hits and 2% false alarms. As Table 3 shows, the 

percentages of hits and false alarms are smaller than for the MH test and slightly smaller than 

those for the likelihood ratio G2 method. The hit rates increase with the design factors as 

expected, but the false alarm rates do as well, although only to a small extent.  

For dependent pairs, also similar effects of the design factors on the statistic were 

found as for the MH test and the likelihood ratio G2 test (Table 4). A remarkable finding 

regarding the independent pairs is that the value of the dependence statistic deviates slightly 

more from zero in the negative direction with increasing sample size and increasing variance.  

As can be seen in Tables 5 and 6, the relative performance of τ follows the pattern of 

the MH test and likelihood ratio G2, but, in general, the percentiles are higher indicating a 

better performance.    

   __________________________ 

Insert Table 3 about here. 

__________________________ 
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__________________________ 

Insert Table 4 about here. 

__________________________ 

Yen’s Q3 

 

The Q3 estimates have been obtained for all item pairs. The statistical significance of 

the standardized Fisher’s z transformation of the Q3 values was used to decide about the LID 

of the item pairs. With the Q3 test, 45.8% hits and 14.6 % false alarms were found; see Table 

3. The results regarding the overall hit rate are very similar to those obtained with 

standardized log-odds ratio difference (τ), but the false alarm rates are the highest when 

compared among the four pairwise diagnostics.  

It is interesting to note that although the Q3 values are not a function of a sample size, 

the standardized Fisher’s z transform of the Q3 statistic for dependent pairs becomes a 

function of the sample size indicating that the power of the method is a function of the sample 

size. Similarly, the false alarms rate also seems to increase with the sample size, further away 

from the theoretical 5%.  

The effects of the design factors on the Q3 values are similar to the effects obtained for 

the standardized log-odds ratio difference (τ) method. The high negative values of the Q3 for 

independent pairs can explain the higher false alarm rates.  

 The relative performance follows the pattern of the other three statistics, but the 

minimum percentiles are higher than for any of the other three. 

 

A comparison of the pairwise statistics 
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In general, the number of dependent item pairs is underestimated with all four 

methods. As could be expected, the hit rate clearly improves with an increasing sample size, 

with an increasing variance of the random effects, and when the random effects are not 

correlated. At the same time, the dimensionality of the data did not remarkably affect the 

performance of the pairwise diagnostics, but in general, the hit rate results are slightly worse 

for three dimensions (two LID clusters). 

 The false alarm rate is lower than the theoretical 5% for G2
 and τ, unlike for the MH 

test where it is slightly larger and for Q3, where it is much larger from a sample size of 500 

on. For G2
 and τ, the false alarm rate increases as a function of the sample size, but does not 

reach 5% even for N=1000. From a comparison of the hit rates and false alarms, the MH test 

has the best performance of the four diagnostics. In general, a sample size of 500 does not 

seem sufficient for an overall satisfactory performance, while for a sample size of 1000, the 

results seem more reasonable. 

The effect of the design factors on the values of the four statistics for the dependent 

items parallels the results for the hit rates. Higher values are found as a function of the sample 

size and variance, and lower values are found for zero correlations than for a .5 correlation. 

The test values, and hence the power of the test, increase with the sample size. Also for 

independent item pairs, the sample size seems to have a sizable effect, although much smaller 

than for dependent pairs. 

 The pairwise methods are also investigated as potential relative criteria, as an ordering 

criterion for the dependency. A sample size of 100 does not seem to be sufficient for any of 

the methods to obtain high percentiles for the smallest dependency value among the 

dependent pairs. When the sample size is reasonably large (at least 500) and the variance is 

also large (as large as 2), all methods work reasonably well, but perfection is obtained only 

with a sample size of 1000, a variance of 2 and a zero correlation. When the minimum 



  Detecting local item dependence 

 23

percentiles of the dependent item pairs are considered as a criterion for the relative 

performance, Yen’s Q3 and the standardized log-odds ratio difference (τ) seem to perform 

best. 

 As a criterion for decision making, the modified Mantel-Haenszel test had the best 

performance, while as a relative criterion Yen’s Q3 and the standardized log-odds ratio 

difference (τ) had the best performance, and Yen’s Q3 seems slightly superior. In general, a 

sample size as large as 1000 seems required in order to obtain reasonable results, even for the 

best performing statistics.  

