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Data Features Affecting the DETECTion of Multidimensionality 

 

Abstract 

 

The dimensionality of binary data can be assessed by the DETECT procedure. Although 

DETECT has been used in several studies, the data features that affect the DETECT index are 

still relatively unknown. Previous studies were concentrated on the DETECT decision rules, 

so that the available evidence is only indirectly relevant for the index at the basis of the 

decision rules. Based on two simulation studies, the effects of several data features on the 

DETECT index are reported without applying a decision rule. The main data features in 

question are the correlation of the dimensions, and the relative importance of the dimensions 

both in terms of the distribution of the items over the dimensions, and in terms of the relative 

size of the dimensional variances. Further, also features, such as simple structure, the overall 

size of dimensional variance, variance of the item difficulties, and  sample size are studied. 

The results provide both, a better understanding of the DETECT index and practical 

conclusions for its use. 
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In psychological and educational measurement, an assessment of the dimensionality of 

the collected data is substantial, both for technical and theoretical reasons. As 

unidimensionality is a requirement for a number of standard statistical procedures, one may 

want to check unidimensionality before further analysis. Even if the data turn out to be 

multidimensional, any information on the underlying structure can be helpful for deciding on 

further analysis. From the substantive point of view, the researcher may want to test a theory 

about the dimensionality of individual differences, and/or one can be interested in the possible 

classification of the situations, stimuli or items at hand, based on the dimensions. Besides, 

exploratory dimensionality analysis can make sense in many cases, in order to obtain a better 

view on the data and the domain under investigation. 

Hattie provided an empirical study (1984) and a profound review (1985) of statistical 

methods for assessing dimensionality. He pointed out that most of the available indices are 

not suitable for detecting dimensionality, because the underlying assumptions are not 

necessarily correct. Nevertheless, indices based on the residuals after fitting a two- or three-

parameter logistic model are considered to be useful  (Hattie, 1985).  

Various methods are applied in practice for revealing the multidimensional structure of 

data, for example factor analysis (see e.g., De Ayala & Hertzog, 1991; Hattie, Krakowski, 

Rogers & Swaminathan, 1996; Reckrease, 1979), multidimensional nonlinear factor analyses 

(Wilson, Wood & Gibbons, 1991),Yen’s indices  for local independence (1984), DIMTEST 

(Hattie et al., 1996; Nanadakumar & Stout, 1993; Stout, Douglas, Junker, & Roussos, 1999), 

DETECT (Stout, Habing, Douglas, Kim, Roussos & Zhang, 1996). Several comparative 

studies are available on dimensionality assessment procedures (Bolt, 2001; Dimitriadou, 

Dolnicar & Weingessel, 2002; Hambleton & Rovinelli, 1986; Hattie, 1984; Roznowski, 

Tucker & Humphreys, 1991; Tate, 2003; van Abswoude, van der Ark & Sijtsma, 2004).  The 

present paper concentrates on a particular and  relatively new method, the DETECT 
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procedure (Stout et al., 1996), and data features affecting its efficiency in revealing the 

dimensionality structure of data.    

DETECT (Dimensionality evaluation to enumerate contributing traits), a prominent 

and popular method for the investigation of the underlying dimensional structure of data, is a 

promising recent method. The method was developed by Kim (1994) (Stout et al., 1996), 

based on the earlier work of Junker and Stout (1994). DETECT has been further investigated 

and improved since then (e.g., Zhang & Stout,1999). In case of a simple structure, DETECT 

discloses the number of underlying dimensions. The procedure also identifies the 

corresponding partitioning of the items and yields an index of multidimensionality. A simple 

structure is realized when non-overlapping item subgroups can be identified and the items of 

a subgroup measure the same ability (Zhang & Stout, 1999; Tate, 2003). The degree of simple 

structure is assessed by the R index, to be explained after the DETECT index is presented. 

When the data have approximate simple structure, the DETECT procedure finds the most 

prominent dimensions. However, in such cases, DETECT may merge minor dimensions (with 

small variance, a few items) with a dominant dimension (with large variance, many items) or 

it may partition items of one dimension, as if they formed more than one dimension.  

DETECT uses a genetic algorithm for finding the optimal partitioning which provides 

the highest DETECT index. The theoretical DETECT index ( ) is based on the sum of 

expected covariances of the item pairs conditional upon the test composite (see Equation 1). 
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amount of ignored multidimensionality when considering a general underlying trait αθ . The 

bias corrected estimator of [ ]) ,(   
21 αθii XXCovE  is [ ])(ˆ)(ˆ

2
1

2121 TovCSovC iiii + , where 

is the conditional covariance based on the total score, and  is the 

conditional covariance based on the rest score, which is the total score leaving out the item 

pair (Zhang & Stout, 1999). The DETECT procedure aims an optimal partition, such that the 

value is maximal. The corresponding estimate is denoted with . 
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The DETECT software offers a cross-validation procedure, which provides the regular 

DETECT index estimate, called the maximal DETECT index ( ), but only for a subset of 

the data ( ), and an additional cross-validated DETECT index estimate, called the 

reference DETECT index ( )(Zhang & Stout, 1999). In the DETECT cross-validation 

procedure, one half of the data is used for obtaining a index and a partitioning of the 

items, which is further used for the second subset of the data, providing a index. 

Logically, the index is expected to approach the index quite well when the 

partitioning fits the data well, but is much smaller than when the partitioning is 

based upon chance. 
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 Information about the degree of simple structure is provided by the R index. The R 

index is basically the DETECT index divided by a modified DETECT index, where the 

absolute value of the conditional covariances of the item pairs is used instead of the signed 

values: 
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In case of cross-validation, beyond the and indices, and  indices are also 

provided. 

'
maxD̂ refD̂ R̂ refR̂

The DETECT index is a continuous measure of multidimensionality. For practical 

purposes, it is useful to have  a decision rule in order to decide upon unidimensionality or 

multidimensionality. Ideally, one may want to have a criterion based on the distribution of the 

DETECT index under the null hypothesis of unidimensionality, but unfortunately this 

distribution is not known. 

The DETECT manual (The William Stout Institute for Measurement, 2003), which 

also contains two published manuscripts (Stout et al., 1996; Zhang & Stout, 1999) and a 

research report (Douglas, Kim, Roussos, Stout & Zhang, 1999), offers more than one decision 

rule for assessing dimensionality. Unfortunately, this leads to different approaches in practice, 

as it will be illustrated in the following. 

