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Abstract

This article deals with the estimation of the parameters of an α-stable distribu-
tion by the indirect inference method with the skewed-t distribution as an auxiliary
model. The latter distribution appears as a good candidate for an auxiliary model
since it has the same number of parameters as the α-stable distribution, with each
parameter playing a similar role. To improve the properties of the estimator in fi-
nite sample, we use a variant of the method called Constrained Indirect Inference.
In a Monte Carlo study, we show that this method delivers estimators with good
properties in finite sample. In particular they are much more efficient than two
other prevalent methods based on the characteristic function and the empirical
quantiles. We provide an empirical application to hedge fund returns.
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1 Introduction

The α-stable distribution has been widely used for fitting data in which extreme values
are frequent. As shown in early work by Mandelbrot (1963) and Fama (1965a), it accom-
modates heavy-tailed financial series, and therefore produces more reliable measures of
tail risk such as value at risk. The α-stable distribution is also able to capture skewness
in a distribution, which is another characteristic feature of financial series. The distri-
bution is also preserved under convolution. This property is appealing when considering
portfolios of assets, especially when the skewness and fat tails of returns are taken into
account to determine the optimal portfolio.1 Stable processes have recently been used in
the high-frequency microstructure literature as well as in consumption-based equilibrium
asset pricing models.2

Our estimation procedure focuses on the unconditional distribution, which is often
the distribution of interest in portfolio applications. Irrespective of the true data gen-
erating process, we aim at capturing the α-stable like behavior of the unconditional
distribution of stationary time series often encountered in finance. In fact, the actual
dynamics could well a highly persistent GARCH, since DeVries (1991) has shown that
under certain conditions on the parameters of a GARCH-like process, the stable and
GARCH processes are observationally equivalent from the viewpoint of the uncondi-
tional distribution.3

To estimate the parameters of an α-stable distribution we propose to use an indirect
inference method. As well documented in Smith(1993) and Gouriéroux, Monfort and
Renault (1993), indirect inference is particularly suited to situations where the model of
interest is difficult to estimate but relatively easy to simulate. Therefore, it fits well the
situation at hand. In most cases, the α-stable density function does not have a closed-
form expression and is only characterized as an integral difficult to compute numerically.
Therefore, ML estimation is not very appealing for practical use, even though Dumouchel
(1973) has shown that the maximum likelihood (ML hereafter) estimator is consistent,
asymptotically normal and reaches the Cramér-Rao efficiency bound. However, several
methods are available to simulate α-stable random variables, such as the one described

1Basic references on the α-stable distribution are Feller (1971), Zolotarev (1986) and Samorodnitsky
and Taqqu (1994). These properties motivate its use in the modelling of financial series in particular
by Carr et al. (2002), Mittnik and Rachev (1993) and Mittnik, Paolella and Rachev (2000). For value-
at-risk applications, see in particular Bassi et al. (1998) and Mittnik, Rachev and Paolella (1998). For
portfolio allocation with stable distributions, see Fama (1965b), Bawa, Elton and Gruber (1979) and
more recently Ortobelli, Huber and Schwartz (2002).

2Ait-Sahalia and Jacod (2004 a,b) proposed volatility estimators for some processes built from the
sum of a stable process and another Levy process. Bidarkota, Dupoyet and McCulloch (2005) study a
consumption-based asset pricing model with incomplete information and α-stable i.i.d. shocks.

3It is well-known that, except for the extreme case of the normal distribution, all the α-stable
distributions have an infinite variance. However, it should be remembered that a highly persistent
GARCH, with by definition finite conditional variances, may produce infinite moments at orders not
much higher than two.
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in Chambers, Mallows and Stuck (1976).

Indirect inference involves the use of an auxiliary model. Auxiliary parameters are
recovered through the maximization of the pseudo-likelihood of a model based on the
fictitious i.i.d. sampling in a skewed-t distribution, introduced independently in the
literature by Fernandez and Steel (1998) and Hansen (1994).4 It is a Student-t with an
inverse scale factor in the positive and negative orthants, allowing for asymmetries. The
distribution has four parameters which have a one-to-one correspondence with those
of the α-stable distribution, with a clear and interpretable matching, parameter by
parameter.

Our application of indirect inference is innovative in two respects. First, following
an idea of McCulloch (1986) in the context of matching quantiles, we actually perform
a constrained version of indirect inference, introducing an a priori constraint on one
auxiliary parameter to match, namely the number of degrees of freedom of the Student-
t. The theory for such constrained indirect inference has recently been developed in a
general context by Calzolari, Fiorentini and Sentana (2004). Second, we stress in our
application that the α-stable simulator need not take into account the actual dynamic
features of the data.5

We show that, for a reasonable level of asymmetry, the pseudo-ML estimators of
the four parameters of the skewed-t distribution are asymptotically normal even when
the observations are generated by an α-stable distribution. 6 Consequently, the asso-
ciated indirect inference estimators of the parameters of the α-stable distribution are
asymptotically normal too. This is an important feature of the choice of the auxiliary
parameters since the use of polynomials as in the conventional method of moments (see
Gallant and Tauchen, 1999) could lead to asymptotically α-stable estimators.

Our extension of indirect inference can be seen as a generalization of the quantile
approach, proposed by Fama and Roll (1971) and enhanced by McCulloch (1986). While
McCulloch (1986) put forward four specific functions of theoretical quantiles of the α-
stable distribution which are respectively well-focused on the four parameters of the
α-stable distribution, we show that the four parameters of an auxiliary model provided
by the skewed-t distribution have also a one-to-one correspondence with the parameters
of the α-stable distribution.

A valid competing method for indirect inference consists in matching moments pro-
duced by the characteristic function (CF hereafter). This alternative is particularly
relevant in the context of α-stable distributions since, by contrast with the probability

4During the course of this project, we were made aware by M. J. Lombardi that Lombardi, Calzolari
and Gallo (2004) use the same auxiliary model to estimate a stable distribution. The two projects were
conducted independently and differ in several respects.

5The use of a wrongly-specified simulator in indirect inference has not received much attention,
except in Dridi, Guay and Renault (2005).

6According to our Monte Carlo experiments, the allowed level of asymmetry is actually consistent
with the one produced by an α-stable distribution with support on the whole real line.
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density function, the CF is available in closed form. All the methods based on the CF
match the theoretical CF with its empirical counterpart, but in different ways. Since the
empirical CF is a random variable with complex values, one can think about comparing
(i) moments associated to real and imaginary components respectively ( Press, 1972,
Fielitz and Rozelle, 1981) or (ii) minimizing a distance between the empirical and the
theoretical CF functions (Paulson, Holcomb and Leitch, 1975, Feuerverger and McDun-
nough, 1981, and Carrasco and Florens, 2002), or (iii) performing a regression analysis
between the real and imaginary parts of the empirical and theoretical CF (Koutrevelis,
1980).

Except Carrasco and Florens (2002), all these methods suffer from the same draw-
back: the need to choose somewhat arbitrarily the frequencies of interest. Some authors,
like Fielitz and Rozelle (1981), recommend to match only a few frequencies on the basis
of Monte Carlo results, while others, like Feuerverger and McDunnough (1981), recom-
mend on the contrary to use as many frequencies as possible. However, in the latter case,
Carrasco and Florens (2002) have shown that, even asymptotically, matching a contin-
uum of moment conditions introduces a fundamental singularity problem. They devise
a theory for efficient continuous GMM (CGMM hereafter). It is an optimal generalized
method of moments based on a continuum of moment conditions corresponding to the
CF computed at all points. Along with likelihood-based methods, which as discussed
are difficult to implement, their approach is the only one to provide an asymptotically
efficient estimation method of the α-stable model. Therefore, it constitutes a good
benchmark for assessing the performance of our indirect inference estimator.

We conduct a thorough comparison of our estimator with CGMM both in an ex-
tensive Monte Carlo study and in an empirical application. Not surprisingly, since our
method delivers estimators close to the Cramér-Rao efficiency bound in the i.i.d. case
7, it does not appear to be clearly dominated by CGMM in terms of efficiency. More
importantly, CGMM encounters some difficulties in its implementation (in particular
the choice a of a regularization parameter) and its performance is much less robust than
our simple indirect inference estimator. We also compare our method to the simple
but inefficient quantile-based estimator of McCulloch (1986). Our estimates are close
to those obtained with the quantile-based method. However, our estimators appear to
have a much smaller variance, both asymptotically and in finite sample. 8

Many of the properties of stable models are shared by GARCH models. In particular,
both models share the facts that the unconditional distribution has fat tails and that the

7Since Dumouchel (1973) provides a way to compute the efficiency bound in the i.i.d. case, we are
able to compare by Monte Carlo study the performance of our indirect inference estimator with the ML
benchmark. At least in this i.i.d. setting, the efficiency loss appears mainly negligible given the finite
sample improvement brought about by indirect inference.

8Another set of methods is based on the asymptotic tail behaviour of the distribution. The most
known, the Hill estimator (Hill, 1975), is an ML estimator of a tail index via the Pareto distribution
since the asymptotic tails of an α-stable distribution behave like a Pareto distribution. This approach
has two drawbacks: the choice of the quantile from where the tail is considered is arbitrary and, more
importantly, only the stability index α is estimated. Therefore, we do not include it in our comparison.
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tail shape is invariant under addition (see Ghose and Kroner 1995 and de Vries 1991).
We illustrate this observational equivalence by generating different GARCH(1,1) and
IGARCH(1,1) with Gaussian and Student-t innovations and aggregating the generated
processes to lower frequencies. We show that the unconditional density captures very
well the variance and kurtosis through aggregation and memory. The tail index α
remains relatively constant under aggregation while the estimated dispersion increases.
As expected, the tail index and the dispersion are higher when the process is generated
from a Student density that when it comes from a Gaussian probability distribution.

Our empirical application of the three selected estimators involves time series of
monthly returns from indices of hedge funds. Several studies, in particular Fung and
Hsieh (2002), Mitchell and Pulvino (2001), and Agarwal and Naik (2004), have put
forward the nonlinear structure and option-like features of returns associated with hedge
fund strategies. It means that these return distributions are likely to exhibit skewness
and kurtosis and are therefore potentially well captured by stable distributions. We
want to reemphasize that the stable distributions are preserved under convolution and
that this property is appealing when considering portfolios of assets. Pension funds are
now all considering the inclusion of hedge funds along with the traditional classes of
assets in their portfolios and one needs a statistical framework that accomodates the
non-normal characteristics of these funds. Results show that our estimator behaves well
even in small samples (series on hedge funds are typically small), which is not always
the case with the quantile or the continuous GMM methods.

Although we do not consider testing in this paper, indirect inference provides as a
by-product specification tests about the matched characteristics, in our case the un-
conditional distribution. One can envision a battery of diagnostic tools. For example,
the fact that the binding function can be interpreted parameter by parameter allows
independent assessments of the ability of the stable model to capture the four rele-
vant features of the data. One can also perform an omnibus test, by matching jointly
McCulloch quantile-based functions and our skewed-t auxiliary parameters to obtain an
automatic overidentification test. These tests could complement the work by Deo (2000)
who proposed, in the context of m-dependent sequences, a goodness-of-fit test for stable
distributions.

The structure of the paper is as follows. Section 2 describes the properties of α-
stable distributions and presents efficient methods for their estimation, namely maximum
likelihood and characteristic function-based methods. In Section 3, we introduce several
alternative moment matching-methods, which are based on quantiles, regressions, and
quasi-likelihood. Constrained indirect inference is explained in Section 4. It describes
indirect inference for the α-stable distribution and the skewed-t distribution chosen as
an auxiliary model. It also shows that the estimators are asymptotically normal. Section
5 reports the results of the Monte Carlo study where indirect inference is compared to
methods using continuous GMM and empirical quantiles. In Section 6, we discuss the
use of the α-stable model and of our estimation strategy in the context of dependent
processes. We compare and illustrate through simulations the relationship between the
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fat-tailed unconditional distributions produced by highly persistent GARCH models and
an α-stable model. Section 7 is devoted to an empirical application to hedge funds while
section 8 concludes. Theoretical proofs as well as numerical and computational issues
are gathered in appendices.

2 The α-stable distributions and their efficient esti-

mation methods

In general, stable distributions do not have closed form expressions for their density
and distribution functions but can be described easily by their characteristic functions.
The family of univariate α-stable distributions is well-defined as a parametric family
of distributions indexed by four real parameters which vary freely in some intervals.
However, efficient estimation of these parameters is not a trivial issue since the likeli-
hood function is generally unknown. We recall in this section the interpretation of the
four parameters as well as the strategies available in the literature for their efficient
estimation. While efficient estimation will remain a benchmark when considering alter-
native moment-matching methods of estimation in Section 3, the interpretation of the
parameters will be crucial to define well-suited moments to match.

2.1 Parameters and properties of α-stable distributions

The α-stable family of distributions is characterized by four parameters α, β, σ and µ,
where α is the stability parameter, β the skewness parameter, σ the scale parameter,
and µ the location parameter. These parameters define the natural logarithm of the
characteristic function as

lnψθ(t) = lnE [exp(it Y )] = iµt− σα |t|α [1− iβ sign(t)w(t, α)] (2.1)

where
θ = (α, β, µ, σ) ∈ Θ = ]0, 2]× [−1, 1]× R× ]0,+∞[

is the vector of parameters which vary freely in the indicated intervals, Y is the ran-
dom variable following the α-stable distribution S(θ) with characteristic function ψθ(·),
sign(t) = t/ |t| for t 6= 0 (and 0 for t = 0), w(t, α) is tan(Πα/2) if α 6= 1 and (− 2

Π
ln |t|)

if α = 1.

Note that the four parameters are well identified except the parameter β when α = 2.
This case corresponds to the normal probability distribution. The three parameters µ, σ
and β are respectively interpreted as location, scale and skewness parameters due to the
following property:

Y  S(α, β, µ, σ)⇔ Y − µ
σ
 S(α, β, 0, 1)⇔ −(

Y − µ
σ

) S(α,−β, 0, 1).
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If β is positive (resp. negative) the distribution of Y is skewed to the right (resp. to
the left) and this affects in particular the tails of the distribution as the property below
indicates. For 0 < α < 2:

lim
λ→∞

λα P [Y > λ] = Cα
1 + β

2
σα

lim
λ→∞

λαP [Y < −λ] = Cα
1− β

2
σα

where Cα =
[∫ ∞

0
x−α sin xdx

]−1
.

Therefore, the stability parameter α characterizes the size of the tails. While for
α = 2 we have normal probability distributions with finite moments at any order, for
0 < α < 2 we have Pareto tails with infinite moments of order p for any p ≥ α.
In particular, α-stable variables have infinite variance for α < 2 and the central limit
theorem is no longer valid. It is replaced by a stability result, stating that if Y1, Y2, · · · , Yn

are i.i.d. S (α, β, µ, σ) , 1
n1/α (Y1 + Y2 · · ·+ Yn) also follows the distribution S (α, β, µ, σ).

2.2 Maximum likelihood estimation

The maximum likelihood estimation of the parameters θ = (α, β, µ, σ) of an α-stable
distribution for θ, an interior point of Θ:

0 < α < 2, |β| < 1, µ ∈ R, σ ∈ ]0,+∞[

raises two specific difficulties. The likelihood function is not known in closed form
in general and special numerical procedures are needed to maximize it. For instance,
Mittnik, Rachev, Doganoglu and Chenyao (1999) propose to recover the density function
from the characteristic function by using fast Fourier transforms. More importantly, the
derivation of the asymptotic distribution theory for maximum likelihood estimators in
the context of an α-stable family of probability distributions is not trivial. While the
law of large numbers and the central limit theorem are cornerstones of this theory, they
are no longer valid for i.i.d. sequences Y1, Y2, · · ·Yn of variables with stable distribu-

tion, S (α, β, µ, σ) , α < 2. Hence, 1
n

n∑
i=1

|Yi|p converges to infinity for p ≥ α, 1
n1/2

n∑
i=1

Yi

is no longer bounded in probability, but 1
n1/α

n∑
i=1

Yi is (asymptotically) distributed as

S (α, β, µ, σ).

However, the score function remains asymptotically root-n normal as for more com-
mon parametric models. This fact has been used by DuMouchel (1973) to develop the
asymptotic theory of maximum likelihood in the context of a family of α-stable distribu-
tions. Basically, DuMouchel (1973) was able to show that the standard tools of maximum
likelihood theory (mainly root-n asymptotic normality and Cramer-Rao bounds) may
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be applied to estimation of θ = (α, β, µ, σ) insofar as the domain of possible values of θ
is limited in the following way:

α ∈ ]1, 2[ or α ∈ [ε, 1[ for some ε > 0,

and

|β| < min (α, 2− α) .

In particular, totally skewed-stable distribution (|β| = 1) are discarded as well as
arbitrarily fat tails (α arbitrarily close to zero).