 

Clustering methods 

 

 The performance of the clustering methods is assessed in terms of the cluster content 

and in terms of the decision on the number of clusters. 

 

DETECT  

 The DETECT procedure was applied to the simulated data, both, with and without 

cross-validation. In the DETECT procedure, the user has to specify the maximum number of 

item clusters to be extracted. The evaluation is made in two steps. First, in order to focus on 

the effectiveness of DETECT in revealing the content of the item clusters, the true number of 

clusters is considered as given. Therefore, a maximum of two item clusters is chosen for the 

two-dimensional data sets since two clusters can be differentiated in the two-dimensional 

space (one cluster of three items and one cluster with all the other items), and a maximum of 

three clusters is chosen for the three-dimensional data sets, since three clusters can be 

differentiated (two clusters of three items and one cluster with all other items). Hence, the 

maximum was determined as the true number (for an explanation of the issue, see further). 
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Second, it will be evaluated whether DETECT can actually find the true number of clusters. 

In order to do so, a higher maximum number of clusters was chosen (five clusters), to give the 

freedom of an overestimation of the true number of clusters.  

Considering either the result of DETECT with cross-validation or the results without 

it, the R index value (the index of simple structure) never exceeded a value of 0.8. The mean 

of the R index values were 0.05 and 0.45, with and without cross-validation, respectively. 

Because a lack of approximate simple structure was indicated for all data sets, no further 

conclusions can be drawn regarding the data structure. This result is not surprising because 

the data were not generated from a simple structure, all items being linked to a common 

dimension, and additionally, either one set of three items or two sets of three items are linked 

to a second dimension.  

A further problem for the evaluation of DETECT in terms of cluster extraction is that 

one can determine the maximum number of clusters but not a given number of clusters to be 

extracted. And even if the desired number of clusters is extracted, when the DETECT index 

value is smaller than a critical value (0.1 or 0.2), it is an indication that the number of clusters 

is actually smaller than the extracted one. Without cross-validation and with a critical value of 

0.1, the true number of clusters is indicated for 100% and 95.6% of the two- and three-

dimensional data, respectively. Without cross-validation and with a critical value of 0.2, the 

correct number of clusters was indicated for 74.4% and 93.4% of the two- and three-

dimensional data sets, respectively. Furthermore, with cross-validation, DETECT often 

indicates a smaller number of clusters than the desired one. With cross-validation and with a 

critical value of 0.1, the correct number of clusters is indicated for 12.8% of the two-

dimensional and 28.9% of the three-dimensional data sets. With cross-validation and with a 

critical value of 0.2, DETECT indicates the correct number of clusters for 3.3% of the two 

dimensional and 1.1% of the three-dimensional data sets. This implies that the first evaluation 
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step, focusing on cluster membership given the true number of clusters, is problematic, unless 

no cross-validation is used and a critical value of 0.1 is chosen, because then in almost all 

cases the maximum was also the true number. However, it is clear from the cases where the 

true number of clusters is selected, that the clusters have an about equal size, so that their 

content is certainly not in agreement with the true clusters.  

 Nevertheless, the results indicate that the DETECT values are a function of the same 

aspects of the minor dimension(s) as the pairwise statistics are. When the DETECT procedure 

without cross-validation is considered, for data with a variance of 0.5, 1 and 2, the mean 

DETECT values are 0.35, 0.36 and 0.41, respectively. The mean DETECT value is 0.39 for 

uncorrelated and 0.36 for correlated data. The mean DETECT value is 0.33 for the two-

dimensional data sets and 0.42 for the three-dimensional data sets. The cross-validated 

DETECT index is a function of the same design factors. For data with a variance of 0.5, 1 and 

2, the mean DETECT values are 0.03, 0.03 and 0.07, respectively. The mean of the DETECT 

values is 0.03 for correlated data, and it is 0.05 for uncorrelated data. The mean of the cross-

validated DETECT value is .01 for two-dimensional and 0.07 for three dimensional data. This 

latter effect is different from the effect on the pairwise statistics. 