 

Decision rules 

 

First, the regular DETECT index ( ) calculated on the whole data set is often used 

for decision making. In the Law School Admission Council Statistical Report (Douglas et al., 

1999), the data is classified based on this index, in agreement with Kim’s work (1994). A 

(and similarly ) index between 0 and .1 indicates unidimensionality, a index 

between .1 and .5, .5 and 1, 1 and 1.5, and 1.5 or higher value correspond to weak, moderate, 

strong and very strong multidimensionality, respectively (p. 7). In addition, it is emphasized 

that a  index higher than .8 is required for accepting a result as an indication of 

multidimensionality. In a simplified version for decision making (Stout et al., 1996), the five 

categories are reduced to three: unidimensionality ( ≤0.1), moderate multidimensionality 

maxD̂

maxD̂

maxD̂ '
maxD̂ maxD̂

R̂

maxD̂
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(0.1< ≤1), and sizable multidimensionality (1≤ ). In practice, this seems to be the 

common method (e.g., Bolt, 2001; Bouwmeester & Sijtsma, 2004, van Abswoude et al., 

2004).  

maxD̂ maxD̂

However, van Abswoude et al.(2004) proposed that the critical value for 

unidimensionality should be  increased. Accordingly, Uribe-Zarain, Nandakumar and Yu 

(2004) applied a classification referring to a new DETECT manual in preparation (Moran, 

Roussos & Kim, 2005): unidimensionality if the index is smaller than 0.2; weak 

multidimensionality if the index is between 0.2  and 0.4; and moderate 

multidimensionality if the index is between 0.4 and 1; strong multidimensionality for 

indices higher than 1. 

maxD̂

maxD̂

maxD̂

maxD̂

Second, Tate (2003) applies cross-validation in his study, and uses 0.1 and 1 as cut-off 

values (of ). These cut-off values are used for deciding upon unidimensionality or 

multidimensionality and upon essential or “sizeable” multidimensionality, respectively . 

Similarly, Zhang and Stout (1999) strongly recommend implementing cross-validation, and 

they introduce a new kind of criterion: when ( - )/ < 0.5 or <0.1, 

unidimensionality is concluded (p. 247). In the following, ( - )/  as a single index, 

and ( - )/ < 0.5 or <0.1 as a conjugate criterion will be referred to as the 

discrepancy measure and the combined decision rule, respectively. In another study (Balazs, 

Hidegkuti & De Boeck, submitted), these above described ad hoc cut-off values resulted in a 

rather large percentage of missers (type II errors, 22% of the data).  

refD̂

'
maxD̂ refD̂ refD̂ refD̂

'
maxD̂ refD̂ refD̂

'
maxD̂ refD̂ refD̂ refD̂

From this set of studies, it is not clear which set of decision rules is the best one and 

hence, should be used. As it is clear from the previous, there are basically four different 

indexes for deciding upon multidimensionality:  for the total data set  or for a maxD̂ '
maxD̂
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subset of the data (without cross-validation), (from the cross-validation), and the 

discrepancy measure. In the first simulation study to be reported, the basic indices  will be 

compared on their validity, and then the best one will be used to investigate the effect of data 

features. 

refD̂

 

Factors affecting DETECT 

  

Various factors or data features have been studied to find out the effects they have on 

DETECT: size factors such as sample size and number of items, as well as structure factors 

such as dimensionality and simple structure. 

 

Size factors 

 

Most of the time a large sample size is used, 2000 persons are common (Bolt, 2001; 

Tate, 2003). Van Abswoude et al. (2004) generated 2000 and 200 observations in their study. 

The sample size in Zhang and Stout’s study (1999) was either 1600 or 800, and in Balazs, 

Hidegkuti and De Boeck’s study (submitted) it was 200.  

The results for the sample size were as follows: DETECT found the underlying 

structure of multidimensional data more often for data with 1600 examinees than for data with 

800 examinees (Zhang & Stout, 1999). For a sample size as small as 200, DETECT 

performed less well than for 2000 examinees (van Abswoude et al. 2004). Although a small 

sample size seems to be problematic, in some domains, such as psychology, a sample size of 

200 or 400 is rather common. In such a situation, a researcher who uses cross-validation 

would end up with 100/100 or 200/200 examinees per DETECT index, which may be too few 

for revealing the underlying structure. Unfortunately, based on the available literature, one 
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cannot make an estimate of the smallest sample size for which DETECT can be used 

effectively. 

The number of items was manipulated in a study by van Abswoude et al. (2004). 

Zhang and Stout (1999) used either 20 or 40 items, and in these latter simulations the 

distribution of the items over dimensions were not varied. The dimensional structure was 

recovered better for 21 items than for 7 items, in case of a five parameter acceleration model ( 

van Abswoude et al., 2004), but the number of items did not have an effect in case of the two-

parameter logistic model (van Abswoude et al., 2004). 

In other studies, also the distribution of the items over the dimensions was 

manipulated. Tate (2003) generated two-dimensional data with a major dimension (50 items) 

and a minor dimension (10 items) and four-dimensional data with equally important 

dimensions.  In the study of van Abswoude et al. (2004), there were two or four-dimensional 

data sets, with 7 or 21 items loading on the dimensions, in different combinations. Bolt (2001) 

assigned 25 items to two to four dimensions and manipulated the distribution of the items 

over the dimensions by grouping them in various ways.  

In Tate’s study, DETECT was able to recover the dimensional structure of both the 

equally and the unequally distributed items. According to the result of van Abswoude et al. 

(2004), the recovery of the dimensional structure was better for data with equally distributed 

items over dimensions, than for data with unequally distributed items. This was explained by 

the location of the test composite that is closer to the item clusters with more items (van 

Abswoude et al., 2004). The same finding was reported in Bolt’s study (2001). When the 

correlation between the dimensions was not high (only .5), DETECT recovered the latent 

structure of data with two dimensions equally well independently of the distribution of the 

items. However, for the same correlation value, DETECT revealed only two dimensions out 

of three of a data set when 14, 7, and 4 items loaded on the dimensions. While DETECT 
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found the three dimensions of data when 8, 8 and 9 items loaded on the dimensions. Similarly, 

the dimensional structure of a four-dimensional data set was revealed when 6, 6, 6 and 7 items 

belonged to the dimensions, and DETECT failed to reveal the dimensional structure in case of 

10, 7, 5 and 3 items loading on the dimensions. 

 

Structure factors 

 

Different structures for data generation were used, most often the unidimensional and 

multidimensional (two to four dimensions) versions of the Rasch model (Tate, 2003), the two-

parameter logistic model (Bolt, 2001; Tate, 2003; van Abswoude et al., 2004; Zhang & Stout, 

1999) or the three-parameter logistic model (Tate, 2003; Zhang & Stout, 1999) were applied. 

The basic model for data generation does not seem to have an impact on the effectiveness of 

DETECT. Tate (2003) used the Rasch model, the 2PL and 3PL models, and the underlying 

structure was always found. It seems it is not the type of model that is vital, but other features 

of the model. 