Because of the numerical difficulties associated with maximum likelihood estima-
tion, we will not use it in this paper.9 However, the results of DuMouchel (1973) are
important for two reasons. They prove that efficient parametric estimation is a sensible
goal, even for the parameters of α−stable distributions. Root-n asymptotic normality
and standard Cramer-Rao lower bound are reached by MLE. This remark motivates the
search for efficiency in the context of characteristic function-based methods of estimation
considered below. After all, the characteristic function also characterizes the probability
distribution and should convey the same information as the likelihood function for effi-
cient parametric estimation. Moreover, the results show that asymptotic normality of
M-estimators like MLE or QMLE can be derived by the application of standard central
limit theory to well-chosen (pseudo)-score functions rather than to moments of Y which
do not exist. This idea is the main motivation of the indirect inference strategy proposed
in this paper.

2.3 Characteristic function-based methods

Let Y1, Y2, . . . , Yn be n observations drawn in the same probability distribution as Y  
S (α, β, µ, σ) . Characteristic function techniques are built on fitting the sample charac-

teristic function 1
n

n∑
j=1

exp [itYj] to the theoretical one ψθ(t) defined above. Press (1972)

proposed several fitting methods: minimum distance, minimum rth -mean distance and
the method of moments. The problem is that it takes an infinite number of moment con-
ditions, indexed by t ∈ R, to summarize the informational content of the characteristic
function:

Eh(t, Y, θ) = 0, ∀t ∈ R,

where h(t, Y, θ) = exp [itY ]− ψθ(t).

9We will not either compare our method to the ML estimation method where the density function of
the stable distribution is approximated by using fast Fourier transforms of the characteristic function.
Since it is based on a finite grid, one can argue that it suffers from a loss of efficiency with respect to
the continuous GMM, to which we compare our results.
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Feuerverger and McDunnough (1981) and Singleton (2001) choose to work with a
finite grid t1, t2, · · · , tK , that is to apply the standard theory of GMM to the set of
moment conditions:

E [exp(itkY )− ψθ(tk)] = 0, k = 1, · · ·K.

Note that this amounts to a set of (2K) moment restrictions:

E [gK(θ, Y )] = 0

where the 2K−dimensional vector gK(θ, Y ) is formed by stacking both the real parts:

Reh(tk, Y, θ) = cos(tkY )− Reψθ(tk)

and the imaginary parts

Im h(tk, Y, θ) = sin(tkY )− Imψθ(tk)

of
h(tk, Y, θ), h = 1, · · ·K.

Efficient GMM is obtained by using as weighting matrix a consistent estimator of

the inverse of the long term asymptotic covariance matrix ΣK of 1√
n

n∑
j=1

exp (itYj). Note

that, at least in the i.i.d case, ΣK admits a simple closed form expression deduced from
the identity:

E [exp (itY ) exp (isY )] = Ψθ(t+ s).

A simple way to back out the coefficients of ΣK is then:

cov [cos (tY ) , cos (sY )] =
1

2
[ReΨθ(t+s)+ReΨθ(t− s)]− (ReΨθ(t)) (ReΨθ(s))

cov [cos (tY ) , sin (sY )] =
1

2
[ImΨθ(t+s)+ImΨθ(t− s)]− (ReΨθ(t)) (ImΨθ(s))(2.2)

cov [sin (tY ) , sin (sY )] =
1

2
[ReΨθ(t+s)+ReΨθ(t− s)]− (ImΨθ(t)) (ImΨθ(s))

By using the empirical characteristic function φ̂(t) = 1
n

n∑
j=1

exp (itYj) as a consistent

estimator of Ψθ (t), consistent estimators of the coefficients of ΣK are then easily deduced.

Then, the asymptotic variance of efficient GMM is given by the standard formula:

ΩK =

{[
E
∂g′K
∂θ

(θ, Y )

]
Σ−1

K

[
E
∂gK

∂θ′
(θ, Y )

]}−1
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Both Feuerverger and McDunnough (1981) and Singleton (2001) argue that when the
grid becomes infinitely fine (K → ∞), the efficient GMM covariance matrix ΩK tends
to the Cramer-Rao bound for estimation of θ. However, as first noticed by Carrasco
and Florens (2002), this does not provide a way to estimate efficiently θ based on the
characteristic function since the 2K moment conditions E [gK(θ, Y )] = 0 will suffer from
a multicollinearity problem when K goes to infinity. In this latter case, one must think
instead about the limit of

∑−1
K in terms of covariance operator. Since, for any t:

|h(t, Y, θ)| ≤ 2,

the random function t −→ h(t, Y, θ) defines a stochastic process h(Y, θ) which is squared
integrable for any probability measure Π on R:

h(Y, θ) ∈ L2(R,Π).

The associated covariance operator Ω is the linear mapping from L2(R,Π) to L2(R,Π)
such that, for any f ∈ L2(R,Π):

Ωf(t) =

∫
w(t, s)f(s)Π(ds)

where w(t, s) = E [h(t, Y, θ)h(s, Y, θ)]. Then under standard regularity conditions,
√
nh̄n(θ) =

1√
n

n∑
j=1

h(Yj, θ) converges in L2(R,Π) towards a Gaussian process N [0,Ω].

This paves the way for defining optimal GMM for the continuum of moment conditions
of interest. More precisely, the operator Ω is consistently estimated by the operator Ωn

with kernel:

wn(t, s) =
1

n

n∑

j=1

h(t, Yj, θ̃n)h(s, Yj, θ̃n)

where θ̃n is a first-step consistent estimator of θ. Note that θ̃n may be for instance
obtained from GMM applied with a finite grid of values of t.

Intuitively, efficient GMM based on the whole continuum of moment conditions would
amount to minimize

∣∣∣∣Ω−1/2h̄n(θ)
∣∣∣∣ with Ω replaced by its consistent estimator Ωn. How-

ever, since Ω is a compact operator, its eigenvalues converge to zero and the operator Ω−1

is not continuous. Then a regularization scheme is needed. For instance, a Tykhonov
regularized inverse of Ωn is defined by:

(
Ω(βn)

n

)−1
=

(
βnId+ Ω2

n

)−1
Ωn

where Id is the identity operator and βn > 0 is a regularization parameter. Then,
Carrasco and Florens (2000) propose to estimate θ as:

θ̂n = arg min
θ∈Θ

∣∣∣
∣∣∣
(
Ω(βn)

n

)−1/2
h̄n(θ)

∣∣∣
∣∣∣ .
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They show (see also Carrasco, Chernov, Florens and Ghysels (2004)) that for a

sequence βn, n ∈ N , of regularization parameters such that βn −→∞ but nβ
5/2
n −→∞

when n −→∞, θ̂n is not only optimal among GMM estimators but reaches the Cramer-
Rao efficiency bound. It may then provide a way to reach the efficiency bound more
easily than with MLE from a numerical point of view.

Indeed, the computational tractability of the efficient GMM estimator θ̂n is tightly
related to the procedure used to compute the sequence of operators (Ω

(βn)
n )−1/2. Car-

rasco, Florens and Renault (2005) provide a survey of estimation methods based on
spectral decomposition and regularization. However, for this particular example, Car-
rasco, Chernov, Florens and Ghysels (2004) give a way to compute the objective function∣∣∣∣

∣∣∣∣
(
Ω

(βn)
n

)−1/2

h̄n(θ)

∣∣∣∣

∣∣∣∣
2

without resorting to any spectral decomposition. They show that

minimizing

∣∣∣∣

∣∣∣∣
(
Ω

(βn)
n

)−1/2

h̄n(θ)

∣∣∣∣

∣∣∣∣
2

is equivalent to minimizing:

v
¯
(θ)′

[
αnIdn + C2

]−1
v
¯

(θ)

where C is a n × n matrix with (i, j) element ci,j, Idn is the n × n identity matrix and
v
¯
(θ) = (v1(θ), · · · , vn(θ)′ with:

vi(θ) =

∫
h(t, Yi, θ̃n)h̄n(t, θ)Π(dt)

and

cij =
1

n

∫
h(t, Yi, θ̃n)h(t, Yj, θ̃n)Π(dt).

Note however that the theoretical asymptotic result does not indicate how to select
the regularization parameter βn in practice. A data-driven method may be desirable
(see Carrasco and Florens (2000)).

3 Alternative moment matching methods

Following Gallant and Tauchen (1999), we use the terminology Conventional Method of
Moments (CMM) to refer to all variants of the minimum chi-squared estimator imple-
mented using polynomial moment functions. The problem with stable distributions is
that polynomial functions are not integrable and one must find other moments to match.

While the efficient methods described in section 2 are fairly involved because the
moments to match are either defined through the computationally intractable likelihood
function or through the whole characteristic function, we consider in this section several
alternative moment-based estimation methods which are easier to implement. However,
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in order to remain as close as possible to efficiency, the moments to match must be well
focused on the parameters of interest. We are going to sketch below three categories of
methods which look well-suited to provide informative moments to match.

First, as proposed by McCulloch (1986) extending an idea of Fama and Roll (1971),
sample counterparts of the cumulative distribution function (or equivalently of some
quantiles) are much easier to deal with than the likelihood function, while possibly
keeping its informational content. After all, indicator functions of one-sided subsets of
the real line define a versatile basis of integrable functions, the expectations of which
define the distribution function. The contribution of McCulloch (1986) is to exhibit
four specific functions of empirical quantiles that will be strongly informative about the
parameters of the stable distribution, precisely because each of them heavily depends
upon the value of one of the four parameters of interest (irrespective of the value of the
three others).

Second, instead of matching some arbitrarily selected values of the characteristic
function, it may be much more informative to use well-focused summaries of the em-
pirical characteristic function. Koutrouvelis (1980) has precisely shown that the known
functional form of the characteristic function with respect to the parameters α, β, µ and
σ suggests some regression-based summaries of a set of values Ψθ(tk), k = 1 . . . K, which
are well informative about θ = (α,β, µ, σ)′.

Finally, the more recent indirect inference literature (Smith (1993), Gouriéroux, Mon-
fort and Renault (1993), Gallant and Tauchen (1996)) suggests to look for moments to
match through the quasi-likelihood function of an auxiliary model. While Gallant and
Tauchen (1999) provide evidence of the superiority of EMM (method of moments im-
plemented with a seminonparametric auxiliary model) over CMM, the situation is quite
different here. First, as explained above, CMM is meaningless due to fat tails. Second,
fat tails may also invalidate the efficiency argument of EMM since there is no more
reason to hope that a seminonparametric (SNP) score generator based on Hermite ex-
pansions will be able to span the true score function. The class of densities to fit with
SNP considered by Coppejans and Gallant (2002) are indeed weighted with the expo-

nential function exp
(
−x2

2

)
which ensures finite moments at any order. This feature is

at odd with stable distributions. While other weight functions may possibly be imagined
to improve the fit with a SNP family, we choose to focus here on a specific parametric
family of distributions which should be well informative about the four parameters of
interest. Since, in addition, we will be led later to put forward the crucial importance of
imposing some constraints on the auxiliary parameters, we expect that our constrained
indirect approach is safer in this context than an SNP approach involving a possibly
infinite number of auxiliary parameters.
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3.1 Quantile-based methods

Let us denote by xp the p-th population quantile of S (α, β, µ, σ), i.e. P [Y < xp] = p.
From (2.2), it is clear that for any different values p, q, p′, q′ ∈ ]0, 1[

xp − xq

x′p − x′q

is independent of both µ and σ. The idea of McCulloch (1986) is to define two functions
of such ratios, that is two functions φ1 (α, β) and φ2 (α, β), which will allow to back out
both α and β. Moreover, to get accurate estimators, it is intuitive to define the first
auxiliary parameter φ1 = φ1 (α,β) so it is well focused on α (for each β), and similarly for
β (for each α) with the second auxiliary parameter φ2 = φ2 (α, β). The definition of the
two auxiliary parameters (φ1, φ2) must then be tightly related to the interpretation of
the two structural parameters (α,β) that they intend to capture. Therefore, McCulloch
(1986) proposes to define φ1 as a measure of the relative sizes of the tails and the middle
of the distribution:

φ1 (α, β) =
x0.95 − x0.05

x0.75 − x0.25

(3.1)

A larger φ1 means fatter tails and then a smaller α. McCulloch (1986) remarks that,
since φ1 (α, β) is a strictly decreasing function of α, for each β, the estimation of φ1 will
give us a strong fix on α. The function φ2 is defined as a measure of the spread between
the right part and the left part of the distribution:

φ2 (α, β) =
(x0.95 − x0.5)− (x0.5 − x0.05)

x0.95 − x0.05

(3.2)

A larger φ2 means more weight on the right side and thus a larger β. In other words,
since φ2 (α, β) is a strictly increasing function of β, for each α, the estimation of φ2 will
be very informative about β.

Therefore, the proposed estimation strategy may be to replace population quantiles
xp by their sample counterparts x̂p and to define estimators α̂ and β̂ of the structural
parameters as solutions of 




φ1

(
α̂, β̂

)
= φ̂1

φ2

(
α̂, β̂

)
= φ̂2

(3.3)

where

φ̂1 =
x̂0.95 − x̂0.05

x̂0.75 − x̂0.25

φ̂2 =
x̂0.95 + x̂0.05 − 2x̂0.5

x̂0.95 − x̂0.05

. (3.4)
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McCulloch (1986) provides tables of values for the functions φ1 (α, β) and φ2 (α, β),
given a grid of values of (α, β), to solve approximately equations (3.3). The tables
contain the values α̂, β̂ of structural parameters for given estimated values φ̂1, φ̂2 of
auxiliary parameters. Of course, as detailed in (3.3), these equations can be solved even
more precisely through a simulation-based procedure.

To implement this estimation strategy successfully, McCulloch (1986) adds that the
sample quantile must be suitably corrected for continuity. Without such a correction,
spurious skewness will appear to be present in finite samples. He also sets the smallest
possible value of φ1 (α, β) to 2.439, when α increases to 2, irrespective of the value of
β. Of course, in finite sample, x̂0.95−x̂0.05

x̂0.75−x̂0.25
may be less than 2.439, and then be off-scale in

corresponding tables. Therefore, the definition of the first auxiliary parameter must be
slightly modified to incorporate the relevant constraint (as if it was not guaranteed by
the stable distribution):

φ1 =






x0.95 − x0.05

x0.75 − x0.25

if it is more than 2.439

2.439 otherwise.

The sample counterpart φ̂1 is defined accordingly and (3.3) is solved from this definition.
Note that, when φ̂1 = 2.439, α̂ = 2 and β̂ is not identified.

Since, by (2.2), for any p, q ∈ ]0, 1[, xp − xq is independent of µ and proportional to
σ, it is natural to define an estimator of the scale parameter σ as:

σ̂ =
x̂0.75 − x̂0.25

φ̂3

(3.5)

(the choice p = 0.75 and q = 0.25 is intuitively well informative), where the auxiliary
parameter φ3 = φ3 (α, β) is defined by

φ3 (α, β) =
x0.75 − x0.25

σ
,

a quantity which depends neither on µ nor σ and can be tabulated for a grid of values
of (α, β). The needed estimation φ̂3 of the auxiliary parameter φ3 is deduced from the
previous estimation (3.3) of (α, β)

φ̂3 = φ3

(
α̂, β̂

)
. (3.6)

Note that φ̂3 will intuitively inform us best about σ if it estimates a coefficient of
proportionality between (x0.75 − x0.25) and σ that is almost independent of (α, β). The
table of values of φ3 (α, β) provided by McCulloch (1986) at least confirms that it does
not depend much on β. The situation is less favourable concerning α.
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Finally, to back out the location parameter µ, it is natural to locate it with respect to

the median x0.5 of the distribution through a standardized spread
µ− x0.5

σ
which is, by

(2.2), a function of (α, β) independent of µ and σ. Unfortunately, although well defined
when α = 1, this function goes to (−∞) (resp. +∞), for all β, when α goes to 1 by
smaller (resp. larger) values. McCulloch (1986) advocates a result of Zolotarev (1954)
to claim that a convenient way to erase the discontinuity of this function at α = 1 is to
modify its definition as

φ4 (α, β) =
µ− x0.5

σ
+ β tan

(
Π
α

2

)
(3.7)

knowing that

φ4 (1, β) =
µ− x0.5

σ
= lim

α−→1
φ4 (α, β) (3.8)

From the estimation φ̂4 = φ4

(
α̂, β̂

)
, we then deduce the estimator of µ from previ-

ously defined estimators of (α, β, σ):

µ̂ = x̂0.5 + σ̂

[
φ̂4 − β̂ tan

(
Π
α̂

2

)]
(3.9)

To summarize, the estimators proposed by McCulloch (1986) for the structural pa-
rameters θ = (α, β, µ, σ)′ can be seen as a particular case of indirect inference estimators
as defined by Smith (1993) and Gourieroux, Monfort and Renault (1993).