For the second step of the evaluation, DETECT was allowed to choose the number of 

clusters. The maximum number of clusters was set to five. In principle, the DETECT values 

could not be interpreted in this step of the evaluation either, because of lack of approximate 

simple structure. In order to pursue the investigation of DETECT, the role of the R index was 

ignored for this second step. With a maximum of five clusters, DETECT may extract two to 

five clusters. However, if the DETECT value does not reach 0.1 as described in the manual 

(The William Stout Institute for Measurement, 2003) or 0.2 as it is recently suggested (van 

Abswoude, van der Ark, & Sijtsma, 2004), the conclusion must be that there is only one 

(common) dimension, and that there is not good evidence for another source of heterogeneity.  
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The two-dimensional data defines two clusters, while the three-dimensional data 

defines three item clusters. When the DETECT procedure was applied without cross-

validation, the results were the same for the two possible critical values (0.1 or 0.2). In case of 

two-dimensional data, two, three, four and five clusters were indicated for 1.7%, 35.5%, 

54.4% and 8.3% of the data sets, respectively. In case of three-dimensional data sets, two, 

three, four and five clusters were indicated for 1.7%, 33.8%, 51.1% and 13% of the data, 

respectively. Therefore one can conclude that the number of clusters is mostly overestimated 

by DETECT without cross-validation. 

 When the cross-validated DETECT is applied to two-dimensional data, with a critical 

value of 0.1, 87.2% of the data sets are indicated as unidimensional, and the remaining 12.8% 

of the data sets are indicated having two item clusters. Applying a critical value of 0.2, 96.7% 

of the data sets are indicated to be unidimensional, and 3.3% of the data sets are indicated to 

have two item clusters.  

When the DETECT procedure is applied with cross-validation and with a critical value 

of 0.1 to three-dimensional data, 57.8% of the data sets are shown as unidimensional, 5.6% 

are indicated as having two item clusters and 36.7% as having three item clusters. When the 

same procedure is used with a critical value of 0.2, 86.7% of the three-dimensional data sets 

are shown as unidimensional, 2.8% were indicated as having two item clusters and 10.5% as 

having three item clusters.  

Consequently, the DETECT procedure with cross-validation seem to underestimate 

the number of item clusters, which is not surprising given the small size of the additional 

dimensions. The results are slightly better with a critical DETECT value of 0.1. 

 In sum, when following the rules, the DETECT value should not be interpreted, 

because the R value indicates an absence of approximate simple structure. When the R value 

is ignored, and the true number of item clusters is set as the maximum number of clusters, the 
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DETECT value obtained without cross-validation is quite successful in detecting the 

multidimensionality of the data, but the cross-validated DETECT is not, although 

theoretically the latter should have a better performance. However, DETECT does not seem 

able to recover the content of the clusters. Concerning the recovery of the number of clusters, 

the DETECT procedure without cross-validation seems to overestimate the number of 

clusters, and with cross-validation it seems to underestimate the number of clusters. 

 

ADCLUS 

 

The ADCLUS procedure was applied on all four pairwise statistics. In the following, 

the performance of ADCLUS is investigated both in terms of recovering the cluster content 

and in terms of detecting the true number of item clusters. In order to investigate the former, 

the true number of clusters is extracted (one or two beyond the general cluster), and in order 

to check whether the true number can be found, five clusters were extracted, so that a scree 

test can be used to select a number of clusters. 

The adjusted Rand index (Hubert & Arabie, 1985; see also, Fowlkes & Mallows, 

1983; Rand, 1971; Yeung, & Ruzzo, 2006), a measure of agreement of two partitions, was 

calculated for comparison with the true structure. The higher the adjusted Rand index value is, 

the more similar the clusters are; the adjusted Rand index has an upper bound of 1. The 

adjusted Rand index is calculated in all possible combinations of the extracted and true 

clusters, and the highest adjusted Rand index value is chosen among the obtained Rand index 

values. 

First, the performance of the methods in terms of the recovery of the cluster content is 

shown in Table 7. Based on the overall mean of the adjusted Rand index values, the 

likelihood G2 and standardized log-odds ratio difference (τ) used for ADCLUS were the best 
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for item cluster extraction, the adjusted Rand indices being .38 and .36, respectively. The 

performance varies as a function of the design factors in the same way as before. For data 

with a sample size of 1000, with a variance of 2, and with a correlation of zero, the mean of 

the adjusted Rand index values was 0.96 for the standardized log-odds ratio difference (τ). 

__________________________ 

Insert Table 7 about here. 