Besides, the correlation among the dimensions was often included as a factor in the 

simulation design (e.g., Bolt, 2001; Tate, 2003; van Abswoude et al. 2004). Van Abswoude et 

al. (2004) varied the correlation systematically form zero to one with steps of 0.2. It appears 

that a correlation from a value of .8 on is too high to differentiate between the dimensions 

based on the index (Bolt, 2001; van Abswoude et al., 2004).  maxD

Some researchers used data with a simple structure (e.g., van Abswoude et al. 2004), 

others used data with an approximate simple structure (e.g., Zhang & Stout, 1999), or this 

data feature was included as a design factor in the study (e.g., Bolt, 2001; Tate, 2003). 

According to Zhang and Stout (1999), the effect of lack of simple structure is not strong, but 

in other studies, the precise structure could not be revealed in such cases. In Bolt’s study 
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(2001), the dimensionality structure of data with lack of simple structure was not recovered. 

In his study, the data sets without simple structure contained items which measured various 

composites of two dimensions. Furthermore, in Tate’s study (2003), DETECT was able to 

provide the dimensions of a data set with three underlying dimensions and approximate 

simple structure, and of a data set with five dimensions when one dimension correlated with 

the other four. But DETECT did not succeed in revealing the structure of a data set with one 

dominant dimension and a minor dimension, and of data with diffuse structure when the item 

discriminations were continuously varied between complete dominance of the first and 

complete dominance of the second dimension (Tate, 2003). 

The extremity of the discrimination parameters (Tate, 2003; van Abswoude et al., 

2004) and the extremity of the item difficulties (Tate, 2003) are further structural features that 

were explored for their effects.  

The extremity of the item difficulties caused a problem for DETECT when the data 

were multidimensional (Tate, 2003). But the data sets with highly discriminating items were 

not problematic at all: the higher were the discrimination parameters, the better was the 

recovery of the structure of the data (Tate, 2003; van Abswoude et al., 2004). 

Finally, the variance of the underlying dimensions has also been looked at (Balazs et 

al., submitted). The overall size of the dimensional variance was shown to have an effect on 

DETECT (Balazs et al., submitted). A variance of 0.2 seemed to be rather small for DETECT 

to detect multidimensionality. But in general, it is unknown which overall size of the 

dimensional variance is sufficient for DETECT to reveal multidimensionality. The size of the 

variance is an alternative way to approach discrimination strength, and therefore these results 

are in line with those of Tate (2003) and van Abswoude et at. (2004) on the extremity of the 

discrimination.  
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 In sum, both the size of the data set and the structure of the data seem to have an effect 

on the DETECT index and hence, on the success of the procedure in revealing the underlying 

structure of data. However, since several decision rules are used in practice, overall 

conclusions about the conditions in which DETECT can be effectively used are difficult to 

draw. Because most studies report mainly the success or failure of a given criterion in 

revealing the underlying structure of the data, and another criterion may yield different 

results, it is not always possible to generalize from these studies. 

 The aim of the present studies is not to check the validity of the cut-off criteria, but to 

investigate the effects of various data features on the DETECT index. The validity of the cut-

offs is a secondary issue because the cut-offs are defined on one or more DETECT indices. 

First the behaviour of the DETECT index should be explored. Considering several possibly 

influential data features, two simulation studies were conducted that will be described in 

detail after a discussion of the concept of dimensionality. 

 

The concept of  dimensionality 

 

In order to interpret the findings of the studies to be described and of earlier studies, 

several data features will be discussed from the concept of dimensionality.  

The concept of unidimensionality may not be confused with reliability, internal 

consistency and homogeneity referring to perfectly homogeneous intercorrelations (Hattie, 

1985). The dimensionality of a test is independent from its reliability or internal consistency, 

and the desire for high intercorrelations of all items leads to tests with a rather narrow specific 

focus and should not be aimed at (Cattell 1964, 1978; Cattell & Tsujioka, 1964; Hattie, 1985).  

Unidimensionality exists if there is only one underlying trait in the data. Classical test 

theory assumes that the items measure the same dimension (e.g., Nandakumar & Stout, 1993), 
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although this assumption is often rather questionable (Hableton & Swaminathan, 1985; 

Humphreys, 1981,1985; Lumsden, 1961; Nandakumar, 1993; Nandakumar & Stout, 1993; 

Reckase, 1979, 1985; Stout, 1987; Traub 1983).  

In traditional IRT, the dimensionality of a test is understood as the number of 

dimensions that results in a monotone and locally independency model (Tate, 2003). When 

one dimension is sufficient to fulfill these requirements, the data are strictly unidimensional 

(Hattie et al., 1996; Tate, 2003; van Abswoude et al., 2004). Nevertheless, since several 

examinee and item characteristics can influence dimensionality, this seems to be a very strict 

requirement (e.g., Hattie et al., 1996; Nandakumar & Stout, 1993).  

McDonald (1979, 1981) suggested to revise the strong local independence principle, 

meaning that the probability of  a given  response pattern for a pair of items is a product of the 

probabilities of the separate responses given the latent trait (Lord & Novick, 1968). The 

revision implies the assumption of  weak local independence, that is, the responses are 

mutually uncorrelated given the latent trait. In 1990, Stout proposed to use the essential local 

independence principle, namely that the conditional covariance of the items are small given 

the latent trait. 

Based on this principle, essential dimensionality can be defined as the minimum 

number of dimensions needed to satisfy the assumptions of monotonicity and essential local 

independence. Consequently, the essential dimensionality of a test may be equal or lower than 

the strict and weak dimensionalities. In other words, items being relatively homogeneous and 

mainly reflecting the ability at the basis of the test can form essentially unidimensional test 

(Junker, 1991; Nandakumar, 1991, 1993; Stout, 1990; Stout et al., 1996; Tate, 2003; Zhang & 

Stout, 1999).  The DETECT procedure is developed for investigating essential dimensionality 

(Zhang & Stout, 1999). 
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Multidimensionality can be differentiated in several ways. Multidimensional structures 

can be either compensatory or non-compensatory (see e.g., Bolt & Lall, 2003). In 

compensatory models (e.g., Reckase, 1985), the score on a dimension can compensate the 

scores on another dimensions unlike in non-compensatory multidimensional structure (e.g., 

Whitely, 1980). When between-item multidimensionality exists, none of the items are meant 

to measure more than one dimension, whereas in case of within-item multidimensionality they 

are (Wang, Wilson & Adams, 1997; Wang & Chen, 2004). Kirisci, Hsu and Yu (2001) 

differentiate between two types of multidimensionality generating techniques: equally 

dominant and perhaps correlated dimensions and dimensions differing in their dominance.  

Furthermore, it is a basic idea that multidimensionality is gradual (e.g., Hattie, 1984, 

1985) and that data features contribute to multidimensionality to a certain extent. Some 

features are directly relevant, others are less clearly relevant and a third category of data 

features is conceptually irrelevant. The results of the DETECT procedure will be explained 

keeping in mind this discussion of multidimensionality. 