Indeed, everything starts from a summary of the data sample through the estimator

Ψ̂ =
(
Ψ̂1, Ψ̂2, Ψ̂3, Ψ̂4

)′
of a vector Ψ =plimΨ̂ of auxiliary parameters. This estimator is

defined by: 




Ψ̂1 = max

[
x̂0.95 − x̂0.05

x̂0.75 − x̂0.25

, 2.439

]

Ψ̂2 =
x̂0.95 − x̂0.05 − 2x̂0.05

x̂0.95 − x̂0.05

Ψ̂3 = f [x̂0.05, x̂0.25, x̂0.5, x̂0.75, x̂0.95]

Ψ̂4 = g [x̂0.05, x̂0.25, x̂0.5, x̂0.75, x̂0.95]

where f and g are known functions defined by:

f [x̂0.05, x̂0.25, x̂0.5, x̂0.75, x̂0.95] =
x̂0.75 − x̂0.25

φ3

(
α̂, β̂

)

g [x̂0.05, x̂0.25, x̂0.5, x̂0.75, x̂0.95] = x̂0.5 + (x̂0.75 − x̂0.25)
φ4

(
α̂, β̂

)
− β̂ tan

(
Πα̂
2

)

φ3

(
α̂, β̂

)
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where α̂ and β̂ are the functions of x̂0.05, x̂0.25, x̂0.5, x̂0.75 and x̂0.95 defined as solutions
of (3.3). Then, to back out the indirect inference estimator θ̂ of structural parameters
θ = (α, β, µ, σ)′, from the estimator Ψ̂ of auxiliary parameters, one has just to invert
the binding function Ψ defined as:

Ψ (θ) =





φ1 (θ1, θ2)
φ2 (θ1,θ2)
θ3

θ4



 . (3.10)

It turns out that this binding function is already known from tables of values of
φi (α, β), i = 1, 2, 3, 4 provided by McCulloch (1986). However, the resulting strategy is
conformable to the general indirect inference strategy of recovering this binding function
through simulations in the structural model. Notice that these simulations can be done
for a grid of values of (θ1, θ2) = (α, β), for given (θ3, θ4) = (µ, σ) (for instance µ = 0 and
σ = 1) since the effect of these location-scale parameters inside the binding function is
known in closed form.

The quantile-based estimators proposed by McCulloch (1986) are generally consid-
ered to be quite accurate, but not efficient. In order to assess the quality of these
estimators, notice that they define a consistent asymptotically normal estimator θ̂ as a
function of the consistent asymptotically normal sample counterpart of a vector of five
quantiles:

γ = (x0.05, x0.25, x0.5, x0.75, x0.95) .

Therefore, a standard indirect inference strategy could also be applied through the
overidentified binding function:

γ = Γ (θ) . (3.11)

In some respect, resorting to the more parsimonious vector Ψ of auxiliary parameters
(instead of γ) is motivated by the fact that, following McCulloch (1986), we already have
some intuition about the right way to solve (3.11). Instead of dealing with it through
a blind simulated minimum chi-square procedure, we prefer to work with (3.10), where,
as explained by McCulloch (1986), each component Ψi of Ψ is conceived to be directly
informative about the corresponding component θi of θ.

A second important element is the additional constraint on φ1 (or Ψ1) introduced
by McCulloch (1986). Although immaterial asymptotically when the unknown true
value α0 of α is supposed to lie in the open interval ]0, 2[, this constraint may play a
role in finite sample. Although needed, as well explained by McCulloch (1986), this
constraint introduces an identification problem. When Ψ̂1 is stuck on the value 2.439,

the sample is finally characterized by a three-dimensional parameter
(
Ψ̂2, Ψ̂3, Ψ̂4

)
which

does not allow to identify the four unknown structural parameters. A relevant solution
for this problem is to use the constrained indirect Inference theory, as recently proposed
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by Calzolari, Fiorentini and Sentana (2004). The idea is to replace the lacking fourth
auxiliary parameter by the value of the Kuhn-Tucker multiplier associated with the
constraint. This will be our chosen strategy in section 4, with however an alternative
set of auxiliary parameters, as put forward in subsection 3.3 below.

3.2 Regression-based methods

Instead of extracting information about the parameters from quantiles, one can use other
implications from the characteristic function. Koutrouvelis (1980) proposes a regression-
type estimation method of the parameters of the stable law. Starting with the usual
expression for the characteristic function (2.1), one can deduce a set of equations:

ln
(
− ln |φ (t)|2

)
= ln (2σα) + α ln |t| (3.12)

and (for α 6= 1):

Reφ(t) = exp− (|σt|α) · cos

[
µt− |σt|α β sgn(t) tan

(
Πα

2

)]

Imφ(t) = exp− (|σt|α) · sin
[
µt− |σt|α β sgn(t) tan

(
Πα

2

)]
(3.13)

for the real and imaginary parts of φ(t). These two equations lead to

arc tan

(
Imφ(t)

Reφ(t)

)
= µt− βσα tan

(
αΠ

2

)
sgn(t) |t|α

Equation (3.12) suggests a regression of y = ln
(
− ln |φt|2

)
on w = ln |t|:

y = m+ αwκ + εκ, k = 1, 2, · · · , K

where (tk; k = 1, 2, · · · , κ) is an appropriate set of real numbers and m = ln (2σα). This
regression model provides estimates of σ and α. Given these estimates, one can use the
regression model10

zl = µul − βσα tan

(
Πα

2

)
sgn (ul) |ul|α + ηl l = 1, 2, · · · , L

where (ul; l = 1, 2, · · · , K) is an appropriate set of real numbers, to obtain estimates of
µ and β.

10The function z is equal to arc tan (Imφn(u)/Reφn(u)) + πkn(u) where arctan denotes the principal
value of the arctan function and the integer kn(µ) accounts for possible nonprincipal branches of the
arctan function.
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Therefore, this two-step procedure provides estimates of the four parameters of the
stable law11 through two well-chosen functions based on the characteristic function and
uses the sample characteristic function to obtain the estimates. According to the simu-
lation results of Koutrouvelis (1980), this regression method is better than other meth-
ods based on moments (Press, 1972) or the minimization of a normalized distance be-
tween the empirical and the theoretical characteristic functions. Akgiray and Lamoureux
(1989) provide a simulation study which compares the regression method to the quan-
tile method of McCulloch (1986). The results indicate that both the fractile method
and the regression method provide accurate estimates of the characteristic exponent α.
However, they note that in general the estimates of the skewness parameter β are not as
good as the estimates of the stability index α. The mean squared errors as well as the
biases for both methods are relatively large. This is especially true when α is close to 2,
as already explained in the previous section. The regression method does not therefore
improve significantly over the McCulloch (1986) method.12

3.3 Quasi-likelihood-based method

To be better informed about the four parameters of interest (α, β, µ, σ) , it seems intu-
itively preferable to go through a quasi-likelihood function which entails similar parame-
ters with similar interpretations. Therefore, we propose in this subsection to focus on the
family of skewed-Student distributions as introduced by Fernandez and Steel (1998) (see
also Hansen (1994) and Bauwens and Laurent (2005) for the multivariate extension).

Let us consider the skewed-t density function:

l (y; ν, γ, ω, λ) =
h (ν)√
πν

1

λ
(
γ + 1

γ

)
{

1 +
1

ν

(
y − ω
λ

)2

gω (y, γ)

}− ν+1
2

where

h (ν) =
2Γ

(
ν+1

2

)

Γ
(

ν
2

) and gω (y, γ) =

{
1
γ2 if y ≥ ω

γ2 if y < ω.

While the possibly non integer degrees of freedom ν of a Student distribution capture
the thickness of the tails as α does for stable distributions, location ω and scale parameter
λ can easily be introduced to match the two parameters µ and σ. Finally, the skewed-t
extension allows one to accommodate skewness through an additional parameter γ which
should be informative about β.

11Koutrouvelis (1980) describes several refinements of the procedure by introducing certain standard-
izations to the data and by approximately choosing the points tk and u`.

12However, they also provide bootstrapping results based on samples drawn from stock-market data
and recommend the regression method based on these results.
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Assuming that Y  S (α, β, µ, σ) we define a vector φ (α, β, µ, σ) of four auxiliary
parameters: 





φ1 (α, β, µ, σ) = ν
φ2 (α, β, µ, σ) = γ
φ3 (α, β, µ, σ) = ω
φ4 (α, β, µ, σ) = λ

characterized by:

φ (α, β, µ, σ) = arg max
(ν,γ,ω,λ)

E [log l(Y ; ν, γ, ω, λ)] .

In other words, φ (α, β, µ, σ) defines the pseudo-true value of the skewed-t parameters
(ν, γ, ω, λ) when the true marginal distribution is the stable one S (α, β, µ, σ), irrespective
of the possibly dynamic structure of the data generating process. We claim that these
auxiliary parameters φ (θ) will be very informative about the corresponding structural
parameters θ = (α, β, µ, σ). The binding function will not only be one-to-one but will
remain true to the intuitive associations: ν ←→ α, γ ←→ β, ω ←→ µ, λ←→ σ. To see
this, we prove four results.

Proposition 3.1: For any real number a, φ3 (α, β, µ+ a, σ) = φ3 (α, β, µ, σ) + a, or:

ω (µ+ a) = ω (µ) + a

Proposition 3.1 confirms that the auxiliary parameter ω = φ3 should inform us very
well on the location parameter µ.

Proposition 3.2: For any a > 0, φ4 (α, β, aµ, aσ) = aφ4 (α, β, µ, σ), or: λ (aσ) =
aλ (σ).

Proposition 3.2 indicates that the auxiliary parameter λ = φ4 should be very infor-
mative about the scale parameter σ.

Proposition 3.3:

φ2 (α,−β, µ, σ) = [φ2 (α, β, µ, σ)]−1

or

γ (−β) = [γ (β)]−1

Proposition 3.3 shows that the auxiliary parameter γ = φ3 should capture the skew-
ness parameter β.
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Proposition 3.4: ν = φ1 (α, β, µ, σ) is determined as solution of:

h′ (ν)

h (ν)
=

1

2
E

{
log

[
1 +

1

ν

(
Y − ω
λ

)2

gω (Y, γ)

]}

where Y  S (α, β, µ, σ), h(ν) is the log quasi likelihood function and (ν, γ, ω, λ) =
φ (α, β, µ, σ)

In particular






φ1 (α, β, µ+ a, σ) = φ1 (α, β, µ, σ) for all a,
φ1 (α, β, aµ, aσ) = φ1 (α, β, µ, σ) for all a > 0,
φ1 (α,−β, µ, σ) = φ1 (α, β, µ, σ)

or 




ν (µ+ a) = ν (µ)
ν (aσ) = ν (σ)
ν (−β) = ν (β)

Proposition 3.4 confirms that the auxiliary parameter ν = φ1 should correspond to
the tail parameter α. In particular it is not modified by symmetry, location and scale
changes.

The nice correspondence between the two set of parameters suggests that pseudo-

maximum likelihood estimators
(
ν̂, γ̂, ω̂, λ̂

)
of the skewed-t parameters should be very

informative about the structural parameters (α, β, µ, σ). Indirect inference estimators(
α̂, β̂, µ̂, σ̂

)
of the latter could be simply computed as solutions of the following equations






ν̂ = φ1

(
α̂, β̂, µ̂, σ̂

)

γ̂ = φ2

(
α̂, β̂, µ̂, σ̂

)

ω̂ = φ3

(
α̂, β̂, µ̂, σ̂

)

λ̂ = φ4

(
α̂, β̂, µ̂, σ̂

)

Of course, the binding functions φ1, φ2, φ3, and φ4 are not known in closed form and
must be recovered though simulations. Note that the binding functions involve only
marginal distributions. Therefore, simulations can be performed with i.i.d. sampling in
the stable distribution, without accounting for the possibly dynamic features of the data.
However, in finite sample, and most likely for larger values of the true unknown α, ν̂
may be off the theoretical range corresponding to stable distributions exactly as φ1 was
in the previously described quantile-based approach. To see this, note that since lim

ν=+∞
h′ (ν) = 0, ν −→ +∞ is always a solution of the equation in proposition 3.4 which defines
the pseudo-true value of ν. Intuitively, for α close to 2, we may expect that observed
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data will give the spurious feeling that variance is finite, which would imply a normal
distribution corresponding to ν = +∞ in a Student framework. This is why we will
constrain the auxiliary parameter φ1 by imposing on it an upper bound as McCulloch
(1986) did for his auxiliary parameter which provided information about α. We choose
to impose ν ≤ 2 that is to redefine φ1 as φ1 = min (ν, 2) . Theoretically, the constraint
on ν does not have to be strictly 2.

However, as already mentioned for the quantile-based example, such a constraint
about one auxiliary parameter may cause some lack of identification when it is stuck on
its limit value. Constrained indirect inference provides the right methodology to deal
with this problem.

4 Constrained indirect estimators

Following Calzolari, Fiorentini and Sentana (2004), we consider the Lagrangian function

L∗
n (Ψ) = Ln (φ) + δ (2− ν) (4.1)

where Ψ = (φ′, δ′)′ and φ = (ν, γ, ω, λ) is the vector of auxiliary parameters correspond-
ing to the skewed-t quasi-likelihood function

Ln (φ) = n log



h (ν)√
πν
· 1

λ
(
γ + 1

γ

)



 (4.2)

−ν + 1

2

n∑

i=1

log

[
1 +

1

ν

(
Yi − ω
λ

)2

gω (Yi, λ)

]

The parameter δ ≥ 0 is the Kuhn-Tucker multiplier associated with the constraint
ν ≤ 2. In order to accommodate jointly the standard indirect inference estimator and
the constrained indirect inference estimator, we consider here the two cases, first with
δ identical to zero (no constraint on ν) and second with δ ≥ 0 (inequality constraint on
ν).

The estimator Ψ̂ of the pseudo-true value of Ψ is then defined by the first-order
conditions 





∂Ln

∂ (γ, ω, λ)′

(
φ̂
)

= 0

∂Ln

∂ν

(
φ̂
)

= δ̂

(4.3)

jointly with the complementary slackness restriction δ̂ (2− ν̂) = 0

Let us denote Y h
i (θ) , h = 1, · · · , H, i = 1, · · ·n, the components of H simulated

paths of an α-stable process for a given value θ = (α, β, µ, σ) of structural parameters.
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As already mentioned, the simulations are performed with i.i.d. draws in the stable
distribution.

The simulated path
(
Y h

i (θ)
)
1≤i≤n

defines a simulated criterion function

L∗h
n (Ψ |θ ) = Lh

n (φ |θ ) + δ (2− ν) (4.4)

where Lh
n (φ |θ ) is computed as in (4.2) but with simulated data

(
Y h

i (θ)
)
1≤i≤n

instead of

observed ones (Yi)1≤i≤n . Corresponding simulated estimators Ψ̂h (θ) are defined by the
system of equations 





∂Lh
n

∂ (γ, ω, λ)′

[
φ̂h (θ) |θ

]
= 0

∂Lh
n

∂ν

[
φ̂h (θ) |θ

]
= δ̂h (θ)

δ̂h (θ) ·
(
2− ν̂h (θ)

)
= 0

(4.5)

Let us then consider the average estimator over the H simulated paths

Ψ̃H (θ) =
1

H

H∑

h=1

Ψ̂h (θ)

The main idea of indirect inference is to choose the estimator θ̂ of structural pa-
rameters θ in order to match Ψ̃H (θ) against Ψ̂. For standard (unconstrained) indirect
inference, we are here in a just identified setting, so that θ̂u is just defined as solution
of the system of four equations:

φ̂u = φ̂u
H

(
θ̂u

)
(4.6)

The superscripts, u for unconstrained, are just a reminder that the corresponding
estimators have been computed by choosing a zero Kuhn-Tucker multiplier: δ̂ and δ̂h (θ)
are fixed to zero, for h = 1, · · · , H. Note that, from Gourieroux, Monfort and Renault
(1993), we know that in this just identified setting, the indirect inference estimator θ̂u

numerically coincides with the score matching estimator as put forward by Gallant and
Tauchen (1996).

By contrast, in order to perform constrained indirect inference, we are faced with
a seemingly overidentified problem since both Ψ̃H (θ) and Ψ̂ entail five free parameters
while the unknown θ is of dimension four. However, we know that this overidentification
feature is just a finite sample problem since (see Calzolari, Sentana and Fiorentini (2004),
Proposition 1), the asymptotic distributions of Ψ̂ and Ψ̃H (θ) are singular. Therefore, the
overidentified finite sample matching problem can be solved by minimizing an arbitrary
distance:

θ̂c = arg min
θ

(
Ψ̃H (θ)− Ψ̂

)′
W

(
Ψ̃H (θ)− Ψ̂

)
(4.7)
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In terms of asymptotic probability distribution of θ̂c, the choice of the positive definite
weighting matrix W is immaterial. Note however that when ν̂ is stuck at its limit value
2, the information content of Ψ̂ about the structural parameters θ will go through the

Kuhn-Tucker multiplier δ̂ = ∂ ln
∂ν

(
φ̂
)
. Therefore, constrained indirect inference will not

suffer from the weak identification problem about β that is currently encountered with
competing estimation methods when the true unknown value of α is close to 2.

While Calzolari, Fiorentini and Sentana (2004) only derive the asymptotic probability
distribution of the constrained indirect inference estimator for an infinite number H of
simulated paths, we do apply it here with finite H. We know, as a general principle
of simulated method of moments, that the only asymptotic consequence of this is to
multiply the asymptotic variance matrix of θ̂ by a factor

(
1 + 1

H

)
.