__________________________ 

 

Second, for a decision on the number of item clusters, a scree test was applied on the 

weights of the ADCLUS derived five item clusters. Following a principle explained by 

Ceulemans and Van Mechelen (2005), a discrepancy difference measure is calculated per 

weight: the discrepancy with the following weight (current weight-following weight) is 

subtracted from the discrepancy with the previous weight (previous weight-current weight) 

while the weights are in decreasing order. The first measure is therefore determined for the 

second weight and the last one is determined for the fourth weight (given a maximum of five 

clusters). The discrepancy difference measure can be mapped against the cluster number, and 

based on the elbow criterion a number of clusters can be selected. The weight with the 

maximal discrepancy difference is selected (as the elbow), and the number of item clusters is 

determined as the order position of the selected weight minus one. In this way, the possible 

outcomes for five clusters are one to four item clusters.  

The percentages of correct decisions on the number of clusters as a function of the 

design factors, are shown in Table 8. For the MH and G2 statistics, the effects do not follow 

the expectations, but for τ and Q3 statistics they do. It can be seen that ADCLUS applied on 

the standardised log-odds ratio difference (τ) performed somewhat better than ADCLUS 

applied on the other measures. For data with a sample size of 1000, with a variance of 2 and 
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with a correlation of zero, the percentage of correct decisions for the standardized log-odds 

ratio difference (τ) was as high as 100% (the combination is not shown in Table 8).  

     __________________________ 

Insert Table 8 about here. 

__________________________ 

 

In a paper by Balazs, Schepers, and De Boeck (2006 ; see Chapter 3), ADCLUS is 

used with the simple unconditional log-odds ratio. One may wonder how it performs in 

comparison with the four statistics that are used here. As one can note in Tables 7 and 8, for 

the recovery of the cluster content, the log-odds ratio seems to be by far the better method, but 

for a decision on the number of clusters, the conditional approach with the standardized log-

odds ratio difference (τ) yields a somewhat higher number of correct decisions. The good 

performance of the log-odds ratio based methods is not surprising given the additive basis of 

ADCLUS and of the log-odds ratio (see Chapter 3).  

In sum, the original method with the log-odds ratios and the method with the 

standardized log-odds ratio difference (τ) as input to ADCLUS performed the best. One 

should note that the log-odds ratios were not calculated conditionally on the general 

dimension, while the four statistics were indeed. Therefore, the performance of ADCLUS 

applied on the log-odds ratios may be improved for determining the number of true clusters 

by conditioning on the sum scores as for the standardized log-odds ratio difference (τ). 

 
Visual methods 

 

As an illustration that grey-scale matrices may provide a proper way to inspect and to 

visualise the dependency structure of data, four design cells were selected to construct grey-

scale matrices. For all four pairwise statistics, the same four randomly selected data sets were 
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used to illustrate the results in each of the four cells. The values of the pairwise statistics were 

standardized in order to obtain comparable grey-scale values for each data set. The four 

selected design cells are all cells with three-dimensional data and with 0.5 as a correlation of 

the dimensions (1) N=500, variance is 0.5, (2) N=500, variance is 2, (3) N=1000, variance is 

0.5, (4) N=1000, variance is 2. In this way, there is for both sample sizes (N=500 and 

N=1000) a relatively easy condition (with a variance of 2), and a relatively difficult condition 

(with a variance of 0.5). These four cells are indicated in bold in Table 6. Figure 1 shows the 

expected grey-scale matrices given the true structure, whereas Figures 2 to 5 show the results 

for the four cells, based on four representative data sets for each.  

In this study, only the upper triangle of the panels is used to represent the item pairs. 

Therefore, the most left column of grey squares refers to item 1, while the most right column 

refers to item 23. The most upper row of grey squares represents the values for item 24, while 

the most bottom row represents the values for item 2. The darker squares represent higher 

values.  

__________________________ 

Insert Figure 1 about here. 

__________________________ 

 

As can be seen in Figure 1, two triplets of items should stick out with a higher 

dependence (Type 1 pairs), because three-dimensional data sets are considered. In case of a 

correlation between the two minor dimensions, also nine other of the item pairs should be 

somewhat darker (Type 2 pairs). Finally, the remaining item pairs (Type 3) should show 

uniform grey-scale values. 

__________________________ 

Insert Figure 2 about here. 
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__________________________ 

 

  __________________________ 

Insert Figure 3 about here. 