At one extreme, one finds the completely unidimensional structure. Moving away 

from this extreme to the opposite direction, the degree of the multidimensionality is 

increasing depending on the following two, directly relevant features and their combination.  

First, the higher is the correlation between the dimensions, the more difficult it is to 

differentiate among them, and therefore the less multidimensional the data are.  

Second, the relative importance of the dimensions plays a role. When the second (the 

third, etc.) dimension is less important than the first, the data are less multidimensional than 

when the dimensions are equally important. The importance of the dimension concerns the 

relative size of the variance and the distribution of the items.  

Other features are less clearly relevant for multidimensionality, but are related to the 

way the DETECT index is defined. A first feature is the overall size of dimensional variance, 
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given that there is more than one dimension. It is an issue whether a structure with two 

dimensional variances of 1 is more multidimensional than one with two dimensional 

variances of .2 instead. The way the DETECT index is constructed implies it is, because of 

the summation of conditional covariances in Equation 1, and the conditionality being based 

on the composite score. 

A second feature in this category, is whether the simple structure is realized. Lack of 

simple structure does not necessarily imply less multidimensionality but less homogeneous 

dimensions. Again, the DETECT index depends on whether the simple structure is realized, 

because the way it is defined requires distinct item clusters. 

Finally, other features such as the sample size, or the variance of the item difficulties 

do not play a role at all in multidimensionality, since there is no conceptual basis for a link. 

Other features may be considered to have an effect, but here only these two are investigated, 

among the broader set of features unrelated to multidimensionality.  

 From this conceptual analysis, it is desirable that DETECT is sensitive to the 

correlation of the dimensions, and to the relative importance of the additional dimensions as 

defined in terms of relative size of the dimensional variance and in terms of the distribution of 

items over the dimensions. It is expected, but not especially desirable, that DETECT is 

influenced by the overall size of the dimensional variance and by the degree of simple 

structure. Finally, it is undesirable that the sample size and the variance of the item difficulties 

affect the DETECT index. Apart from investigating these expectations, it is of interest to 

assess the size of the impact of these factors and their interactions. 

 

Simulation studies 
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 Two simulation studies were carried out. Most of the design features in the two studies 

are the same. The main differences concern the way in which multidimensionality was varied 

in the design.  

In the first study, the correlation between dimensions and the relative importance in 

terms of items was varied but not the relative importance in terms of variance. There were 

always two dimensions with equal variances, but when the correlation between the two 

dimensions was one, the two dimensions collapse into one.  

In the second study, the relative importance was varied both, in terms of relative size 

of the dimensional variance and in terms of the distribution of the items over the dimensions, 

but the correlation between the dimensions was always zero. The two dimensions reduce to 

one when the variance of the second dimension is zero.  

In the following, the common features of the design structures are described, and next 

the specific factors of the designs are presented. 

 

Common design factors 

 

Data sets were generated based on a two-dimensional 2PL (Equation 3). 

ipipipiyP βθαθα −+== 2211))1((logit ,        (3) 

where is the probability of success of person p on item i, α)1( =piyP 1i is the discrimination of 

item i for ability θ1, and βi  is the difficulty of item i. For an item of dimension one 

11 =iα and 02 =iα , and for an item of dimension 2 01 =iα  and 12 =iα . In case of an 

approximate simple structure, 1)( 1 =iE α  and 0)( 2 =iE α  when the item belongs to the first 

dimension, and 0)( 1 =iE α and 1)( 2 =iE α when the items belongs to the second dimension. 

The number of items was always 30. The distribution of the items over the dimensions 

was equal or unequal, 15/15 or 20/10, respectively.  
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In order to vary the degree of simple structure, the variances of the discrimination 

parameters within a dimension was either 0 or 0.2.  When the variance was 0.2, the simple 

structure was not perfect, but only approximate. Since the definition of simple structure (see, 

e.g. Zhang and Stout, 1999) allows for correlated dimensions, the existence of simple 

structure was purely determined by the deviations of the item discriminations from the 

average discrimination for the items belonging to the given dimension.  

The sample size was varied systematically: 100, 200, 400, 600, 800 and 1000 

examinees were used. Note, that the sample size for the cross-validation procedure was only 

half of the above mentioned values. For the cross-validation, the data sets were randomly 

splitted into two halves.  

The mean of the item difficulties was 1 in each data set, and the variance of the item 

difficulty parameter was 0.2, 0.6, 1. 

 

Specific design factors of the studies 

 

In Study one, two additional factors were varied. The correlation between the 

dimensions was 0, .2, .4, .6, .8, or 1. In the last case, the data were unidimensional, and not 

two-dimensional. DETECT is expected to be less efficient in revealing the 

multidimensionality of the data when the correlation is high. 

 The latent dimensions were generated with normal distribution and zero means. The 

dimensional variances were equal for the two dimensions, and the overall size of the 

dimensional variance was varied between 0.2 and 1 (for each dimension), with steps of 0.2.  

All six design factors (distribution of the items over the dimension, simple structure, 

sample size, variance of item difficulty, correlation, overall size of the dimensional variance) 
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were fully crossed, and one data set was generated for each cell in the design. In this way, 

2160 data sets were generated for the first study. 

Study two was planned in order to see how the relative size of the dimensional 

variance affects the DETECT index. The variance of the first dimension was always 1, 

whereas the variance of the second was varied between zero and one by steps of 0.2. When 

this latter variance is zero, the data are unidimensional. The correlation between the 

dimensions were always zero.  

All five design factors (distribution of items over dimensions, simple structure, sample 

size, variance of item difficulty, relative size of the dimensional variance) were fully crossed, 

and one data set was generated for each cell. In this way, 432 data sets were generated for the 

second study. 

 

Implementing the DETECT procedure 

 

 The DETECT procedure was applied both with and without cross-validation. For the 

cross-validation, data sets were randomly divided into two halves, the first half was used to 

obtain the '
maxD̂  index and in the second subset of the data was determined. For analyses 

without cross-validation, the whole data sets were used to calculate . Based on the 

instructions of the DETECT program (The William Stout Institute of Measurement, 2003), 

the number of vectors to be mutated should be between a fifth (6 in this study) and a tenth (3 

in this study) of the number of the items, and therefore 5 vectors were mutated. As 

unidimensional and two-dimensional data were simulated, and the differentiation between the 

two is in the focus of this study, two was chosen as the maximum number of dimensions to 

run the program. For the analyses with cross-validation, the minimum number of examinees 

per total score cell was set to 10, 10, 7, 5, 3 and 1, in the case of sample size 1000, 800, 600, 

refD̂

maxD̂
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400, 200 and 100, respectively. For a sample size of 100, minimum 72% and on average 83% 

of the observations belonged to a score group larger than 1 person. When the minimum 

number of examinees per total score cell was set to 2 for the data sets, 61% of the 360 data 

sets did not fulfill the requirement that 85% of the examinees should be used in the analysis. 