Generally speaking, standard theory of indirect inference (see Gourieroux, Monfort
and Renault, 1993) can be applied insofar as the information content of auxiliary pa-
rameters is sufficient to identify the structural parameters and as the estimator Ψ̂ of
auxiliary parameters is root-n asymptotically normal. We show in the appendix that
the latter property is fulfilled by Ψ̂ solution of (4.3), at least when the pseudo-true value
of the asymmetry coefficient γ2 does not exceed (2 +

√
5)1/2. According to our Monte

Carlo study, this constraint does not appear to be binding for application to the α-stable
model. This maintained asymptotic normality makes the important difference between
our approach and a conventional method of moments. Moreover, while we have chosen to
work with just-identified moment conditions, it would be easy to introduce some degree
of overidentification, for instance by adding McCulloch (1986) quantile-based auxiliary
parameters to our skewed-t auxiliary parameters.

Then, the standard theory of overidentification tests in the indirect inference setting
will provide X 2-based goodness of fit tests for stable observations. As mentioned by Deo
(2000), there are not many statistical tests that are both formal and simple to implement
for the goodness-of-fit of stable distributions. While Deo (2000) proposes some X 2-
tests based on the characteristic function, the indirect inference approach provides an
alternative unified framework.

5 A Monte Carlo study

In this section we carry out an extensive Monte Carlo experiment to determine if the
good asymptotic properties of the indirect inference estimators with a skewed-t auxiliary
model are maintained in a finite sample context. As we have seen in the previous
section, the asymptotic distribution of θ̂ is determined by the asymptotic distribution
of Ψ̂. Therefore, it is worthwhile to examine the sample distribution of the parameter
estimates for the auxiliary model in an experimental setting where we simulate data
from a α-stable distribution with different values of the parameters.
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We carry out a simulation where we generate 500 samples of 1000 observations for 9
different values of α, namely 0.3, 0.7, 1, 1.3, 1.5, 1.7 ,1.9, 1.95 and 1.99.13 We keep the
other parameters µ, σ and β fixed and set them equal to 0, 0.5 and 0 respectively. The
simulation experiment is divided in two parts.14 First we estimate the unconstrained
skewed-t distribution, i.e. solving

φ̂u = arg max
φ

Ln (φ) , (5.1)

where ln (φ) is as defined in (4.2). Since the true values of φ are unknown, we can only
check by Monte Carlo the behavior of the first four moments of the estimators. The
results are reported in Table 1. Concerning ω, λ and γ, the Monte-Carlo skewness and
kurtosis coefficients of their estimators are fairly close to zero and three respectively,
which confirms the finite sample validity of the asymptotic normal approximation of the
distribution of the estimators. Moreover, in accordance with the theoretical analysis of
section 3.3, we check that these estimators do not vary too much in terms of mean and
standard deviation when the value of α is changed.

In contrast, ν̂ is ill-behaved in finite sample, especially when α approaches to 2. Of
course, one would expect ν̂ to be an increasing function of α, since these two parameters
are supposed to describe the tails. However, when α approaches 2, ν̂ appears to be
attracted towards infinity, as if, in finite sample, one had the spurious feeling to reach
normality corresponding to the limit case α = 2 and ν = +∞. On the contrary, even
for α = 1.99, population variance is infinite, which should correspond to ν smaller than
two. Intuitively, ν̂ is attracted too much towards very large values in finite sample.
This intuition is confirmed by examination of the variance, skewness and kurtosis of ν̂,
which feature some weird values when α approaches 2. Figure 1 represents the kernel
density of the Monte Carlo distribution of ν̂ for several values of α. For a sample of 1000
observations, when α ≥ 1.5 the estimator ν̂ exhibits serious departures from normality.
Notice that for α between 1.3 and 1.95 the densities for ν̂ are more and more peaked and
the right tail is fatter, increasing the kurtosis coefficient. For α = 1.99, the density of
ν̂ becomes bimodal, which shows even more that besides the true unknown pseudo-true
value, ν̂ is attracted towards +∞.

While the kernel densities represented in Figure 1 are all about a sample size of 1000,
the role of sample size in the dependence of ν̂ in α is investigated in Table 2. Clearly,
the closer is α to the value 2, the more observations are needed to get approximate
normality for the distribution of ν̂. No less than 10000 observations are needed for fairly
approaching normality when α = 1.9. Even more observations would be necessary for
larger values of α.

We also show in Figure 2 the link between the degrees of freedom of the auxiliary
model and the stability index α. We plot the estimated ν̂ as a function of α for a given
set of values for β (indicated in the legend of the Figure). One can conclude from the

13In Appendix B, we explain how to simulate from an α-stable distribution
14We also carried out the same experiment for different values of β and obtained similar results.
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figure that the relation between ν̂ and α appears to be exponential, confirming that as
α→ 2 we get closer to a Gaussian distribution within the α-stable family and therefore
ν̂ →∞. Moreover, since ν̂ is not always below two, it means that the true process may
be an infinite variance process, yet the estimated pseudo-true skewed-t distribution has
a finite second moment. Finally, β does not have a significant impact on ν̂ as all curves
are very close to each other.

To assess the implications of these shortcomings of the auxiliary model on the es-
timation of the parameter vector θ we generate 500 samples of 1000 observations for
different values of θ and estimate for each sample θ̂ by indirect inference. The values
of µ and σ are set to 0 and 0.5, while α takes the values 1.5 and 1.9 and β the values
0 and 0.75. The results, shown in Table 3, indicate that for α = 1.9 the skewness and
kurtosis for µ and σ tend to explode when β = 0.75. The distribution of the estimates is
much closer to a normal when α = 1.5. We conclude from this simulation exercise that
the auxiliary model works for most cases but fails when α comes close to 2.

Therefore we propose to use a constrained version of the skewed-t distribution. Since
the estimate ν̂ is ill-behaved in finite sample when α→ 2 because it is attracted by ∞,
we impose an upper bound on ν, i.e. ν < νc. We choose νc = 2 but in fact even a larger
bound could fulfill the purpose.15 However, choosing a larger bound, say of 10, is not
innocuous in terms of finite sample performance of constrained indirect estimators of α
and β. Generally speaking, a tighter bound will provide a more accurate estimator of α,
while deteriorating the estimation of β. We choose to maintain the bound at 2, which
leads to the maximization program:

Ψ̂c = arg max
Ψ

Ln (φ) + δ (2− ν) , (5.2)

plus the slackness restriction δ̂(2− ν̂) = 0 and the inequality restrictions ν ≤ 2.

If ν̂c, the estimate of ν under (5.2), is smaller than two the multiplier δ̂ is zero,
because of the slackness condition. On the contrary, if ν̂c reaches its upper bound, the
multiplier is not zero. In the former case, the multiplier does not play a role in the
estimation and constrained indirect inference is nothing else than indirect inference. In
the latter case, it is ν̂c who does not play a role and the multiplier is the parameter
at work with constrained indirect inference. To check that the estimated multiplier is
well-behaved in finite sample, we draw in Figure 3 the densities of δ̂ when α is getting
closer to 2. It can be seen that, contrary to ν̂ (see Figure 1), the distributions are much
closer to a normal. This explains why δ̂ is a more relevant auxiliary parameter than ν̂
in such a case. The role of sample size is studied in Table 4.

To assess the performance of the constrained indirect inference method, we will con-
duct a thorough Monte Carlo study for a number of combinations of values for α and

15The constrain ν < 2 is sufficient but not necessary, since what matters is to prevent ν̂ from
approaching ∞.
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β, while setting the location and scale parameters, µ and σ, to 0 and 0.5 respectively.16

We choose four different positive values, namely {0, 0.25, 0.5, 0.75}, for the skewness pa-
rameter β. Finally the stability index α takes the values {0.7, 1.1, 1.7, 1.9}. We generate
500 samples of 1000 observations for the resulting values of θ. In the indirect inference
methods, both constrained and unconstrained, one can choose the number of times H the
simulation is repeated for each estimation in order to reduce the variance of the moments
to match and possibly the finite sample bias and variance of the resulting estimator. We
choose H= {1, 2, 5} and report the results in Tables 5, 6 and 7 respectively.17

To conduct the constrained indirect inference estimation procedure, we first estimate
the set of auxiliary parameters from the generated series for a given set of stable param-
eters. If the number of degrees of freedom ν̂ is estimated at a value above 2, we switch
to estimating the Lagrange multiplier δ̂. Thereafter, we conduct the indirect inference
procedure to match this δ̂, along with the three other auxiliary parameters. Therefore,

we either match
(
ν̂, γ̂, λ̂, ŵ

)
if ν̂ is less than 2, or

(
δ̂, γ̂, λ̂, ŵ

)
is ν̂ is greater or equal

to 2. For the weighting matrix W , we choose a (4 x 4) identity matrix in each case,
whether we match the set of auxiliary parameters with γ̂ or δ̂ respectively. With the
500 estimated parameters we compute some basic statistics: mean, standard deviation,
skewness, kurtosis, minimum and maximum, so we can assess if the densities of the
estimated parameters depart from normality.

We also compare the constrained indirect inference method to two other methods
which have been described in Section 2 and are serious contenders for the estimation of
the α-stable distribution. The first one is the continuous GMM method of Carrasco and
Florens (2002) based on the characteristic function with a regularization parameter βn

equal to 10−6.18 The second one is the empirical quantile method of McCulloch (1986).19

Results for these two methods are presented in Tables 8 and 9 respectively.

As a general assessment, one can say that the constrained indirect inference method
delivers consistent estimators which are close to being distributed normally for all values
chosen for θ. The skewness for all parameters is close to 0 and the kurtosis close to 3.
Thanks to the constraint imposed on ν in the auxiliary model, the estimator behaves
well even when α approaches 2. However, when α is equal to 1.1 and is therefore close
to 1, the parameter µ is badly estimated since theoretically it becomes infinite. This
is a feature which is shared by all estimation methods of the α-stable distribution and
confirmed by the two other methods we examined. Increasing the number of simulated
draws, H, improves the properties of the estimators but not significantly. As expected,

16We also carried out the simulation for σ = 1.5. For space considerations, we do not report the
results since the conclusions are basically the same than for σ = 0.5.

17In Appendix C, we comment on some numerical aspects related to the implementation of the Monte
Carlo procedure.

1810−6 is the same value that Carrasco and Florens (2002) chose for their Monte Carlo study with
the α-stable distribution.

19We use a GAUSS procedure written by J. Huston McCulloch and available in his web page
http://www.econ.ohio-state.edu/jhm/jhm.html
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the mean of the replications is closer to the true value for H= 5 and the standard
deviation is smaller.

Constrained indirect inference compares well with the two other methods. First, with
respect to continuous GMM, it appears that it estimates much better the parameter σ.
For values of α less than 1, continuous GMM overestimates the value of σ, while it
underestimates it for values of α greater than 1. The bias for α = 1.9 is quite severe,
since the mean of the 500 replications is 0.27 for a true value of 0.5. The bias of indirect
inference is also smaller than continuous GMM for the problematic case of α = 1.1.
Estimates for other parameters , for example β, suffer when α gets close to 2. This is
never the case for indirect inference. The constrained indirect inference method is also
more efficient than continuous GMM. The reduction is standard deviation is often by a
factor of 2, but in certain cases, say α = 1.9 and β = 0.75, the standard deviation can
be almost four times smaller.20

The empirical quantile method does not seem to suffer from any systematic bias
except for β at α = 1.9. Its main weakness appears to be its lack of efficiency. Standard
deviations are quite larger than in the case of indirect inference and continuous GMM.

This Monte Carlo study shows unequivocally that indirect inference, with its con-
strained version when necessary, is a reliable method to estimate the parameters of the
α-stable distribution. It certainly provides an improvement in terms of efficiency over
classical quantile methods and even over the more recently proposed continuous GMM
method.

To judge the efficiency of the indirect inference procedure, we also compare in Table
10 the empirical standard deviations of α and β to the asymptotic Cramer-Rao bounds
reported in DuMouchel (1975) for a set of parameter values. It can be seen that the
constrained indirect inference procedure produces standard deviations that are close
to the asymptotic lower bounds. Interestingly, when α is getting closer to 2 (starting
with 1.5 in our table), the empirical standard deviations produced by the Monte Carlo
indirect inference procedure are smaller than the asymptotic bounds. This is a finite
sample phenomenon. As we increase the number of observations from 1000 to 5000
the indirect inference standard deviation becomes higher than the lower bound while
remaining close to it.

6 Issues regarding Dependent Processes

Our method has been applied to i.i.d. stable processes. In most financial applications,
stable distributions have been used to characterize unconditional distributions of asset

20As noted above, continuous GMM has been performed with a fixed ad hoc regularization coefficient.
An endogenous choice of βn could improve results, namely suppress the bias for σ. However, in the Monte
Carlo study performed by Carrasco and Florens (2002) for the α-stable distribution, the estimated σ
does not change significantly when βn is selected in an ad hoc way or endogenously.
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returns exhibiting skewness and excess kurtosis. This is partly rooted in the Generalized
Central Limit Theorem (GCLT) of Feller (1971), which states that if the distribution of
a sum of i.i.d. random variables exists then it must be a member of the stable Paretian
class of distributions. Ibragimov and Linnik (1971) have generalized the GCLT to allow
for some forms of temporal dependence. Therefore, looking at say monthly returns,
which are aggregated for higher-frequency daily returns, the data may appear as being
generated by a stable distribution.

Several papers have investigated the relationship between stable processes and pro-
cesses with conditional heteroskedasticity such as GARCH and IGARCH. De Vries
(1991) has shown that under certain conditions on the parameters of a GARCH-like
process, the stable and GARCH processes are observationally equivalent from the view-
point of the unconditional distribution. Ghose and Kroner (1995) establish that many
of the properties of stable models are shared by GARCH models. In particular, both
models share the facts that the unconditional distribution has fat tails and that the
tail shape is invariant under addition.21 However, they identify distinctive properties,
namely the clustering in volatility that is not present in stable distributions and the
distributions of the extreme values, captured by their tail indices. Indeed, even though
both models are heavy-tailed, GARCH models allow for bounded second and higher
moments, while non-Gaussian stable laws exhibit infinite variance. Groenendijk, Lucas
and de Vries (1995) show however that it is not always the case that the tail shapes can
be used to discriminate between the competing models. More recently, Deo (2000, 2002)
has devised an estimation procedure for the tail index α as well as a goodness-of-fit test
that is valid in the presence of m-dependence in the series.

To illustrate the results put forward in this literature, we generate GARCH(1,1)
series for the same set of parameter values chosen by Ghose and Kroner (1995) (see the
top part of Table 2, p. 234). The models involve both Gaussian and Student densities,
aggregated over every 5, 10 and 20 periods.22 The main difference being that instead
of computing the Hill estimator to measure the tail index, we will apply our indirect
inference method to estimate α, along with the other parameters.23

We simulate 500 samples of 1000 observations from the following GARCH(1,1) model:

yt = εt, εt ∼ D(0, ht)

ht = δ0 + δ1ht−1 + δ2ε
2
t−1. (6.3)

21However strong GARCH models are not closed under aggregation and therefore do not share the self-
similarity property of the stable distribution. A weak GARCH model is always close under aggregation
(Drost and Nijman, 1993) but since our main interest is tail behavior, we consider only the strong
version.

22If the original process is thought to be daily, aggregation over 5, 10 and 20 periods would represent
weekly, biweekly and monthly series.

23The tail measure by the Hill estimator is not the same as α. The Hill estimator is the ML estimator
of a Pareto density that is often used to estimate the decay of the asymptotic tail of a density but only
focusing on the tail area, independently of the rest of the density. Moreover, the Hill estimator has
support equal to the positive real numbers while α is bounded between zero and two.
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where D is either Gaussian or Student with 5 degrees of freedom. Table 11 shows
the mean, standard deviation and kurtosis of the 500 simulated processes. We only
show results for the second and fourth moments as the first and third moments do not
play any significant role in this simulation. Table 11 shows that all processes exhibit
empirically excess kurtosis. Excess kurtosis also increases with the memory of the model
(the closer the sum of δ1 and δ2 is to one) and does not vanish under aggregation. This
is a finite sample artifact, since we know from Diebold (1988) that stationary GARCH
models converge to normality under temporal aggregation. If we assume that the original
frequency of the generated data is daily, aggregation over 20 observations results in
monthly data. For a sample size of 1000 daily observations, we obtain 50 monthly
observations. This is indeed a small sample, but small samples are characteristic of
hedge fund data that will be used in our empirical application in the next section. Of
course, conditional Student t5 distributions exhibit stronger kurtosis. Regarding the
variance, we see that, as expected, it increases with the memory of the model and the
aggregation frequency.

Tables 12 and 13 show the mean and standard deviation of 500 estimates of α and σ
obtained through our constrained indirect inference procedure. Based on the empirical
moments, it is clearly seen that the stable density captures very well the increases of
variance and kurtosis through aggregation and memory. The tail index remains relatively
constant under aggregation while the estimated dispersion increases -and in all cases the
standard errors increase with the aggregation as the sample size decreases. As expected,
the tail index and the dispersion are higher when the process is generated from a Student
density that when it comes from a Gaussian probability distribution. Last, the higher
the memory of the model, in particular for the last three cases, the lower the tail index
and the higher the dispersion as well.