__________________________ 

 

In the Figures from 2 to 5, the main columns refer to the four types of pairwise 

statistics as a basis of the matrices. The matrices are labelled MH, G2, TAU, and Q3 denoting   

the modified Mantel-Haenszel test, likelihood ratio G2, the standardized log-odds ratio 

difference (τ) and Yen’s Q3, respectively. The rows correspond to four different data sets 

(representative ones), numbered 1 to 4.  

 __________________________ 

Insert Figure 4 about here. 

__________________________ 

 

__________________________ 

Insert Figure 5 about here. 

__________________________ 

 

Comparing Figures 2 and 3 to Figures 4 and 5, respectively, it seems that the 

dependent item pairs can be distinguished slightly better based on the grey-scale matrices for 

design cells 3 and 4, which contain data with a larger sample size (1000), than for design cells 

1 and 2, which contained data with a sample size of 500. The performance is worse for a 

sample size of 100 than for a sample size of 500, but not shown in any of the figures.  
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When Figure 2 is compared to Figure 3, and Figure 4 is compared to Figure 5, it is 

clear that the larger the variance of the minor dimension is, the easier it is to distinguish the 

dependent item pairs from the independent item pairs based on the grey-scale matrices. This 

effect is clearly larger than the effect of the sample size. None of the four statistics provides a 

very good basis for a visual inspection if the variance of the minor dimension(s) is 0.5.  

The cell that differentiates best between dependent and independent pairs is the one 

with N=1000, and with a variance of 2, as may be derived from Table 6.  

Although it has not been demonstrated here, but in agreement with the results obtained 

for the pairwise statistics as relative criteria, the results are slightly better for two-dimensional 

data than for three-dimensional data, and slightly better for data with uncorrelated dimensions 

than for data with correlated dimensions. 

In sum, grey-scale matrices created from the values of the pairwise item dependency 

diagnostics can be effectively used to inspect and visualize the data structure when the sample 

size is sufficiently large and the variance of the minor dimension(s) is also sufficiently large. 

No conclusions are drawn on the four statistics, because only four data sets in each design cell 

are discussed. The grey-scale matrix approach is discussed here only for illustrative purposes.  

 

Conclusions 

  

 In the present study, four pairwise diagnostics were compared on their performance as 

absolute and relative criteria to detect LID, and they were also used as inputs to a cluster 

algorithm for overlapping structures to find sources of LID and as inputs to a visual 

technique. Additionally, another clustering algorithm, DETECT was also tried out.  

From the investigated criteria, the modified Mantel-Haenszel test performed the best as an 

absolute criterion. As relative criteria, Yen’s Q3, and the standardized log-odds ratio 
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difference (τ) performed the best. In general, a large sample size, and independent and rather 

strong dimensions underlying the dependent pairs are required in order for these dimensions 

to be detected by the statistics. 

As a clustering methods, DETECT cannot be a successful approach for the type of 

investigated data with minor additional dimensions, because of the lack of approximate 

simple structure. On average, ADCLUS did not perform very well either. However, the 

performance clearly varied as a function of the design factors. The performance was best 

when ADCLUS was applied to the standardized log-odds ratio difference (τ) and to the simple 

log-odds ratio.  

Finally, also a visual method can be used for LID detection with the investigated 

pairwise diagnostics. Apparently, also for this method a large sample size and large variance 

are required. 
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Table 1 

The percent of significant dependent and independent item pairs as a function of the design 

factors (α=0.05) 

 MH G2 

Design factor        Value Dependent Independent Dependent Independent 

Sample size  100 22.6 5.6 14.8 1.6 

  500 61.1 5.3 53.7 2.3 

  1000 81.7 5.8 77.0 2.7 

Variance  0.5 28.9 5.0 22.2 2.1 

  1 57.4 5.3 49.6 2.1 

  2 79.1 6.4 73.7 2.3 

Correlation  0 62.1 5.4 57.2 2.4 

  0.5 48.2 5.7 39.9 2.0 

Dimensionality  2 57.8 5.6 50.4 2.1 

  3 53.8 5.6 47.6 2.2 

Overall   54.5 5.6 48.5 2.2 
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Table 2 