This problem did not occur for analyses without cross-validation, when the minimum number 

of examinees per total score was set to 20, 20, 15, 10, 5 and  2, for sample size of 1000, 800, 

600, 400, 200 and 100, respectively.  

 

Results 

 

Study one  

  

 Since four DETECT indices are used for decision making in the literature, the validity 

of , , and the discrepancy measure were investigated with data from Study one 

in a first step, in order to select an index to concentrate on. This selection was made based on 

a logistic regression analysis using the four indices as predictors of multidimensionality. A 

binary variable was created with value 1 for all two-dimensional and value 0 for all 

unidimensional data sets, and was used as the dependent variable in an analysis with the four 

indices as predictors. The results showed that the discrepancy measure ( - )/ was 

not a significant predictor of multidimensionality (p=.207), but ,  and were 

(p<.001 for all).  

maxD̂ '
maxD̂ refD̂

'
maxD̂ refD̂ refD̂

maxD̂ '
maxD̂ refD̂

The fit of the models with different sets of predictors is shown in Table 1. The  

statistics were calculated based on Cox and Snell (1989, pp. 208-209) and Nagelkerke (1991), 

as implemented in SAS (SAS Institute, 1999). It is clear from the results that the discrepancy 

2
adjR
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measure does not contribute significantly to the prediction of multidimensionality. can 

be used to predict multidimensionality, but not as effectively as  or . It is important 

to note that twice as much data is used for the calculation of than for ; and is 

also calculated on only half of the data, although by implementing the partitioning from the 

analysis of the other half. 

'
maxD̂

maxD̂ refD̂

maxD̂ '
maxD̂ refD̂

The goodness of fit of a model with as a single predictor of multidimensionality, 

was somewhat better than of a model with only. When the indices,  and , were 

combined, the fit further improved, but adding  has no effect. The weighted sum of  

 and has a higher validity than each of the two separately. For reasons of simplicity 

and because the weights are empirically determined for this study, and cannot be generalized 

to other studies, a single index will be used to study the effect of features of the data. Based 

on the comparative results, the index was selected to concentrate on, although all 

analyses were repeated with , and the results were very similar to those obtained with 

, which is not surprising given the high correlation between and (r =.849). The 

only difference occurred with respect to the effect of the sample size, which will be discussed 

in detail later. 

maxD̂

refD̂ maxD̂ refD̂

'
maxD̂

maxD̂ refD̂

maxD̂

refD̂

maxD̂ maxD̂ refD̂

_________________________ 

Insert Table 1 about here. 

__________________________ 

 

Following the manual (William Stout Institute for Measurement, 2003), for 

multidimensional data, an  index value of at least .8 is needed to interpret the DETECT 

index, which corresponds to approximate simple structure. However, the presence of a simple 

R̂
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structure versus the presence of approximate simple structure was not significantly related to 

the  index (p = .836) in this study. At the same time,  was highly correlated with (r = 

.807). Neither was  significantly related to simple structure (p=.369) but it was instead 

highly correlated with (r=.946). The simple structure concept is only valid for 

multidimensional data, so multidimensional data sets were also investigated separately. The 

conclusions are the same: the  index and the  index were not significantly related to 

simple structure (p = .656 and p=.781, respectively), and were highly correlated 

with and (r=.787 and r=.939, respectively) 

R̂ R̂ maxD̂

refR̂

refD̂

R̂ refR̂

maxD̂ refD̂

Furthermore, for most of the data sets the and the indices were smaller than .8 

(92.8% and 94.7%, respectively), which corresponds to the lack of approximate simple 

structure according to the DETECT manual. The ratio of the data sets with R indices smaller 

than .8 was not much smaller for multidimensional data (79.4% and 87%, considering and 

, respectively).  

R̂ refR̂

R̂

refR̂

Since the  indices show only a weak relation with the simple structure factor, but a 

high correlation with the DETECT values, their use must be doubted in the present study. It is 

possible, however, that the R index is more sensitive to stronger deviations from the simple 

structure, so that it can fulfill its role to modify the interpretation. 

R̂

 

The fitted models 

 

 First of all, was modeled with all main effects of the design: correlation, 

distribution of the items over the dimension, simple structure, overall size of the dimensional 

variance, sample size, variance of item difficulty (Model 1). Later, the model was completed 

maxD̂
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with all pairwise interactions of the dummy coded variables (Model 2), and in a next step, 

also all possible three-way interactions were included in the model (Model 3). Because only 

those three-way interactions turned out to be significant which contained both the correlation 

and the overall size of the dimensional variance, another model was applied, in which only the 

three-way interactions containing the two-way interaction of correlation and variance were 

added to the elements of Model 2 (Model 4). These are also the two predictors with the 

highest conceptual relevance. 

Second, these four models were restricted to the linear and quadratic components of 

the main effects and their interactions (from Model 2 on ). Of course, this reduction is only 

relevant for factors with more than three levels. 

Third, four analogous models were implemented replacing the corresponding design 

values with the real values. These real values deviate slightly from the design values for the 

variances and for the correlations because of the stochastic nature of the generated data.  

In order to test whether the fit can be improved by including additional interactions in 

the models, regression tree analyses (see e.g., Breiman, Friedman, Olshen & Stone, 1984; 

Chaudhuri, Lo, Loh & Yang, 1995; Loh, 2002) were implemented on the index, using 

the design factors as predictors. The regression tree analyses were carried out by applying the 

GUIDE software (Loh, 2004). This procedure searches for meaningful splits of variables and 

interactions of those split variables. The first split was always forced between the 

unidimensional and multidimensional data sets, and two regression trees were grown on these 

trunks (see Dusseldorp & Meulman, 2004). The obtained leaves were included in a regression 

model for predicting the index. In a next step, the residuals of this regression analysis 

were used as dependent variable, and two residual regression trees were grown in the same 

way as before. Binary variables created from the obtained leaves of the two times two trees 

were used in new regression analyses. These variables accounted for 69.6% of the variance of 

maxD̂

maxD̂
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maxD̂ . Seven of these variables were not redundant with Model 1 and could be included in this 

main effects model, and two of them were not redundant with the variables of Model 2. None 

of the tree variables could be added to the variables of Model 3 or Model 4, as they were all 

redundant. 

__________________________ 

Insert Table 2 about here. 

__________________________ 

 

Table 2 shows the adjusted R2 of the Models 1 to 4 in their original form, and either 

complemented with a regression tree, or limited to the linear and quadratic trends, or finally, 

estimated with real values as predictors. The conclusions from the regression analyses and the 

regression tree analyses are as follows: 

1. Model 4 with the reduced set of three-way interactions seems to be the best model. It 

performs almost as well as Model 3, and no regression tree variables were found that 

were not redundant with the factors of the model. 