We have illustrated that stable distributions could serve as a good statistical tool to
capture the unconditional distribution of asset returns at low frequency, even if the true
DGP was a conditionally heteroscedastic process like GARCH. Of course, one might
argue that what matters for financial applications is the conditional distribution and
that the estimation method developed here will not be useful to capture the conditional
dependence in mean and variance. Although we do not intend to show in detail how
our method can be extended to characterize conditional distributions, we will argue
that it should be possible to introduce dependence in our indirect inference procedure.
First, it should be stressed that GARCH-like processes, that is processes exhibiting
conditional heteroskedasticity, can be built from stable random variables as shown by
de Vries (1991). Second, Deo (2002) has used this conditionally heteroscedastic process
with marginal stable distribution, which has infinite dependence, to estimate tail indices
with an estimation procedure that accommodates dependence of order m. He concludes
that his procedure provides quite good estimates of the tail index. As mentioned in
Section 4, it does not seem too difficult to extend the general theorems provided in
Appendix A to include m-dependence. Given the results in Deo (2002), it can be hoped
that it will behave well in presence of processes with infinite dependence. Of course, if
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the goal is to characterize a conditional distribution, one should change the auxiliary
model to incorporate the skewed-t distribution into a GARCH-model. A important gain
of estimating the parameters of a stable process could be to use the aggregation property
of stable processes for portfolio applications.

7 An Empirical Application to Hedge Funds

In this section we will apply our indirect inference estimation procedure to a set of
hedge fund indices. Several studies, in particular Fung and Hsieh (2002), Mitchell and
Pulvino (2001), and Agarwal and Naik (2004), have put forward the nonlinear structure
and option-like features of returns associated with hedge fund strategies. It means that
these return distributions are likely to exhibit skewness and kurtosis and are therefore
potentially well captured by stable distributions.

Hedge fund returns are computed from the TASS database, which provides returns
and net asset value data on 4,606 funds starting February 1977. However, reliable
indices can only be computed starting in the mid-nineties. Therefore, our sample starts
in January 1996 and ends in March 2004.24 Other information includes for each fund
an entry date, an exit date (if any), first reporting date, reasons for a fund death if
necessary, lock-up periods. This information is useful to correct the data for two well-
known biases associated with hedge fund data. The first is a backfilling bias, whereby the
database backfills the historical return data of a fund before its entry into the database.
The bias comes from the fact that the entry generally follows a period of good returns.
The second bias is a survivorship bias. Many funds disappear from the database during
the sample period for various reasons such as fund liquidation, fund not reporting any
longer to the database, no answer from the fund managers, merger with another fund,
to name a few. Not all these reasons have the same consequences in terms of monetary
loss for the investor.

We built three types of indices of hedge funds based on different methodologies used
by various index producing firms. The Standard & Poor’s Hedge Fund Index (SP) is
based on a selection of styles and strategies to construct a representative index. 25 The
Hedge Fund Research (HFR) indexes are equally weighted and therefore weight relatively
more the returns of small hedge funds. The Credit Suisse First Boston/Tremont (TRE)
index is a value weighted (i.e. valued by the net asset value of the fund), which gives
relatively more weight to the large funds. We follow the respective rules for constructing
these three indexes from the individual funds. We report the gross returns (letter O

24We chose to start in 1996 to have a reasonable representation for all categories of funds. Also, prior
to 1994, the TASS database did not give any information on funds that disappeared from the database.

25The styles are Arbitrage, Event-Driven and Directional/Tactical. The strategies for arbitrage are
equity market neutral, fixed income arbitrage and convertible arbitrage, for Event-Driven, merger ar-
bitrage, distressed and special situations, for Directional/Tactical, equity long/short, managed futures
and macro. Different numbers of funds are selected in each category to arrive at a total of 40 funds.
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after each index mnemonic) associated with the three indices, but we also construct
series that are free from the two above-mentioned biases. For the backfilling bias, we
eliminate all data that precede the date of entry of the fund in the database. The returns
are corrected for the survivorship bias by applying a loss of 25 % when the indicated
reasons for not reporting are fund liquidation, fund not reporting to TASS, managers not
answering requests, and other. In all other cases we did not apply any loss. Summary
statistics for the corrected returns for both biases (C after each index mnemonic) and
gross returns are reported in Table 14.

These descriptive statistics show that the monthly mean returns are much lower when
the two bias corrections are applied. The corrected returns still have a positive mean
but barely spectacular. As expected, the TRE index exhibits the highest returns, HFR
and SP ranking second and third. Limiting the included categories in the S&P index
lowers the mean return but it also reduces the standard error. The standard errors of
the HFR and TRE indices are roughly fifty per cent larger than the SP standard errors.
The corrected indexes exhibit higher standard errors than the respective gross return
indexes. This is explained by the fact that adding losses for the survivorship bias tends
to increase dispersion. The corrections make also the fund indexes less Gaussian since
both the skewness and kurtosis increase in absolute value. For the gross returns, the
skewness is almost always positive. However, when the corrections are applied, there is
a clear distinction between the equally weighted (SP and HFR) and the value-weighted
TRE index. The skewness of the former becomes negative, while for the latter, it remains
positive and not significantly different. This is explained by a maximum return which is
roughly double the minimum return in absolute value. This tends to show that the large
funds are less susceptible to be affected by the survivorship bias and that they provide a
better performance than the smaller funds. Finally, all the indexes show excess kurtosis,
but the effect is more pronounced when the two corrections are applied. To control for
the exclusion of certain categories in the SP index we also constructed HFR and TRE
indexes with the same styles and strategies than the SP. They are denoted with an added
SP mnemonic. This tends to increase skewness towards the positive values and to lower
kurtosis for the equally weighted HFR and increase kurtosis for the value-weighted TRE.

Before estimating the parameters of a stable distribution for each series, we apply
Engle’s (1982) Lagrange Multiplier (LM) test to each series to test for the presence of
correlation in the second moments. Ghose and Kroner (1995) check by simulation that
the test behaves well to discriminate between stable and conditionally heteroscedastic
processes. The values of the LM statistic for each of the hedge fund indices are reported
in Table 14. We reject the presence of ARCH effects in 8 of the 10 fund indices. Ghose
and Kroner (1995) also compute the Hill estimator to measure the tail thickness and use
it as a second indicator to differentiate stable distributions from GARCH-type models.
We compute the values of the Hill estimator for both the left and right tails of the series.
The estimated values are also reported in Table 14. The values obtained for the left and
the right tails are strikingly different. While the left tail values are often lower than two,
the values in the right tails are always greater than two. This evidence is consistent with

31



an asymmetric stable distribution since it admits different asymptotic left and right tails
(see section 2.1). It is not consistent with a Gaussian or Student-t GARCH model.

Table 15 shows the estimated parameters of the stable distribution for the various
indices . Our main conclusions are as follows. First, estimated parameters with our
constrained indirect inference method are in line with the empirical moments. Consider,
for example, both TREC indices. They exhibit the highest values for the empirical
kurtosis (5.52 for TREC and 6.2 for TREC-SP), and their α̂ is respectively equal to 1.70
and 1.67, the smallest estimated values for the α parameter. For the skewness parameter
β, the sign and magnitude observed in the data is generally respected in the estimates.
An exception seems to be for the two TREC indices. Finally the means are generally in
line with the empirical moments.

Moreover, when the data are close to normal, which is reflected in the empirical
moments by a kurtosis close to 3, the estimates for α are close to 2 (as in SPO and
HFRO), which is what we want. In this case, the skewness parameter β becomes irrel-
evant and the estimates appear to be close to 1. Note that in these cases the empirical
quantile method reaches the upper bound of 2 for α̂, and the β parameter is then set to
zero. Observe also that the means tend to be underestimated by the empirical quantile
method and overestimated by the indirect inference method. In general, as noted in the
Monte Carlo experiment, the values estimated with the quantile method are close to the
constrained indirect inference estimates.

The CGMM appears to be much more unstable than the two other methods. When
it works, as for example in the case of the SPC index, it provides estimates that are very
much in line with the two other methods and the empirical moments. There are cases
however, most notably when the data are getting close to normal, where the estimated
values for the mean parameter become unreasonable. As noted in the Monte Carlo study,
continuous GMM has been performed with a fixed ad hoc regularization coefficient. An
endogenous choice of βn could improve results.

Finally, a comparison of the estimates provided by the constrained indirect inference
and the skewed-t is also instructive. When α̂ gets closer to 2, the number of degrees of
freedom becomes high, as expected. It is much lower for the lowest estimates of α for
the TREC and TREC-SP indexes. The skewness parameter γ is also in line with the
estimates of β. However, it is worth to recall that an α̂ close to 2, but not 2, implies
infinite variance while its ν̂ counterpart typically takes values around 9, which implies
finite first eight moments and, in particular, finite variance. The standard deviation esti-
mates of the skewed-t are much closer to the corresponding empirical moment. However,
rather surprisingly, the estimates of the mean parameter are close to 0.5 for all series.
Figure 4 shows nonparametric densities from simulated data of a stable and a skewed-t
densities evaluated at the estimated parameters. Indeed, the mode of the skewed-t is
systematically on the left of the mode of the stable density. Nevertheless, the essential
features of both densities are similar in the sense that when one density is very spiked
and has very long tails, the other density also mimics this aspects. This is an intuitive
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indication that the skewed-t density is indeed a good auxiliary model for the stable.

8 Conclusion

The stable distribution is very useful to model processes with heavy-tailed and skewed
distributions which are often encountered in financial series. However, its estimation
raises several challenges that we addressed in this paper. Since the density function of
a stable distribution does not have a closed form but a stable series is relatively easy to
simulate, we proposed an indirect inference estimation method which is ideally suited
to such characteristics. In a Monte Carlo study, we showed that the method performed
well for almost all values of the parameters and much better than competing methods
currently used in terms of efficiency. To improve the properties of the estimator in finite
samples when the value of the stability parameter approaches two, we used a variant of
the indirect inference method called constrained indirect inference. We also showed that
this new method for estimating stable distributions proved very useful for capturing the
skewness and kurtosis present in hedge funds returns series. Computation of values at
risk based on this indirect inference method may also deliver more reliable estimates.

Besides a specific application of constrained indirect inference associated to the
skewed-t based QML estimator, this paper provides a unified framework for estima-
tion and goodness of fit tests of stable stochastic processes through a variety of popular
instrumental parameters like quantiles or selected values of the characteristic function.
Any instrumental parameter for which a consistent asymptotically normal estimator is
available is a suitable candidate. For finite sample performance however, it is recom-
mended to choose a reduced number of parameters which are well informative about
the structural ones. This paper contains both theoretical arguments and Monte-Carlo
evidence to show that specific (constrained) functions of quantiles as considered by Mc-
Culloch (1986) as well as skewed-t (constrained) QML estimators are good candidates.
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Appendix A: Proofs

Proof of Propositions 3.1 to 3.4:

Pseudo-true values are defined as maximizing the expectation of the log quasi-
likelihood function, that is:

Q [(ν, γ, ω, λ) ; (α, β, µ, σ)] = E [log l (Y ; ν, γ, ω, λ)]

where Y  S (α, β, µ, σ).

We first show that:





Q [(ν, γ, ω + a, λ) ; (α, β, µ+ a, σ)] = Q [(ν, γ, ω, λ) ; (α, β, µ, σ)] for all a,
Q [(ν, γ, ωa, aλ) ; (α, β, aµ, aσ)] = Q [(ν, γ, ω, λ) ; (α, β, µ, σ)] for all a > 0,

Q [(ν, 1/γ, 2µ− ω, λ) ; (α,−β, µ, σ)] = Q [(ν, γ, ω, λ) ; (α, β, µ, σ)]
(A.1)

To see this, it is sufficient to notice that:

First, Y + a S (α, β, µ+ a, σ) and for all y:

l (y + a; ν, γ, ω + a, λ) = l (y; ν, γ, ω, λ) .

Second, aY  S (α, β, aµ, aσ) , a > 0, and for all y:

l (ay; ν, γ, aω, λ) = l (y; ν, γ, ω, λ) .

Third, (2µ− Y ) S (α,−β, µ, σ) and for all y:

l (2µ− y; ν, 1/γ, 2µ− w, λ) = l (y; ν, γ, ω, λ) .

This proves (A.1).

Suppose for the moment that we can also prove that, for maximizing the quasi-
likelihood function, the first-order condition with respect to ν is tantamount to the
equation stated by proposition 3.4:

h′ (ν)

h (ν)
=

1

2
E

{
log

[
1 +

1

ν

(
Y − ω
λ

)2

gw (Y, γ)

]}
(A.2)

Then, by joint application of (A.1) and (A.2), we see clearly that the changes Y −→
Y + a, Y −→ aY and Y −→ 2µ − Y will have the effects on the pseudo-true value
that are stated by proposition 3.1 to 3.4. The proof of these propositions will then be
completed by the proof of (A.2). To get it, let us write the first-order conditions of the
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quasi-likelihood maximization with respect to λ and ν. The partial derivatives of the
expected log-quasi-likelihood function with respect to λ and ν are:

∂Q

∂λ
= −1

λ
− ν + 1

2ν

(
− 2

λ3

)
E

[
(Y − ω)2 gω (Y, γ)

1 + 1
ν

(
Y −ω

λ

)2
gw(Y, γ)

]

and

∂Q

∂ν
=

h′ (ν)

h (ν)
− 1

2ν
− 1

2
E

[
log

[
1 +

1

ν

(
Y − ω
λ

)2

gw (Y, γ)

]]

−ν + 1

2λ2

(
− 1

ν2

)
E

[
(Y − ω)2 gω (Y, γ)

1 + 1
ν

(
Y −ω

λ

)2
gw(Y, γ)

]
.

This leads to the following first order conditions, for λ and ν respectively:

(ν + 1)E

[
1
ν

(
Y −ω

λ

)2
gω (Y, γ)

1 + 1
ν

(
Y −ω

λ

)2
gw(Y, γ)

]
= 1 (A.3)

and:

h′ (ν)

h (ν)
− 1

2ν
− 1

2
E

[
log

[
1 +

1

ν

(
Y − ω
λ

)2

gw (Y, γ)

]]

+
ν + 1

2ν
E

[
1
ν

(
Y −ω

λ

)2
gω (Y, γ)

1 + 1
ν

(
Y −ω

λ

)2
gw(Y, γ)

]
= 0 (A.4)

By plugging (A.3) into (A.4), we get the announced first-order conditions (A.2) to
characterize the pseudo true value of ν.

Q.E.D

Proof of asymptotic normality

As explained in section 4, we have only to show that the estimator Ψ̂ of the pseudo-
true value Ψ0 of Ψ defined by first-order conditions (4.3) is root n asymptotically normal.
For sake of expositional simplicity, we address the asymptotic normality issue separately
for each component of Ψ̂, by considering the corresponding first-order conditions in
(4.3). A closer argument to check the joint asymptotic normality of Ψ̂ would be easy
to settle at the cost of cumbersome matrix notations. Moreover, we consider only the
case of i.i.d. sampling, with application of the Lindeberg-Levy central limit theorem.
Extensions using convenient central limit theorems for stationary dependent data with
high-level mixing assumptions would be straightforward.
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Starting from formula (4.2) for the quasi-loglikelihood function, the estimator ŵ is
characterised as solution of:

∂Ln

∂w

(
Ψ̂

)
=
ν̂ + 1

2

n∑

i=1

1
v̂
gw (yi, γ̂) 2 (yi−ŵ)

λ̂2

1 + 1
v̂
gw (yi, γ̂)

(
yi−ŵ

λ̂

)2 = 0

⇔ ŵ =




n∑

i=1

yigw (yi, γ̂)

1 + 1
ν̂
gw (yi, γ̂)

(
yi−ŵ

λ̂

)2



×




n∑

i=1

gw (yi, γ̂)

1 + 1
ν̂
gw (yi, γ̂)

(
yi−ŵ

λ̂

)2





−1

(A.5)

The variables
gw (yi, γ)

1 + 1
γ
gw (yi, γ)

(
yi−w

λ

)2

are i.i.d and bounded (absolute value smaller than max
[
γ2, 1

γ2

]
). Thus, by the uniform

strong law of large numbers:

1

n

n∑

i=1

gw (yi, γ̂)

1 + 1
ν̂
gw (yi, γ̂)

(
yi−ŵ

λ̂

)

is asymptotically a positive constant. Consider now the sequence of variables

Zi =
yigw (yi, γ)

1 + 1
γ
gw (yi, γ)

(
yi−w

λ

)2

Since:

|Zi| ≤ |Yi|Max

(
γ2,

1

γ2

)

Zi is i.i.d. integrable as Yi (since α > 1) and, by the Lindeberg-Levy central limit theo-

rem, 1√
n

n∑
i=1

(Zi − EZi) is asymptotically normal. Therefore:
√
n (ŵ − w0) is asymptoti-

cally normal.