The mean of the pairwise statistics for dependent and independent item pairs as a function of the 

design factors 

 MH   G2 

Design factor        Value Dependent Independent Dependent Independent 

Sample size  100 2.5 1.0 1.7 0.6 

  500 9.0 1.0 6.7 0.7 

  1000 18.0 1.1 13.7 0.8 

Variance  0.5 3.2 1.0 2.6 0.7 

  1 7.4 1.0 5.5 0.7 

  2 18.8 1.1 14.1 0.7 

Correlation  0 12.1 1.0 9.7 0.7 

  0.5 7.6 1.0 5.1 0.7 

Dimensionality  2 10.3 1.0 7.8 0.7 

  3 9.6 1.0 7.1 0.7 

Overall   9.8 1.0 7.4 0.7 
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Table 3 

The percent of significant dependent and independent item pairs as a function of the design 

factors (α=0.05) 

 τ Q3 

Design factor        Value Dependent Independent Dependent Independent 

Sample size  100 11.9 1.2 23.3 6.7 

  500 51.5 2.1 48.3 14.2 

  1000 76.7 2.7 65.7 22.9 

Variance  0.5 20.7 1.9 15.4 13.9 

  1 47.4 1.9 45.2 14.4 

  2 71.9 2.2 76.9 15.5 

Correlation  0 55.3 2.1 49.6 14.4 

  0.5 38.0 1.8 42.0 14.8 

Dimensionality  2 48.9 1.9 48.5 14.0 

  3 45.6 2.0 44.4 15.3 

Overall   46.7 2.0 45.8 14.6 
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Table 4 

The mean of the pairwise statistics for dependent and independent item pairs as a function of the 

design factors 

 τ Q3 

Design factor       Value Dependent Independent Dependent Independent 

Sample size  100 0.8 -0.02 1.0 -0.36 

  500 2.1 -0.04 2.0 -0.84 

  1000 3.2 -0.06 3.0 -1.18 

Variance  0.5 1.1 -0.02 0.8 -0.77 

  1 1.9 -0.04 1.8 -0.79 

  2 3.2 -0.05 3.5 -0.82 

Correlation  0 2.4 -0.03 2.2 -0.78 

  0.5 1.7 -0.04 1.8 -0.81 

Dimensionality  2 2.1 -0.03 2.1 -0.78 

  3 2.0 -0.05 1.9 -0.82 

Overall   2.1 -0.04 2.0 -0.79 
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Table 5 

The minimum percentile of the four statistics values of the (Type 1) dependent item pairs 

considering the distribution of all item pairs in the given cell (two-dimensional data). 

Design factors 

Sample size Variance Corr. 

MH G2 τ 

 

Q3 

100 0.5 0 5.4 4.3 11.2 6.5 

100 0.5 .5 5.1 4.7 3.6 5.8 

100 1 0 6.9 8.7 12.0 23.6 

100 1 .5 5.4 4.0 19.6 25.0 

100 2 0 4.4 5.4 48.2 59.4 

100 2 .5 1.8 2.5 30.4 36.6 

500 0.5 0 10.1 10.1 26.1 31.5 

500 0.5 .5 2.9 2.9 23.9 48.9 

500 1 0 44.6 44.6 72.5 73.2 

500 1 .5 37.0 35.5 67.0 77.9 

500 2 0 98.6 98.9 98.9 98.9 

500 2 .5 98.2 98.2 98.6 98.9 

1000 0.5 0 25.4 31.5 17.4 42.8 

1000 0.5 .5 9.1 8.3 56.2 60.9 

1000 1 0 90.9 91.7 96.0 96.4 

1000 1 .5 46.7 43.5 72.8 89.5 

1000 2 0 99.3 99.3 99.3 99.3 

1000 2 .5 98.6 98.6 98.9 99.3 
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Table 6 

The minimum percentile of the four statistics values of the dependent item pairs considering the distribution 

of all item pairs in the given cell (three-dimensional data). 