2. Restricting the effects only to linear and quadratic trends does not have a drastic 

effect, but a small effect instead.  

3. Given the limitation to linear and quadratic effects, it does not really pay off to use 

real values instead of the true values. 

Based on these conclusions, the effects of Model 4 with the design values instead of real 

values will be focused on but without the restriction to linear and quadratic trends (first 

column in Table 2).  

 

The effects of the design factors 
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The significant (p<.05) effects from the selected regression analysis of Model 4, 

together with the corresponding probabilities and the effect sizes ( ), are shown in Table 3. 

Based on these results, the findings are as follows. The three most important (effect sizes 

) predictors of the cross-validated DETECT index were the correlation, the overall 

size of the dimensional variance and their interaction. Six additional predictors contributed 

sizably to the prediction of  (effect sizes ), including the sample size and the 

distribution of the items over the dimensions. The simple structure and the variance of the 

item difficulties were among the ten variables with a significant effect, but their contribution 

to the prediction of the DETECT index was only minor.  

2η

1.2 >η

maxD̂ 01.2 >η

_________________________ 

Insert Table 3 about here. 

__________________________ 

 

In the following, the effects will be reported and discussed based on the three 

categories of the conceptual analysis of dimensionality (highly relevant; not directly relevant, 

but implied by DETECT; irrelevant).  

First, as expected, the effect of correlation between the dimensions is strong, actually 

it is the strongest predictor of ( ). Figure 1 shows the results. These results are a 

strong indication for the validity of the DETECT index, and they confirm the earlier 

observations (Bolt, 2001; van Abswoude et al., 2004), for example, that a correlation as high 

as .8, results in rather small average DETECT index value (mean = 0.319). This value 

turned out to be only slightly larger than the average DETECT index value for unidimensional 

data sets ( =0.282) . The differentiation of two underlying correlated dimensions seems to 

be very difficult. 

maxD̂ 467.2 =η

maxD̂

maxD̂
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_________________________ 

Insert Figure 1 about here. 

__________________________ 

 

Similarly, the distribution of the items over dimensions affected the DETECT results 

in the expected way, but not as much ( ) as could be expected from its conceptual 

importance. Also the interaction with the correlation is significant ( ), see Table 2.  

017.2 =η

011.2 =η

Perhaps the inequality 10/20 is not sufficiently extreme to have a large effect. For clearly 

multidimensional data (r ≤ .6), the index is lower for unequally distributed items over the 

dimension than for equally distributed items over the dimensions, but for data with higher 

correlation values than .6, the means of are about the same (see Figure 2).  

maxD̂

maxD̂

   _________________________ 

Insert Figure 2 about here. 

__________________________ 

 

Second, although it is not required, but implied by the DETECT procedure, the overall 

size of the dimensional variance affected the index substantially ( ). The 

interaction between the dimensional variance and the correlation is also an important 

predictor of  ( ) as shown in Figure 3. It is natural that the higher the correlation 

is, the larger dimensional variance is needed, in order to indicate multidimensionality. A 

variance as small as 0.2 does not seem to suffice in order to differentiate between the 

dimensions, especially not for data with highly correlated dimensions. Similarly, a 

dimensional variance of 0.4 seems to differentiate between dimensions only with a correlation 

smaller than .6. 

maxD̂ 239.2 =η

maxD̂ 148.2 =η
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_________________________ 

Insert Figure 3 about here. 

__________________________ 

 

In addition, an effect of  simple structure is expected. The effect was significant 

indeed and had the expected sign, but the effect size was very small ( ). This is 

perhaps not surprising, considering the fact that this effect refers to simple structure versus 

approximate simple structure (and not versus an extreme deviation from simple structure). 

004.2 =η

Third, although it is undesirable, the variance of the item difficulties had an impact on 

the index, but the effect size was negligible ( ). In general, the larger the 

variance of the item difficulties was, the smaller the index value was.  

maxD̂ 009.2 =η

maxD̂

The sample size had not only a moderately large main effect ( ), but it also 

appears in several significant interactions. For sample size 100 and 200, the effect of the 

interdimensional correlation is seriously moderated, especially for high correlation values, as 

shown in Figure 4. In other words stated, there is no problem with small sample size if the 

correlation is low, but a moderately high DETECT index does not necessary indicate 

multidimensionality if the sample size is small. 

034.2 =η

_________________________ 

Insert Figure 4 about here. 

__________________________ 

The results for are very similar to the results for . The most important 

predictors ( ) are the same: the correlation, the overall size of the dimensional variance 

and their interaction. The second group of  predictors with  consists of exactly the 

same variables as before, including the sample size and the distribution of the items. The 

refD̂ maxD̂

1.2 >η

01.2 >η
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effect sizes are very similar, except for the effect size of the variance of the item difficulties 

which is a bit smaller for ( ) than for ( ). All in all, the investigated 

data features have very similar effects on both DETECT indices. 

refD̂ 002.2 =η maxD̂ 009.2 =η

 In sum, the following conclusions can be drawn from a practical point of view. The 

DETECT procedure can be effectively used for investigating the dimensionality of data with 

400 observations but less may be somewhat problematic. Also for data with weak dimensions 

(smaller dimensional variance than .4) or highly correlated dimensions (r ≥ .8), DETECT does 

less well. Since the R index is closely related to the DETECT index, but not to simple 

structure, the use of the R index is not really necessary for the kind of data as in Study one, 

but this conclusion may not be generalized to data structures with a larger deviation from 

simple structure.  

 

Additional analyses related to the sample size 

 

Based on the results, a larger sample size than 200 is to be recommended for using the 

DETECT indices. In order to check whether the fact that data sets with a smaller sample size 

than 400 were used affected the conclusions, a subset of the data with sample size lager than 

200 was investigated. Also for this subset of the design, the index was a better predictor 

of multidimensionality than considering the deviance values of separate regression 

analyses ( 868.466 versus 924.2, respectively).  

maxD̂

refD̂

The same models were fitted to the restricted data set as before. Based on a further 

inspection of the results (for N≥400), it can be concluded, that both indices ( and ) 

are still significantly related to the sample size (p=.002, p<.001, respectively), although the 

effect sizes were negligible ( , , respectively). For this set of data, the 

maxD̂ refD̂

003.2 =η 005.2 =η
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interaction of the sample size with the correlation was slightly related to the DETECT indices 

(  for and  for ). When also the data sets with a sample size of 

400 were omitted, the index was no longer significantly affected by the sample size 

(p=.109), whereas index sill was (p<001, ), which is probably because is 

calculated on half of the data. However, none of the indices were affected by the interaction 

of the sample size with the correlation in this subset of the data. 

002.2 =η maxD̂ 003.2 =η refD̂

maxD̂

refD̂ 003.2 =η refD̂

The most important predictors (for N≥600) were the correlation ( ), the 

overall size of the dimensional variance ( ), the interaction of the two ( ), 

the distribution of the items ( ), and the interaction of the correlation with the 

distribution of the items ( ).  