From (4.2), γ̂ is characterized as solution of the first-order condition:

1− 1
γ̂2

γ̂ + 1
γ̂

=
ν̂ + 1

2n

∑

i/yi≥0

1
ν̂
2γ̂(yi−ŵ

λ̂
)2

1 + γ̂2

ν̂

(
yi−ŵ

λ̂

)2 (A.6)

+
ν̂ + 1

2n

∑

i/yi<0

1
ν̂

(
−2
γ̂3

)
(yi−ŵ

λ̂
)2

1 + 1
ν̂γ̂2

(
yi−ŵ

λ̂

)2
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Lindeberg-Levy central limit theorem will apply to the sum of the RHS of (4.2) since
variables of the form

(yi − w)2

1 + a
(yi−w

λ

)2

are integrable when taking values in the bounded interval
[
0, 1

a

]
. Therefore, by the

delta-theorem, equation (A.2) will ensure asymptotic normality for γ̂ insofar as:

g (γ) =
1− 1

γ2

γ + 1
γ

is a C1 diffeomorphism in the neighborhood of the pseudo-true value. But:

g′ (γ) =

1
γ2 + 4

γ2 − 1
(
γ + 1

γ

)2 < 0

insofar as 1
γ2 >

√
5− 2 that is γ2 < 2 +

√
5.

Therefore, asymptotic normality of γ̂ is guaranteed insofar as the pseudo true-value

of γ is smaller than
(
2 +
√

5
)1/2

.

From (4.2), λ̂ is characterized as solution:

λ̂2 =
ν̂ + 1

2ν̂

1

n

n∑

i=1

(yi − ŵ)2 gŵ (yi, γ̂)

1 + 1
ν̂

(
yi−ŵ

λ̂

)2

gŵ (yi, γ̂)
(A.7)

The positive variables:

(yi − w)2 gŵ (yi, γ)

1 + 1
ν̂

(
yi−w

λ̂

)2

gŵ (yi, γ)
are i.i.d and bounded by λ2ν. Therefore λ̂2 is asymptotically

normal by the Lindeberg-Levy central limit theorem and so is λ̂ by the delta theorem
since the pseudo true value of λ is positive.

Finally:

∂Ln

∂ν

(
Ψ̂

)
= n

h′ (ν̂)

h (ν̂)
− n

2ν̂

−1

2

n∑

i=1

log

[
1 +

1

ν̂
gw (yi, γ̂)

(
yi − ŵ
λ̂
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]

(A.8)

+
ν̂ + 1

2

n∑

i=1




1

ν̂2λ̂2
(yi − γ̂) (yi, ŵ)2

1 + 1
ν̂
gw(yi, γ̂)

(
yi−ŵ

λ̂

)2
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By plugging (A.7) into (A.8), we deduce the last first-order condition:

δ̂ =
∂Ln

∂ν

(
Ψ̂

)
= n

h′ (ν̂)

h (ν̂)
− 1

2

n∑

i=1

log

[
1 +

1

ν̂
gw (yi, γ̂)

(
yi − ŵ
λ̂

)2
]

(A.9)

Consider the sequence if i.i.d. variables:

Vi = log

[
1 +

1

ν
gw (yi, γ)

(
yi − w
γ

)2
]
.

They are integrable since, first, Vi −→ 0 when yi −→ w and second, when |yi − w| −→
∞, wi ∼ 2 log |yi − w| which is dominated (for large |yi − w|) by |yi − w| which is inte-

grable. Therefore,
(
δ̂, ν̂

)
are jointly asymptotically normal by application to (A.9) of

Lindeberg-Levy central limit theorem and the delta theorem.

Appendix B: Simulating a α-stable distribution

The use of indirect inference or its constrained version necessitates to simulate an α-
stable process. For simulating we adopt the method proposed by Chambers, Mallows
and Stuck (1976) which is fast and easy to implement. 26

Let z and y two independent random variables, z being uniformly distributed on(
−π

2
, π

2

)
and y exponentially distributed with mean 1. When α 6= 1,

X = ζ +
sinαz − ζ cosαz

(cos z)1/α

(
cos(1− α)z − ζ sin(1− α)z

y

) (1−α)
α

∼ Sα(β, 1, 0), (B.1)

where ζ = −β tan πα
2

. When α = 1,

X =
2

π

[(π
2

+ βz
)

tan z − β ln

( π
2
y cos z

π
2

+ βz

)]
∼ Sα(β, 1, 0). (B.2)

To generate z and y, we draw two independent uniform(0, 1) random variables U1 and
U2 and set z = π

(
U1 − 1

2

)
and y = − lnU2. Notice that this procedure simulates a

process X from a Sα(β, 1, 0) distribution. Generating a Sα(β, σ, µ) from Sα(β, 1, 0) is
straightforward using

σX + µ ∼ Sα(β, σ, µ) if α 6= 1,
σX + 2

π
βσ lnσ + µ ∼ Sα(β, σ, µ) if α = 1.

(B.3)

See Samorodnitsky and Taqqu, (1994, p 43).

26The GAUSS procedure for simulating from the α-stable process has been written by J. Huston
McCulloch and available in his web page http://www.econ.ohio-state.edu/jhm/jhm.html.
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Appendix C: Numerical aspects

As for the Monte Carlo experiment, we could start the algorithm at the true values of
the parameters. However, we also want to propose a practical approach to estimating
the parameters of a α-stable distribution. Therefore, we first obtain starting values of
the parameters by using an empirical quantile method. In order to reduce the variance
of this estimator we bootstrap it, that is we use as initial value of the parameters the
mean of the estimates obtained from resampling the series taken as the observed data a
certain number of times (10 in this case).

Second, two of the four parameters in θα are constrained. To avoid using a con-
strained optimization algorithm, we reparametrize the initial parameters. In general if a
parameter ϑ is constrained to belong to a specific interval: a < ϑ < b. Then 0 < ϑ−a

b−a
< 1

which can be modelled with a logistic function:

ϑ− a
b− a =

exp(ξ)

1 + exp(ξ)
, (C.1)

This means that we can estimate ξ, which varies between −∞ and +∞, and then recover
ϑ. We apply this transformation to α (0 < α ≤ 2) and β (−1 ≤ β ≤ 1). The new
parameter set is then θ′′α = (ξα, ξβ, σ, µ) ∈ Θ′′

α ⊂ R
4 where Θ′′

α = [ξα, ξβ, µ ∈ R, σ ≥ 0] .
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Reading in rows. From top to bottom and from left to right the true α are 0.3, 0.7, 1, 1.3, 1.5,
1.7, 1.9, 1.95 and 1.99.

Figure 1: Kernel Densities for ν̂
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Relation between α and ν̂ given that β falls in some range of 0.10, in other words each line is
ν̂ = f(α|β ∈ [βi, βi + 0.10]) for βi = {0, 0.1, 0.2, 0.3, 0.4}.

Figure 2: ν̂ sensibility to α and β
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Reading in rows. From top to bottom and from left to right the true α are 1.7, 1.9, 1.95 and
1.99.

Figure 3: Kernel Densities for δ̂
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Figure 4: Kernel densities for the Stable and the Skewed-t densities evaluates at the
empirical estimates.
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α = 1.7 3.3412 1.0008 0.4647 0.0470 1.3859 0.1439 7.1682 2.9253 2.4443 0.8795 6.0397 1.1604
α = 1.9 7.5570 1.0024 3.3227 0.0524 3.4285 0.1867 22.054 2.8751 3.2734 0.8668 34.097 1.1832
α = 1.95 26.953 1.0005 59.161 0.0517 4.6297 -0.039 23.802 2.7246 4.7906 0.8612 336.99 1.1707
α = 1.99 146.36 1.0036 142.75 0.0515 0.4927 -0.063 1.3611 2.7554 6.2895 0.8489 337.99 1.1541

λ̂ ω̂ λ̂ ω̂ λ̂ ω̂ λ̂ ω̂ λ̂ ω̂ λ̂ ω̂
α = 0.3 0.0817 0.0002 0.0114 0.0026 0.0619 0.1463 3.2397 3.0407 0.0500 -0.008 0.1224 0.0091
α = 0.7 0.3894 0.0005 0.0277 0.0211 0.0509 -0.097 2.8330 2.9211 0.3201 -0.078 0.4657 0.0562
α = 1 0.4986 -0.001 0.0268 0.0331 -0.043 0.0027 3.5540 3.1587 0.4106 -0.105 0.5974 0.0930
α = 1.3 0.5724 -0.001 0.0243 0.0460 -0.051 -0.099 3.0005 3.1720 0.4955 -0.143 0.6429 0.1574
α = 1.5 0.5849 -0.001 0.0230 0.0459 0.1553 -0.015 2.9353 2.8992 0.5195 -0.139 0.6561 0.1344
α = 1.7 0.6121 -0.001 0.0230 0.0523 0.1341 0.0860 3.2199 2.8318 0.5527 -0.127 0.6978 0.1426
α = 1.9 0.6477 -0.001 0.0266 0.0615 -0.115 -0.017 3.0180 2.8757 0.5627 -0.210 0.7197 0.1457
α = 1.95 0.6667 0.0003 0.0279 0.0596 0.1114 0.0169 2.6477 2.7914 0.5945 -0.153 0.7453 0.2066
α = 1.99 0.6903 -0.002 0.0236 0.0622 -0.066 0.2484 3.7866 2.8251 0.5862 -0.178 0.7634 0.2032

The top part of the Table are results for ν̂ and γ̂, for each statistic the first column is for ν̂ and the second for γ̂. Bottom
part are for λ̂, first column, and ω̂, second column. µ, β and σ are fixed to 0, 0 and 0.5. Sd, Skw, Kur, Min and Max
stand for standard deviation, skewness, kurtosis, minimum and maximum.
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Table 2: Sensitivity of the finite sample estimates of ν to the sample size and α

α N=100 200 500 1000 5000 10000
1 Sd 0.2298 0.1353 0.0828 0.0569 0.0243 0.0173

Skw 0.9070 0.6197 0.3841 0.3316 0.0549 0.0245
Kur 4.4173 3.6194 3.2138 3.0485 3.0959 3.0330

1.3 Sd 0.5489 0.2970 0.1736 0.1171 0.0503 0.0366
Skw 2.0973 0.9792 0.6197 0.3542 0.3323 0.2224
Kur 11.535 4.8421 3.3634 3.5739 3.0352 2.9433

1.5 Sd 21.281 0.5676 0.3381 0.2004 0.0879 0.0635
Skw 21.895 2.2189 1.2433 0.8046 0.3184 0.1396
Kur 486.06 12.361 7.8417 4.9488 3.3858 2.8486

1.7 Sd 62.268 18.792 0.7770 0.4968 0.1931 0.1326
Skw 4.7446 19.820 1.3933 0.9682 0.4147 0.1893
Kur 23.851 442.04 6.2004 4.5652 3.2662 3.0705

1.9 Sd 145.39 105.47 38.823 15.467 0.8323 0.5825
Skw 0.8854 2.2574 7.1886 3.0826 0.9205 0.7833
Kur 1.8296 6.2649 56.530 16.532 4.4781 4.1518

1.95 Sd 158.77 145.75 102.03 58.269 2.5094 1.4378
Skw 0.2557 0.9314 2.4688 5.5896 2.7023 0.7988
Kur 1.1004 1.9366 7.3776 34.003 19.298 3.7519

1.99 Sd 156.38 148.11 150.54 143.28 86.330 55.369
Skw -0.306 -0.045 0.0496 0.4791 2.3712 1.2311
Kur 1.1185 1.2754 1.0784 1.3418 7.4779 5.8909
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α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
α = 1.5 β = 0 1.47593 -0.1169 0.04659 0.09317 0.03458 0.28248 2.94244 3.14196 1.34871 -0.4077 1.61019 0.18980

β = 0.75 1.49288 0.70918 0.05816 0.11778 0.26090 0.57982 3.16809 3.06127 1.37248 0.40753 1.66455 1
α = 1.9 β = 0 1.82005 0.16182 0.79555 0.21406 -3.1243 0.16499 22.9914 2.66551 1.19065 -0.5400 2 0.84090

β = 0.75 1.85128 0.73587 0.08693 0.21192 -0.1666 -1.1151 1.90220 6.72215 1.74232 -1 2 1
σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂

α = 1.5 β = 0 0.50084 -0.0438 0.01657 0.04324 0.13835 0.12029 3.45820 3.29292 0.45010 -0.1742 0.55768 0.12496
β = 0.75 0.50465 0.00084 0.02011 0.09918 0.56922 1.59753 3.78103 5.51234 0.45319 -0.1502 0.57278 0.36556

α = 1.9 β = 0 0.50257 0.11925 0.01378 0.09326 -0.1399 1.32183 3.48464 7.39204 0.45518 -0.0373 0.55010 0.73419
β = 0.75 0.50213 -0.0662 0.22463 2.25457 -12.920 -21.993 241.835 489.327 0.08336 -50.208 0.54151 3.21255

The top part of the Table are results for α̂ and β̂, for each statistic the first column is for α̂ and the second for β̂. Bottom part
are for σ̂ and µ̂. µ and σ are fixed to 0 and 0.5. Sd, Skw, Kur, Min and Max stand for standard deviation, skewness, kurtosis,
minimum and maximum.
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Table 4: Sensitivity of the finite sample estimates of δ to the sample size and α

α N=100 200 500 1000 5000 10000
1.7 Sd 0.3967 0.1851 0.0070 0.0045 0.0022 0.0015

Skw 4.2254 9.7938 -0.338 -0.180 -0.053 0.0413
Kur 18.954 97.537 3.4076 2.7903 2.9022 2.9681

1.9 Sd 0.0094 0.0068 0.0044 0.0031 0.0015 0.0010
Skw -0.714 -0.436 -0.297 -0.149 -0.230 -0.179
Kur 3.9675 3.4135 2.9608 2.8653 3.3693 3.0314

1.95 Sd 0.0084 0.0058 0.0038 0.0028 0.0012 0.0008
Skw -0.585 -0.131 -0.377 -0.252 -0.123 0.1181
Kur 3.7231 2.9503 3.1520 3.4036 3.1047 2.9901

1.99 Sd 0.0067 0.0053 0.0034 0.0023 0.0010 0.0007
Skw -0.233 -0.406 -0.125 0.0145 -0.007 -0.020
Kur 2.9394 3.2607 2.7799 3.2751 3.4280 3.1732
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α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
α = 0.7 β = 0 0.69914 -0.0017 0.02525 0.04299 0.33602 0.12594 3.36826 2.95982 0.63857 -0.1316 0.78464 0.13094

β = 0.25 0.69497 0.24104 0.02538 0.04665 0.22867 -0.1459 2.97425 3.17725 0.62643 0.06239 0.77675 0.40479
β = 0.5 0.69434 0.49150 0.02610 0.04185 0.07106 -0.0683 3.13936 2.81487 0.63421 0.36364 0.78663 0.59944
β = 0.75 0.69614 0.73893 0.02485 0.03611 0.13553 -0.0905 3.02754 3.12066 0.64368 0.61574 0.78098 0.84255

α = 1.1 β = 0 1.09009 -0.0017 0.04792 0.05536 0.07621 0.09207 3.08678 3.05441 0.95731 -0.1698 1.29828 0.16084
β = 0.25 1.08352 0.24102 0.04470 0.05768 0.06737 0.06999 2.98146 2.99368 0.96108 0.07511 1.22325 0.42096
β = 0.5 1.08703 0.49088 0.04577 0.05858 0.12693 0.01076 2.85982 2.84175 0.98156 0.32852 1.22310 0.66039
β = 0.75 1.10803 0.74394 0.04975 0.44567 0.01838 -0.0079 3.23507 2.90922 0.96207 0.62497 1.25874 0.86740

α = 1.5 β = 0 1.50170 -0.0021 0.05033 0.09211 0.04064 0.09035 2.93934 3.07248 1.37432 -0.2652 1.67563 0.32244
β = 0.25 1.50130 0.25655 0.04557 0.10691 -0.0118 0.09777 3.34033 3.25015 1.39257 0.00467 1.59846 0.59641
β = 0.5 1.50708 0.51479 0.04110 0.09308 -0.0590 0.06233 3.25741 3.42154 1.38046 0.22334 1.64909 0.88257
β = 0.75 1.53243 0.79842 0.04467 0.08517 0.05734 -0.0475 3.13595 2.91921 1.40657 0.55105 1.70385 1

α = 1.9 β = 0 1.87921 0.04882 0.03315 0.33591 -0.0274 -0.0279 2.69800 3.10226 1.77821 -1 2 1
β = 0.25 1.92028 0.24223 0.01856 0.21779 -0.2136 0.25077 3.11422 2.87579 1.85782 -0.5600 2 1
β = 0.5 1.90426 0.54333 0.03307 0.36026 -0.1035 -0.5706 2.91289 2.97721 1.87128 -0.3994 2 1
β = 0.75 1.89619 0.74200 0.04439 0.13274 0.32779 -0.4841 3.34266 2.81680 1.78481 0.26729 2 1

σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂
α = 0.7 β = 0 0.48263 -0.0120 0.03766 0.04614 0.34151 -0.1432 3.43387 3.23663 0.37455 -0.1746 0.62195 0.12574

β = 0.25 0.49226 -0.0148 0.03858 0.05549 0.11130 -0.1233 2.85877 3.11552 0.38308 -0.2080 0.60631 0.15544
β = 0.5 0.49301 -0.0227 0.03589 0.07385 0.08120 -0.3027 2.99377 3.03826 0.39986 -0.2983 0.63774 0.13673
β = 0.75 0.49509 -0.0324 0.03078 0.08957 0.14562 -0.6298 3.00485 4.02902 0.41749 -0.4415 0.59792 0.14833