Design factors MH   G2 τ Q3 

Sample size Variance Corr. Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

100 0.5 0 0.7 -b 0.7 - 3.3 - 6.5  

100 0.5 .5 2.5 1.4 2.5 1.8 1.4 0.7 4.7 0.7 

100 1 0 5.4 - 5.1 - 7.6 - 15.6  

100 1 .5 3.6 2.2 3.3 2.2 12.0 0.4 15.2 0.7 

100 2 0 17.8 - 18.5 - 39.1 - 52.5  

100 2 .5 3.3 0.4 3.3 0.7 7.2 2.9 8.7 5.8 

500 0.5 0 0.7 - 0.7 - 10.1 - 35.5  

500a 0.5 .5 0.4 0.4 0.4 0.4 7.6 5.1 9.8 8.7 

500 1 0 8.0 - 8.3 - 30.4 - 37.7  

500 1 .5 3.6 1.8 2.5 1.8 30.1 6.9 49.3 8.3 

500 2 0 95.3 - 96.4 - 97.5 - 97.1  

500 2 .5 84.8 0.7 83.3 0.7 91.7 2.5 94.9 8.7 

1000 0.5 0 21.4 - 21.0 - 40.2 - 58.0  

1000 0.5 .5 14.1 0.4 13.8 0.4 42.4 4.0 69.2 5.4 

1000 1 0 91.3 - 92.0 - 95.3 - 95.3  

1000 1 .5 71.4 3.3 66.7 2.9 84.1 13.0 91.7 14.9 

1000 2 0 98.2 - 98.2 - 98.2 - 98.2  

1000 2 .5 87.7 0.7 81.9 0.7 92.0 15.9 97.5 29.0 

Note a: The rows indicated in bold are used for the visual method  

Note b: Type 2 is lacking when the correlation is zero  
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Table 7 

The mean adjusted Rand index values 

Design factors          Value LORa MH G2 τ Q3 

Sample size  100 0.18 0.05 0.09 0.06 0.05 

  500 0.51 0.21 0.43 0.42 0.29 

  1000 0.70 0.41 0.62 0.62 0.48 

Variance  0.5 0.19 0.03 0.16 0.11 0.10 

  1 0.44 0.17 0.38 0.33 0.23 

  2 0.76 0.47 0.60 0.66 0.48 

Correlation  0 0.47 0.31 0.42 0.40 0.33 

  0.5 0.46 0.14 0.35 0.33 0.21 

Dimensionality  2 0.50 0.26 0.39 0.39 0.29 

  3 0.43 0.19 0.37 0.34 0.26 

Overall   0.46 0.22 0.38 0.36 0.27 

Note a: LOR denotes log-odds ratio. 
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Table 8 

The percent of correct decisions on the number of item properties as a function of the design factors 

Design factors        Value LORa MH G2 τ Q3 

Sample size  100 40.8 35.0 56.4 50.0 34.0 

  500 51.7 36.7 48.3 48.3 53.3 

  1000 57.5 36.7 40.8 65.0 60.8 

Variance  0.5 43.3 41.6 52.5 40.8 42.5 

  1 52.5 37.5 45.8 51.7 36.7 

  2 54.2 29.2 43.8 72.3 69.1 

Correlation  0 56.1 35.6 45.8 59.3 57.8 

  0.5 43.9 38.7 45.1 49.7 41.1 

Dimensionality  2 67.2 45.6 57.3 68.6 61.7 

  3 37.8 26.7 37.2 41.0 37.2 

Overall   50.0 36.2 45.4 54.6 49.4 

Note a LOR denotes log-odds ratio. 
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Figure captions 

Figure 1 

Theoretical grey-scale matrices for the four selected design cells 

Figure 2 

Grey-scale matrices for three-dimensional data with N=500, variance 0.5, correlated 

dimensions 

Figure 3 

Grey-scale matrices for three-dimensional data with N=500, variance 2, correlated dimensions 

Figure 4 

Grey-scale matrices for three-dimensional data with N=1000, variance 0.5, correlated 

dimensions 

Figure 5 

Grey-scale matrices for three-dimensional data with N=1000, variance 2, correlated 

dimensions 
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Figure 1 

Theoretical grey-scale matrices for the four selected design cells. All cells refer to three 

dimensional data with correlated dimensions (r=.5). The data sets corresponding to Cell 1 are 

with N=500, variance of 0.5; to Cell 2 with N=500, variance of 2; to Cell 3 with N=1000, 

variance of 0.5; and to Cell 4 with N=1000, and a variance of 2. 
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Figure 2 

Grey-scale matrices for three-dimensional data with N=500, variance 0.5, correlated 

dimensions (four data sets) 
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Figure 3 

Grey-scale matrices for three-dimensional data with N=500, variance 2, correlated dimensions 

(four data sets) 
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Figure 4 

Grey-scale matrices for three-dimensional data with N=1000, variance 0.5, correlated 

dimensions (four data sets) 
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Figure 5 

Grey-scale matrices for three-dimensional data with N=1000, variance 2, correlated 

dimensions (four data sets) 
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