524.2 =η

280.2 =η 143.2 =η

017.2 =η

013.2 =η

In sum, based on the above described additional analyses, the DETECT procedure is 

less vulnerable when one uses data with a larger sample size than 400. The most important 

effects are similar for smaller sample sizes than for larger ones.  

 

Study two 

 

In Study one, the inequality of the importance of the dimensions was restricted to the 

aspect of the distribution of the items over the dimensions. In Study two, the relative 

importance was manipulated in two ways: through the distribution of the items over the 

dimensions and through the relative size of the variances. The variance of the second 

dimension was varied in order to manipulate the relative importance of the dimensions in 

terms of the variance. An additional difference between the designs was that the correlation 

between the dimensions was not manipulated in the second study, but fixed to zero.  
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The R  indices 

 

The R indices were again highly correlated with DETECT indices, the R and 

indices were not significantly related to simple structure (p=.399 and p=.345, 

respectively) The correlation between R and was .751, and the correlation between the 

 value and  was .893. The omission of the unidimensional data sets from the analyses 

did not change the results. 

refR̂

maxD̂

refR̂ refD̂

Finally, although all data sets had at least approximate simple structure, 75.9% of the 

index values and 78.7% of the  index values were smaller than .8. Considering only the 

multidimensional data sets, the corresponding ratios were 71.1% and 74.4%, respectively. 

Based on this analysis of the R indices, similar conclusions can be drawn as before, that is the 

R indices have only limited utility, when the deviation from simple structure is not too large. 

R̂ refR̂

 

The fitted models 

 

The analyses of the data were carried out as before. First, a model with only main 

effects was fitted to the data (Model 1), also models with all pairwise effects (Model 2) and 

with all three-way interactions (Model 3). The significant three-way interactions were added 

to Model 2, in order to construct Model 4 (the lower-order effects are always included if 

higher-order effects are). In a second step, these analyses were repeated for the linear and 

quadratic trends, and in a final, third step, the linear and quadratic trends of the realize values 

of the design factors were used in the models. In addition, regression tree analyses were 

carried out, in the same way as in Study one. The regression tree resulted in three interaction 

variables. Also the residual tree was fitted, which detected three additional threshold 
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interactions. The resulting tree variables were used in a model as predictors of , and 

accounted for 55.7% of the variance of . One of the variables was not redundant with the 

variables of Model 1, but all of them were redundant with the predictors of Model 2, Model 3 

and Model 4. As it can be seen in Table 4, based on the adjusted R-square values, the model 

in the first column with all three-way interactions had the best performance in terms of 

adjusted explained variance ( .834). Since Model 4 contains all significant effects from 

Model 3, and has a similarly good performance ( .808), this model was chosen to 

concentrate on.  . 

maxD̂

maxD̂

=2
adjR

=2
adjR

_________________________ 

Insert Table 4 about here. 

__________________________ 

 

The effects of the design factors 

 

In Table 5, the significant predictors of this model are shown in the order of the effect 

sizes (expressed as ).   2η

            _________________________ 

Insert Table 5 about here. 

__________________________ 

 

According to the results, the relative importance of the dimensions in terms of the 

dimensional variance and the distribution of the items were the most important predictors, 

these are the two predictors with the highest conceptual validity. In addition, eight other 

predictors had sizable effects ( >.01), including the variance of the item difficulties and the 2η
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sample size. The simple structure of the data had only a minor effect on the index 

( =.004). The results will be discussed in detail for all three predictor categories based on 

the multidimensional concept.  

maxD̂

2η

 First, as the correlation of the dimensions was not manipulated, the effect of 

correlation could not be observed. However, the fact, that the two dimensions were not 

correlated at all has implications, because Study one shows that the correlation interacts with 

other factors, so that their effect is different when the correlation is zero. 

Based on the multidimensionality concept, it was expected that the relative importance 

of the dimensions in terms of variance was one of the most meaningful predictors. This 

predictor itself explained 70.2% of the variance of the data. Also, the relative importance of 

the dimensions  in terms of the distribution of the items over the dimensions seems to have a 

substantial effect, but a clearly smaller one ( ). The interaction of these two relative 

importance measures was also significant, but it is only minor ( ). The means of 

 indices are shown for each combination of these two predictors in Figure 5.   

093.2 =η

012.2 =η

maxD̂

 

_________________________ 

Insert Figure 5 about here. 

__________________________ 

 

The index increased with the relative importance of the second dimension in 

terms of variance. For unequally distributed items, the index values were always lower 

than for data with equally distributed items. The larger the relative importance of the second 

dimension was in terms of variance, the larger effect the distribution of the items had on 

. The DETECT procedure was sensitive to both type of inequalities of the dimensions, 

maxD̂

maxD̂

maxD̂
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which is a desirable characteristic. The effect of an unequal distribution of items showed 

somewhat better in terms of explained variance when the dimensional correlation is zero, in 

comparison with the results of Study one.    

Second, although it is not necessarily implied by the concept of multidimensionality, 

the simple structure had a minor effect on the index ( ). This effect was slightly 

stronger in interaction with the variance of the second dimension ( ). When the 

variance of the second dimension was smaller in comparison to the variance of the first 

dimension, the index values were smaller for data with simple structure, but when the 

variance of both dimensions was high, simple structure leads to higher index values than 

an approximate simple structure did, as it can be seen in Figure 6. Simple structure seemed to 

have the expected kind of role when the dimensions are balanced.  

maxD̂ 004.2 =η

006.2 =η

maxD̂

maxD̂

_________________________ 

Insert Figure 6 about here. 

__________________________ 

 

Third, the sample size appeared only in interactions and did not have such a large 

effect on as in Study one. This result is actually in agreement with the findings of Study 

one, since it is shown in Figure 4, that the sample size does not have a sizable effect for small 

correlation values. The results for differ from the results for only with respect to the 

sample size. The sample size in the cross-validation, for , is only half of the sample size 

for  in the regular procedure. This may explain that the sample size had a strong effect 

on  in Study two ( ).  

maxD̂

refD̂ maxD̂

refD̂

maxD̂

refD̂ 140.2 =η
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The variance of the item difficulties affected the DETECT procedure to some extent, 

in the same way as in Study one.  

The results of Study two can be summarized briefly in the following way. Both the 

relative size of the dimensional variances and the distribution of the items over the 

dimensions affected the DETECT index in the expected way. The less multidimensional the 

data were, the smaller was the index. Furthermore, the effect of the sample size on  

could not be seen in Study two, because of the uncorrelated dimensions, whereas it did have 

an effect on . Study two confirmed the results of Study one that simple structure (versus 

approximate simple structure) is at best slightly related to the DETECT indices. Besides, the 

variance of the item difficulties again affected the DETECT procedure in a minor way. 