α = 1.1 β = 0 0.49236 0.04282 0.02961 0.67272 0.04983 -12.466 3.35908 269.656 0.38048 -12.715 0.57896 5.74438
β = 0.25 0.48469 0.12022 0.02796 2.83622 -0.0202 14.4712 2.90884 310.540 0.38609 -20.113 0.56873 56.1417
β = 0.5 0.49932 -1.6968 0.02639 40.0957 0.18733 -22.171 2.78871 494.399 0.43056 -895.74 0.56708 23.8952
β = 0.75 0.49403 -0.4700 0.02559 12.9944 0.11719 -15.637 2.80770 271.913 0.42889 -241.97 0.57679 45.2599

α = 1.5 β = 0 0.49206 0.01898 0.01174 0.03762 -0.0086 0.09610 3.16859 3.15158 0.42454 -0.1105 0.55566 0.17740
β = 0.25 0.50086 0.01512 0.02155 0.05323 0.08922 0.07767 3.29561 3.08291 0.44003 -0.1414 0.57723 0.17886
β = 0.5 0.49766 0.03273 0.02173 0.05620 0.04091 0.04769 2.95778 3.37743 0.44048 -0.1352 0.57519 0.21874
β = 0.75 0.49971 0.02951 0.02248 0.06141 0.00396 0.16876 2.98700 2.88719 0.42740 -0.1470 0.56912 0.21856

α = 1.9 β = 0 0.48897 0.03911 0.01716 0.05099 -0.1066 0.10991 3.09820 3.01462 0.43645 -0.0713 0.53902 0.14810
β = 0.25 0.49462 0.02141 0.01782 0.03811 0.01182 0.02014 2.68891 3.10787 0.44516 -0.0748 0.53877 0.09631
β = 0.5 0.49915 0.00928 0.01623 0.04081 -0.0332 0.08530 3.20408 3.06938 0.45020 -0.1143 0.55800 0.20017
β = 0.75 0.49294 0.02981 0.01956 0.04752 0.07312 0.31112 3.36650 3.25271 0.41250 -0.1028 0.55546 0.20135

See legend Table 3.
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α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
α = 0.7 β = 0 0.69980 -0.0014 0.02266 0.04323 0.25316 0.18054 3.05471 2.97109 0.64673 -0.1379 0.77046 0.12585

β = 0.25 0.69645 0.24468 0.02280 0.04600 0.10523 -0.1229 2.94400 3.18648 0.63182 0.04382 0.77290 0.39651
β = 0.5 0.69545 0.49448 0.02555 0.03888 0.04777 0.05233 3.03555 2.74086 0.63410 0.38557 0.78069 0.61758
β = 0.75 0.69796 0.74166 0.02401 0.03176 0.16932 -0.0118 2.90120 2.89013 0.64023 0.64374 0.78909 0.82604

α = 1.1 β = 0 1.09487 -0.0016 0.04436 0.05521 0.08517 0.05544 2.98115 3.06311 0.98492 -0.2137 1.27277 0.19269
β = 0.25 1.08969 0.24429 0.04161 0.05355 0.17913 0.16680 2.90983 3.06728 0.98875 0.09117 1.21269 0.40767
β = 0.5 1.09152 0.49833 0.04869 0.05598 0.17414 0.07898 3.61143 2.94021 0.99571 0.33583 1.35919 0.64022
β = 0.75 1.10867 0.74535 0.04318 0.04049 0.04545 0.02925 3.17190 2.92667 0.98222 0.63630 1.25351 0.86662

α = 1.5 β = 0 1.51070 -0.0081 0.03936 0.08620 0.04593 0.14055 2.93026 3.09121 1.28452 -0.3073 1.64648 0.30770
β = 0.25 1.50381 0.27923 0.07181 0.12075 0.22964 0.74800 2.93053 2.98429 1.34820 -0.1079 1.49842 0.76966
β = 0.5 1.50106 0.50169 0.06184 0.10783 0.07514 0.30276 3.29082 2.95614 1.41426 0.26227 1.66708 0.90999
β = 0.75 1.53467 0.74529 0.04551 0.08006 0.05924 -0.0454 3.39137 2.95405 1.43521 0.58915 1.64904 1

α = 1.9 β = 0 1.88381 0.04368 0.03229 0.34884 -0.0133 -0.0585 2.62977 3.10054 1.79687 -1 2 1
β = 0.25 1.92002 0.26274 0.01875 0.21549 -0.2060 0.21114 2.71186 2.87838 1.86035 -0.8084 2 1
β = 0.5 1.89765 0.50982 0.03111 0.27608 -0.2467 -0.6353 2.61594 2.94058 1.81107 -0.6905 2 1
β = 0.75 1.89985 0.74731 0.04294 0.12712 0.24978 -0.5013 3.22778 3.09165 1.79377 0.28295 2 1

σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂
α = 0.7 β = 0 0.48846 -0.0072 0.03490 0.04770 0.39928 -0.1225 3.60897 3.23624 0.37173 -0.1589 0.61814 0.13201

β = 0.25 0.49541 -0.0124 0.03408 0.05269 0.04819 -0.1314 2.87677 3.24073 0.40574 -0.2082 0.60176 0.16016
β = 0.5 0.49596 -0.0176 0.03225 0.07350 0.08467 -0.3816 2.90084 3.54838 0.41288 -0.3107 0.60122 0.16932
β = 0.75 0.49592 -0.0254 0.02837 0.08367 0.18867 -0.6998 3.03114 3.66701 0.42635 -0.3938 0.61197 0.14884

α = 1.1 β = 0 0.49742 0.04210 0.02609 0.29655 0.06462 -4.6667 2.84856 81.2470 0.40881 -4.0893 0.57421 1.97180
β = 0.25 0.49069 -0.0224 0.02361 5.80801 0.06300 -19.093 2.87730 416.011 0.41479 -123.94 0.55301 28.0671
β = 0.5 0.49275 -0.3983 0.02366 10.5808 0.02948 -20.478 2.80057 440.398 0.42774 -229.48 0.57487 11.7277
β = 0.75 0.49578 0.01229 0.02213 3.55400 0.14009 -6.4207 2.98572 141.137 0.43959 -54.921 0.56370 31.9651

α = 1.5 β = 0 0.49607 0.01620 0.02359 0.05177 0.02460 0.06796 3.05103 2.98950 0.43354 -0.1513 0.56961 0.19014
β = 0.25 0.50478 0.00753 0.01905 0.04877 0.15889 0.20619 3.09613 3.18032 0.44668 -0.1621 0.56830 0.18598
β = 0.5 0.49985 0.02153 0.01934 0.05233 0.03834 0.18295 3.19436 3.52115 0.42902 -0.1322 0.56326 0.24172
β = 0.75 0.50328 0.02120 0.01875 0.05477 0.08697 0.17702 3.37295 3.47780 0.44813 -0.1716 0.56718 0.26079

α = 1.9 β = 0 0.49172 0.03579 0.01645 0.04869 0.00233 0.10981 3.37304 3.55536 0.44442 -0.0822 0.54170 0.14187
β = 0.25 0.49759 0.01454 0.01575 0.03263 -0.0968 0.01406 2.71510 3.09501 0.45654 -0.0838 0.53699 0.08601
β = 0.5 0.49428 0.02060 0.01472 0.03903 -0.0011 0.13643 2.81550 3.22588 0.45273 -0.0785 0.53716 0.23055
β = 0.75 0.49532 0.01984 0.01708 0.04227 0.07087 0.23456 3.08340 3.03199 0.44703 -0.0833 0.55988 0.18993

See legend Table 3.
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α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
α = 0.7 β = 0 0.70071 0.00066 0.02238 0.04186 0.27335 0.10441 3.09070 2.91673 0.64529 -0.1283 0.76912 0.12737

β = 0.25 0.69764 0.24539 0.02310 0.04434 0.18449 -0.1062 3.02296 3.17429 0.63630 0.05973 0.77945 0.38414
β = 0.5 0.69705 0.49614 0.02455 0.03864 0.09840 0.02058 3.12645 2.91200 0.63883 0.39487 0.77498 0.60894
β = 0.75 0.69905 0.74414 0.02359 0.03044 0.13177 -0.0994 2.92730 3.03739 0.64260 0.64114 0.76732 0.85088

α = 1.1 β = 0 1.09939 0.00208 0.04171 0.05248 0.04876 0.00668 3.00714 3.08991 1.00337 -0.1941 1.26044 0.17982
β = 0.25 1.09147 0.24970 0.03796 0.05225 0.08205 0.07372 2.88214 2.92212 1.00259 0.10405 1.20477 0.40128
β = 0.5 1.09486 0.49979 0.03981 0.05115 0.09604 0.01681 3.00581 3.07064 1.00251 0.32725 1.24811 0.63706
β = 0.75 1.10876 0.75529 0.03878 0.04233 0.01686 -0.0191 3.05151 3.02877 1.00870 0.62158 1.22721 0.86645

α = 1.5 β = 0 1.61636 -0.0007 0.15830 0.09258 -0.7881 0.05277 3.55923 2.92514 1.28452 -0.3408 1.77736 0.37286
β = 0.25 1.50889 0.29539 0.08943 0.14234 0.07741 0.06266 2.95583 2.90733 1.40957 -0.0575 1.65926 0.48329
β = 0.5 1.50573 0.50382 0.04990 0.11594 0.06101 0.00962 3.04216 3.10867 1.33055 0.25042 1.63743 0.85000
β = 0.75 1.53610 0.75847 0.04100 0.07680 0.23251 -0.1363 3.03184 2.94886 1.43634 0.60247 1.66595 1

α = 1.9 β = 0 1.91296 0.04446 0.02901 0.38864 -0.0339 -0.0382 2.73966 3.14470 1.81998 -1 2 1
β = 0.25 1.90222 0.25615 0.03032 0.19695 -0.1984 -0.1696 2.80229 3.14547 1.81613 -0.9168 2 1
β = 0.5 1.87499 0.49797 0.03176 0.28403 -0.1910 -0.6242 2.82220 3.28527 1.77608 -0.5831 2 1
β = 0.75 1.90291 0.75551 0.04266 0.12304 0.20058 -0.5419 3.04685 3.17162 1.80491 0.31181 2 1

σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂
α = 0.7 β = 0 0.49925 -0.0063 0.03269 0.04437 0.23332 -0.2048 3.08615 3.08155 0.41658 -0.1586 0.59932 0.10343

β = 0.25 0.49797 -0.0074 0.03111 0.05014 0.02654 -0.1057 2.92822 3.14844 0.41502 -0.1645 0.60212 0.16391
β = 0.5 0.49854 -0.0114 0.02919 0.06721 0.01907 -0.3664 2.85359 3.19597 0.42312 -0.3460 0.60783 0.14463
β = 0.75 0.49790 -0.0182 0.02615 0.07905 0.18026 -0.6417 2.95854 3.47849 0.43240 -0.3239 0.57920 0.14245

α = 1.1 β = 0 0.49216 0.02163 0.02411 1.26213 0.05333 -17.301 3.13336 380.187 0.43295 -26.244 0.57332 8.94518
β = 0.25 0.49333 0.03452 0.02281 1.89113 -0.0096 -14.394 2.81751 275.141 0.42893 -36.175 0.55469 10.1563
β = 0.5 0.49521 0.23407 0.02195 1.87679 0.13469 13.2331 2.70495 234.624 0.43274 -0.9963 0.56313 34.8600
β = 0.75 0.50104 0.67595 0.02403 5.76526 0.17314 18.9709 2.82491 398.196 0.43905 -1.3514 0.56953 122.435

α = 1.5 β = 0 0.49670 0.08436 0.02554 0.03302 -0.0709 0.02734 3.19652 3.06548 0.40846 -0.0843 0.57379 0.13049
β = 0.25 0.50705 0.00359 0.01878 0.04511 0.03505 0.18700 2.93850 2.74076 0.45623 -0.1268 0.56640 0.13473
β = 0.5 0.50236 0.01794 0.01836 0.05027 -0.0438 0.12913 3.04681 3.22343 0.44177 -0.1305 0.55049 0.17614
β = 0.75 0.50497 0.01451 0.01821 0.04897 0.04005 0.11516 2.90116 4.01455 0.44330 -0.1699 0.55090 0.22975

α = 1.9 β = 0 0.49736 0.00215 0.01354 0.03779 0.00819 0.08750 2.88224 3.31736 0.46009 -0.0670 0.53931 0.07439
β = 0.25 0.49771 0.03975 0.01464 0.05196 0.01784 0.00851 2.94627 3.06366 0.45508 -0.1471 0.53735 0.18762
β = 0.5 0.49452 0.01273 0.01321 0.03372 -0.0367 0.05731 3.12125 2.97261 0.45160 -0.0837 0.53472 0.18361
β = 0.75 0.49779 0.01508 0.01561 0.03950 0.18322 0.30731 3.38417 3.02739 0.44790 -0.0836 0.55220 0.17931

See legend Table 3.
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α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
α = 0.7 β = 0 0.70246 0.00453 0.05523 0.09917 0.10428 0.02051 2.92881 2.98363 0.54271 -0.3031 0.92322 0.33654

β = 0.25 0.69942 0.25274 0.05449 0.09799 -0.0287 0.12488 2.94741 3.04557 0.53148 -0.0197 0.86657 0.65019
β = 0.5 0.70403 0.49871 0.05703 0.09563 0.20096 -0.0653 2.97157 3.22779 0.51523 0.17162 0.89751 0.82418
β = 0.75 0.70149 0.75205 0.05750 0.08797 0.11734 0.06381 3.25004 3.03277 0.52674 0.44702 0.95060 1

α = 1.1 β = 0 1.10646 -0.0018 0.06514 0.10478 0.08502 0.05904 2.92651 3.09517 0.88966 -0.3445 1.34268 0.33340
β = 0.25 1.10748 0.24723 0.06475 0.10334 0.45218 -0.0899 2.81269 3.00468 1.00015 -0.0744 1.34398 0.59337
β = 0.5 1.10532 0.50653 0.06172 0.10180 0.46986 -0.1326 2.65589 3.07094 1.01123 0.12173 1.33320 0.80897
β = 0.75 1.10788 0.75642 0.06570 0.08800 0.48686 -0.1229 2.58816 2.77712 1.01350 0.47181 1.33662 1

α = 1.5 β = 0 1.50394 0.00300 0.07491 0.15502 0.07944 -0.1021 2.90075 2.94933 1.27609 -0.4999 1.73336 0.49171
β = 0.25 1.50259 0.25017 0.07660 0.14791 0.10920 -0.0023 3.05500 2.82810 1.28174 -0.4995 1.80542 0.72411
β = 0.5 1.50042 0.50436 0.07654 0.14268 0.15854 -0.1292 3.21382 3.01327 1.22978 0.04270 1.78497 0.94274
β = 0.75 1.50143 0.75472 0.07766 0.12883 0.02569 -0.1980 2.71052 2.83864 1.27747 0.32673 1.73554 1

α = 1.9 β = 0 1.89579 0.00267 0.05785 0.61545 -0.4663 0.01405 3.17735 2.08033 1.68857 -1 2 1
β = 0.25 1.89617 0.24182 0.05614 0.59452 -0.3373 -0.4358 2.56499 2.36644 1.72319 -1 2 1
β = 0.5 1.88859 0.43803 0.05572 0.52585 -0.3873 -0.8827 2.84725 3.22289 1.70699 -1 2 1
β = 0.75 1.88562 0.63096 0.05408 0.44541 -0.3426 -1.5221 2.89383 5.37557 1.70502 -1 2 1

σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂
α = 0.7 β = 0 0.61677 -0.0049 0.04339 0.12403 0.08100 0.05620 2.99654 3.48691 0.48646 -0.4386 0.77329 0.49165

β = 0.25 0.61840 -0.0141 0.04315 0.13209 0.19957 -0.5865 3.31673 3.99939 0.49262 -0.6136 0.78981 0.33557
β = 0.5 0.61257 -0.0330 0.04207 0.20235 0.07586 -1.7218 3.01417 11.7298 0.47571 -1.9383 0.75397 0.38686
β = 0.75 0.61257 -0.0448 0.04204 0.31682 0.16892 -8.1163 2.88960 14.9402 0.50101 -6.2499 0.75397 0.47161

α = 1.1 β = 0 0.46443 -0.0076 0.03417 0.87989 -0.0054 0.73063 2.74153 21.4386 0.37091 -6.3376 0.56670 6.29337
β = 0.25 0.46730 0.59779 0.03452 1.65256 0.20921 2.30911 3.05457 7.81348 0.36158 -0.9676 0.59808 8.69041
β = 0.5 0.46805 0.98966 0.03396 2.40559 0.13749 1.81419 3.11319 5.28035 0.35914 -1.3099 0.58887 9.91476
β = 0.75 0.46740 1.40612 0.03320 3.30409 0.16813 1.67018 2.83572 5.13296 0.37911 -1.6046 0.58193 17.5146