Finally, the R indices did not seem to function well as a moderator in the interpretation of the 

DETECT index when the data have a simple or an approximate simple structure. 

maxD̂ maxD̂

refD̂

 

Discussion and conclusion 

 

 The effects of several important data features on DETECT have been investigated. Not 

the effectiveness of a decision rule was studied, but the sensitivity of the regular DETECT 

value for the whole data ( ). The sensitivity of the cross-validated DETECT index ( ) 

seems to very similar, although is more influenced by the sample size than . This is 

not surprising, since for the calculation of , only half as much data is used effectively than 

for the calculation of . Consequently, seems to be a better indicator than . 

maxD̂ refD̂

refD̂ maxD̂

refD̂

maxD̂ maxD̂ refD̂

According to the results, all data features that are conceptually connected with the 

multidimensionality affect DETECT as desired, such as the correlation of the dimensions, and 

the inequality of the dimensional importance. Other data features are less naturally related to 
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multidimensionality, but still have an expected effect on DETECT, based on the way 

DETECT indices are constructed, such as simple structure and the overall size of the 

dimensional variance. A third group of effects is undesirable because they are unrelated to 

multidimensionality, such as the sample size, and the variance of the item difficulties. 

Especially the sample size is shown to have some effect on DETECT, if the sample size is 

100 or 200. This finding is relevant in that large sample sizes are common in studies in 

educational measurement, but not in studies in psychology. It should require further 

investigation to find out how large sample size should be in relation to the number of items. 

The higher the correlation of the dimensions is, the smaller the DETECT indices are. 

In the same way, the more similar the relative importance of  the dimensions is, the more 

multidimensional the data are, and the higher the DETECT indices are. This applies to 

importance in terms of variance and in terms of the number of the corresponding items. 

Besides, the larger the overall size of the dimensional variance, the more sensitive the 

DETECT index is. Finally, it is important to note that the DETECT procedure indicates only 

sizeable multidimensionality. Dimensions with relatively small importance, containing only a 

few items or having small variance may be overlooked by the DETECT procedure. In 

conclusion, the DETECT indices, especially the index can be seen as a relatively good 

measure of multidimensionality, but one should be aware of some limitations. 

maxD̂
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Table 1 

 The fit of different models for predicting multidimensionality in Study one 

Predictor(s) Deviance  2
adjR  

( - )/  maxD̂ refD̂ refD̂ 1943.949 .002 

maxD̂  1528.502 .296 

'
maxD̂  1652.943 .214 

refD̂  1541.976 .288 

maxD̂ ,  refD̂ 1412.587 .369 

maxD̂ , ,  refD̂ '
maxD̂ 1412.475 .369 
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Table 2 

Adjusted R-square statistics of the models in Study one 

 Analysis with 

theoretical values 

(dummy coding) 

Analysis with 

theoretical values 

extended with 

variables from 

regression  tree  

Analysis with 

theoretical values 

(linear and 

quadratic trends) 

Analysis with real 

values 

(linear and 

quadratic trends) 

Model 1 .679 .781 .663 .669 

Model 2 .856 .857 .828 .849 

Model 3 .866 - .834 .856 

Model 4 .866 - .834 .855 
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Table 3 

The predictors with significant contributions in Model 4 in Study one 

variable p>F 2η  variable p>F 2η  

r <.001 .467 r* *Eq 2
θσ <.001 .005 

2
θσ  <.001 .239 2

θσ *Eq <.001 .005 

r*  2
θσ <.001 .148 Ss <.001 .004 

N  <.001 .034 r* *  2
θσ

2
βσ .052 .004 

r*N <.001 .020 r*  2
βσ <.001 .003 

Eq  <.001 .017 2
θσ *  2

βσ <.001 .003 

2
θσ *N <.001 .013 Eq*Ss <.001 .001 

r* *N 2
θσ <.001 .012 2

θσ * *Ss 2
βσ .016 .001 

r*Eq <.001 .011 r*Eq*Ss .021 .001 

2
βσ  <.001 .009    

Ss=simple structure, Eq=equally distributed items over dimensions, N=sample size, 

r= correlation of the dimensions 
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Table 4 

Adjusted R-square statistics of the models in Study two 

 Analysis with 

theoretical values 

(dummy coding) 

Analysis 

with theoretical 

values 

extended with 

variables from 

regression  tree 

Analysis 

with theoretical 

values 

(linear and 

quadratic trends) 

Analysis 

with real values 

(linear and 

quadratic trends) 

Model 1 .732 .736 .734 .740 

Model 2 .783 - .771 .774 

Model 3 .834 - .776 .776 

Model 4 .808 - .771 .778 
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Table 5 

The predictors with significant contributions in Model 4 in Study two 

variable p>F 2η  variable p>F 2η  

2
2θ

σ  <.001 .702 Eq*N*  2
βσ .006 .013 

Eq <.001 .093 N*  2
βσ .007 .013 

2
2θ

σ *N*  2
βσ .021 .038 Eq*  2

2θ
σ <.001 .012 

2
βσ  <.001 .032 2

2θ
σ *Ss .030 .006 

2
2θ

σ *  2
βσ <.001 .028 Eq*  2

βσ .021 .004 

2
2θ

σ *N .011 .023 Ss .008 .004 

2
2θ

σ *Eq*N .021 .022 Eq*Ss .023 .003 

Ss=simple structure, Eq=equally distributed items over dimensions, N=sample size 
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Figure captions 

 

Figure1. The index values as a function of the correlation in Study one maxD̂

Figure 2. The means per correlation value, for equally and unequally distributed items 

over dimensions in Study one 

maxD̂

Figure 3. The  as a function of the overall size of the dimensional variance and the 

correlation of the dimensions in Study one 

maxD̂

Figure 4. The  as a function of the sample size and the correlation of the dimensions in 

Study one 

maxD̂

Figure 5. The as a function of the relative size of the variance of the second dimension 

and the distribution of the items over dimensions in Study two 

maxD̂

Figure 6. The  as a function of the variance of the second dimension in case of simple 

structure and approximate simple structure in Study two 

maxD̂
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Figure 1 

The index values as a function of the correlation in Study one maxD̂
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Figure 2 

The means per correlation value, for equally and unequally distributed items over 

dimensions in Study one 

maxD̂
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Figure 3 

The  as a function of  the overall size of the dimensional variance and the correlation of 

the dimensions in Study one 

maxD̂
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Figure 4 

The  as a function of the sample size and the correlation of the dimensions in Study one maxD̂
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Figure 5 

The as a function of the relative size of the variance of the second dimension and the 

distribution of the items over dimensions in Study two 

maxD̂
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Figure 6 

The  as a function of the variance of the second dimension in case of simple structure 

and approximate simple structure in Study two 

maxD̂

 

 

 

 

 

 

  