α = 1.5 β = 0 0.35310 0.00097 0.02031 0.06647 0.14148 -0.0090 2.95166 3.18155 0.27786 -0.2332 0.45002 0.23373
β = 0.25 0.35286 -0.0005 0.02553 0.06647 0.12364 0.34933 2.75394 3.63643 0.28308 -0.1918 0.42999 0.32893
β = 0.5 0.35203 0.00448 0.02535 0.07431 0.04423 0.45102 2.83478 3.28991 0.28048 -0.2005 0.43532 0.26673
β = 0.75 0.35191 0.00644 0.02526 0.08696 0.39504 0.65770 3.55127 3.84472 0.28365 -0.1995 0.46983 0.39964

α = 1.9 β = 0 0.26834 -0.0011 0.01801 0.03648 -0.0139 0.04827 2.87775 3.04473 0.21239 -0.1046 0.31949 0.12637
β = 0.25 0.26847 0.00057 0.01802 0.03717 0.05325 0.05794 3.04424 3.03652 0.21285 -0.1281 0.33277 0.12620
β = 0.5 0.26671 -0.0010 0.01774 0.03673 0.17326 0.00541 3.19706 2.99391 0.21670 -0.1152 0.32882 0.10988
β = 0.75 0.26778 -0.0014 0.01785 0.03643 0.28610 0.02897 3.08036 2.99949 0.21947 -0.1209 0.33558 0.10727

See legend Table 3.
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α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
α = 0.7 β = 0 0.69739 -0.0066 0.05014 0.12590 0.21597 0.00495 3.24569 2.81922 0.55716 -0.4457 0.89282 0.38660

β = 0.25 0.70279 0.23858 0.05503 0.11520 0.04247 -0.3194 3.01759 2.82425 0.51594 -0.1346 0.87992 0.53750
β = 0.5 0.70466 0.50739 0.06440 0.09177 0.19822 -0.3600 3.30088 3.40595 0.52512 0.18476 0.98048 0.81046
β = 0.75 0.70135 0.80729 0.06764 0.08998 0.26223 0.27189 3.17566 2.55525 0.50711 0.49054 0.99332 1

α = 1.1 β = 0 1.09615 0.00356 0.07207 0.12800 0.04143 -0.0375 3.21410 2.78511 0.84297 -0.3875 1.32831 0.39826
β = 0.25 1.09813 0.24569 0.07408 0.11230 0.12454 -0.2572 3.24376 2.87124 0.85374 -0.1545 1.36240 0.54963
β = 0.5 1.10362 0.50553 0.08408 0.09280 0.10291 -0.1444 2.80454 3.12140 0.85475 0.21036 1.40068 0.80700
β = 0.75 1.11116 0.79433 0.09764 0.10293 0.30719 0.48604 3.04301 2.40930 0.83550 0.55593 1.44142 1

α = 1.5 β = 0 1.49728 0.00052 0.08622 0.15408 0.26334 0.03276 2.95087 3.47837 1.27739 -0.6284 1.83906 0.71356
β = 0.25 1.50519 0.26462 0.09771 0.16563 0.55144 0.26814 3.46410 4.14887 1.27023 -0.3556 1.96258 1
β = 0.5 1.51320 0.53616 0.10665 0.18244 0.60535 0.60485 3.32202 2.39938 1.21266 0 2 1
β = 0.75 1.51366 0.78814 0.11552 0.16116 0.38357 -0.2304 3.01588 3.98180 1.22153 0.00023 2 1

α = 1.9 β = 0 1.88483 0.00718 0.10982 0.39920 -0.5890 0.03027 2.32392 4.15334 1.50585 -1 2 1
β = 0.25 1.88017 0.11624 0.10815 0.38410 -0.4547 0.20840 2.05118 4.03050 1.56879 -1 2 1
β = 0.5 1.88602 0.21183 0.11228 0.40663 -0.6808 0.25370 2.53809 3.32461 1.53240 -1 2 1
β = 0.75 1.88500 0.35634 0.11022 0.40777 -0.5977 0.38863 2.30347 2.01720 1.54524 -1 2 1

σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂ σ̂ µ̂
α = 0.7 β = 0 0.48011 0.00356 0.05505 0.13201 0.34061 -0.2475 3.30803 3.27211 0.30115 -0.6036 0.67273 0.35201

β = 0.25 0.48801 0.01059 0.06619 0.13941 0.07724 -0.7199 2.92247 7.55662 0.28803 -1.0916 0.70233 0.45907
β = 0.5 0.49314 -0.0595 0.08086 0.35424 0.27471 -7.5434 2.81885 98.1057 0.28850 -5.2759 0.77788 0.40285
β = 0.75 0.47942 -0.2328 0.07560 2.15322 0.16892 -29.007 3.12168 890.343 0.26879 -66.374 0.72052 0.58795

α = 1.1 β = 0 0.49281 0.15793 0.03486 4.37611 0.04542 19.1429 2.92317 469.885 0.37329 -15.744 0.60093 113.239
β = 0.25 0.49536 -1.7429 0.03676 42.4589 0.10256 -19.611 3.05209 442.188 0.38885 -1043.5 0.62406 210.590
β = 0.5 0.49588 -0.2179 0.04133 17.1100 0.12611 -0.2654 2.99236 101.934 0.36434 -251.04 0.63187 -915.16
β = 0.75 0.49300 18.5730 0.04100 516.121 0.11450 28.3667 3.19387 846.183 0.35929 -915.16 0.64711 15649.3

α = 1.5 β = 0 0.49717 0.00085 0.02818 0.07124 0.09323 -0.2927 2.91915 3.59259 0.41958 -0.3195 0.62924 0.22724
β = 0.25 0.49953 0.00462 0.02955 0.07139 0.08656 0.26372 3.03492 3.14169 0.40454 -0.1864 0.60016 0.25175
β = 0.5 0.49799 0.00543 0.02920 0.08479 0.19406 0.36305 3.26891 3.57071 0.41503 -0.2878 0.60630 0.32177
β = 0.75 0.49762 -0.0007 0.02945 0.10540 0.10433 0.27163 3.01588 3.98180 0.40026 -0.3473 0.59542 0.47220

α = 1.9 β = 0 0.49895 0.00022 0.02712 0.04059 0.01713 -0.0197 2.92259 2.99586 0.40682 -0.1325 0.57580 0.13591
β = 0.25 0.49799 -0.0038 0.02710 0.04005 0.03818 -0.0030 2.89880 3.09531 0.41499 -0.1322 0.59038 0.12151
β = 0.5 0.50022 -0.0081 0.02831 0.04269 0.13708 0.13264 2.93005 3.13437 0.42373 -0.1454 0.58900 0.13618
β = 0.75 0.49991 -0.0151 0.03011 0.04403 0.16740 -0.0957 3.09234 3.04984 0.41636 -0.1545 0.63315 0.12255

See legend Table 3.
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Table 10: Comparison of Finite Sample Indirect Inference Standard Deviations (Sd.
Ind. Inf.) with Asymptotic Deviations Corresponding to the Cramér-Rao bounds (Sd.
Asympt.) for α and β

α β Sd. Ind. Inf. Sd. Asympt.

α̂ β̂ α̂ β̂
1 0 0.049 0.058 0.039 0.055

0.5 0.045 0.058 0.015 0.053
1.3 0 0.072 0.076 0.045 0.075

0.5 0.077 0.072 0.044 0.066
1.5 0 0.048 0.096 0.049 0.096

0.5 0.044 0.097 0.047 0.085
1.9 0 0.026 0.369 0.036 2.287

0.5 0.015 0.364 0.035 0.268
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GARCH model distn 1 5 10 20
Sd Kur Sd Kur Sd Kur Sd Kur

δ1 = 0.1, δ2 = 0.4 Normal 0.4481 3.0830 1.8712 3.966 3.2154 4.1601 4.3465 4.0714
t5 0.4490 7.3609 1.6471 7.8251 2.7954 6.8723 3.8312 6.2914

δ1 = 0.2, δ2 = 0.4 Normal 0.5001 3.3841 1.6251 5.6451 2.7051 5.8799 3.5962 5.6221
t5 0.5033 9.2001 1.3502 10.628 2.2098 9.5810 2.9969 8.7135

δ1 = 0.1, δ2 = 0.8 Normal 0.7238 3.1852 1.9432 3.9021 3.2094 4.049 4.3450 3.9800
t5 0.7251 7.6987 1.7654 7.2485 2.8451 6.5741 3.8990 6.0552

δ1 = 0.2, δ2 = 0.7 Normal 0.7495 3.9001 1.745 5.5252 2.7623 5.6610 3.6623 5.4392
t5 0.7501 10.211 1.5258 9.9633 2.3284 9.1366 3.3132 8.3241

δ1 = 0.05, δ2 = 0.9 Normal 1.4032 3.1222 3.5340 3.6051 5.7514 3.7412 7.7562 3.8254
t5 1.4111 7.5611 3.4444 6.8010 5.5674 5.9662 7.5499 5.4552

δ1 = 0.05, δ2 = 0.95 Normal 3.7330 3.7512 6.0751 3.9102 8.0281 3.8251 10.127 3.7308
t5 3.5912 8.0741 5.8332 6.4541 7.7271 5.7799 9.8432 5.3432

δ1 = 0.1, δ2 = 0.9 Normal 2.1616 4.1857 3.5131 4.3551 4.6100 4.2077 5.7754 4.0344
t5 1.8612 8.9587 3.0214 7.3891 4.0271 6.6388 5.1633 6.1037

δ1 = 0.2, δ2 = 0.8 Normal 1.7927 6.2410 2.8901 6.3082 3.7521 5.9133 4.6781 5.4741
t5 1.4241 12.233 2.3091 10.413 3.0714 9.2874 3.9371 8.3142

Mean, standard deviation (Sd) and kurtosis (Kur) of the 500 simulated Gaussian and Student-t5 GARCH processes
for all the frequencies.
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Table 12: Simulation Results when the DGP is a GARCH model. Results for α̂

GARCH model distn 1 5 10 20

δ1 = 0.1, δ2 = 0.4 Normal 1.9132
[0.049]

1.8314
[0.0772]

1.9560
[0.0341]

1.9014
[0.0958]

t5 1.7449
[0.0382]

1.8320
[0.0689]

1.9001
[0.0760]

1.8529
[0.1281]

δ1 = 0.2, δ2 = 0.4 Normal 1.9040
[0.0316]

1.8641
[0.0689]

1.8153
[0.0813]

1.8987
[0.0775]

t5 1.7172
[0.0502]

1.7329
[0.0747]

1.9013
[0.0503]

1.7331
[0.1365]

δ1 = 0.1, δ2 = 0.8 Normal 1.9132
[0.0348]

1.9256
[0.0424]

1.9168
[0.0351]

1.9072
[0.1095]

t5 1.7277
[0.0418]

1.8423
[0.0718]

1.8947
[0.0787]

1.7929
[0.0807]

δ1 = 0.2, δ2 = 0.7 Normal 1.8395
[0.0419]

1.8471
[0.0754]

1.7186
[0.1128]

1.9011
[0.0535]

t5 1.6539
[0.0637]

1.6109
[0.0929]

1.6476
[0.1154]

1.5794
[0.1754]

δ1 = 0.05, δ2 = 0.9 Normal 1.9361
[0.0248]

1.9136
[0.0538]

1.8537
[0.0714]

1.7992
[0.1112]

t5 1.7459
[0.0382]

1.7785
[0.0652]

1.7599
[0.0962]

1.8071
[0.1333]

δ1 = 0.05, δ2 = 0.95 Normal 1.7526
[0.0992]

1.6941
[0.1102]

1.6891
[0.0962]

1.5987
[0.1983]

t5 1.5882
[0.1260]

1.6085
[0.1721]

1.5014
[0.1777]

1.5942
[0.1630]

δ1 = 0.1, δ2 = 0.9 Normal 1.6803
[0.1950]

1.6047
[0.1658]

1.6854
[0.1432]

1.5401
[0.1631]

t5 1.5443
[0.1437]

1.5671
[0.1270]

1.4482
[0.1183]

1.4260
[0.2244]

δ1 = 0.2, δ2 = 0.8 Normal 1.6992
[0.0569]

1.5760
[0.1604]

1.4951
[0.1644]

1.7519
[0.1896]

t5 1.4423
[0.1607]

1.4827
[0.1407]

1.3012
[0.2081]

1.4782
[0.2241]

Mean and standard deviation of 500 estimated α’s when the DGP is a 1000 observa-
tions GARCH model with Gaussian or Student-t5 density and for different aggregation
frequencies.

60



Table 13: Simulation Results when the DGP is a GARCH model. Results for σ̂

GARCH model distn 1 5 10 20

δ1 = 0.1, δ2 = 0.4 Normal 0.3073
[0.0135]

0.6579
[0.0482]

0.9487
[0.0878]

1.3024
[0.1784]

t5 0.2602
[0.0083]

0.6249
[0.0466]

0.8924
[0.0837]

1.3362
[0.1964]

δ1 = 0.2, δ2 = 0.4 Normal 0.3374
[0.0129]

0.7223
[0.0503]

1.0351
[0.1027]

1.4718
[0.2083]

t5 0.2825
[0.0106]

0.6574
[0.0537]

1.0179
[0.0867]

1.4288
[0.2045]

δ1 = 0.1, δ2 = 0.8 Normal 0.6800
[0.0311]

1.4731
[0.1003]

2.0944
[0.1943]

2.8884
[0.4403]

t5 0.5618
[0.0269]

1.3437
[0.1136]

2.0097
[0.1758]

2.9488
[0.4071]

δ1 = 0.2, δ2 = 0.7 Normal 0.6369
[0.0389]

1.3575
[0.1112]

1.9211
[0.2127]

2.8364
[0.3744]

t5 0.5106
[0.0278]

1.1527
[0.119]

1.7455
[0.1803]

2.4972
[0.3994]

δ1 = 0.05, δ2 = 0.9 Normal 0.9621
[0.0427]

2.1098
[0.1439]

2.9741
[0.3041]

4.0430
[0.5512]

t5 0.8079
[0.0381]

1.9341
[0.1744]

2.8520
[0.2510]

3.9414
[0.6127]

δ1 = 0.05, δ2 = 0.95 Normal 3.5478
[1.3464]

7.7671
[2.9350]

10.7642
[2.9182]

14.790
[3.9942]

t5 2.6441
[0.6771]

6.0090
[1.7830]

8.9185
[2.3221]

13.028
[3.6017]

δ1 = 0.1, δ2 = 0.9 Normal 2.5326
[1.2519]

5.3294
[3.1886]

7.6305
[2.2275]

10.4077
[3.5646]

t5 1.5962
[0.3591]

4.0038
[0.8087]

5.4858
[1.2710]

7.8055
[2.0849]

δ1 = 0.2, δ2 = 0.8 Normal 1.4910
[0.3524]

3.1236
[0.8672]

4.3848
[0.9342]

6.6421
[1.7574]

t5 0.9867
[0.1240]

2.2070
[0.3454]

3.1700
[0.5084]

4.6427
[1.0487]

Mean and standard deviation of 500 estimated σ’s when the DGP is a 1000 observa-
tions GARCH model with Gaussian or Student-t5 density and for different aggregation
frequencies.
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SPO SPC HFRO HFRO-SP HFRC HFRC-SP TREO TREO-SP TREC TREC-SP
Mean 0.8035 0.1806 0.9965 1.0744 0.3706 0.3921 1.0727 1.1577 0.5704 0.6853
Sd 1.1914 1.3283 1.7378 1.7037 2.0015 1.8301 1.6067 1.6461 1.9063 1.8829
Skw -0.070 -0.742 0.1972 0.4806 -0.376 0.1445 0.6159 0.6277 0.6123 1.0078
Kur 3.6345 4.6757 4.2321 3.6157 5.2811 3.8936 4.5247 4.5089 5.5162 6.2887
Min -3.373 -4.798 -5.010 -3.595 -7.874 -5.268 -3.249 -3.068 -4.664 -3.441
Max 3.6055 3.2017 6.3352 6.1364 6.1410 5.9667 6.9508 7.4271 7.8880 8.5677
LM ARCH 2.9621 10.801 5.7598 8.7414 1.5487 9.1414 10.074 9.7865 14.621 13.587
Hill (left tail) 1.5187 2.2412 1.7100 1.5307 2.7721 2.3878 1.3521 1.4921 1.7382 2.7790
Hill (right tail) 5.0001 5.7074 3.6464 3.2327 2.8630 2.7298 3.7644 4.2715 2.1851 2.1971
Descriptive Statistics of the hedge fund returns. LM ARCH stands for the Lagrange multiplier test for the presence of autocorrelation
(up to order four) in the second moment. The test is based in the R2. To compare with a χ2

4
= 11.1. Hill (left tail) and Hill (right tail

stand for the Hill estimators for the left and right tail respectively.

62



T
ab

le
15:

E
stim
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lts

SPO SPC HFRO HFRO-SP HFRC HFRC-SP TREO TREO-SP TREC TREC-SP

Constrained Indirect Inference

α̂ 1.9725
[0.0548]

1.7858
[0.0417]

1.9872
[0.0987]

1.9132
[0.0397]

1.8120
[0.0002]

1.8980
[0.0112]

1.9197
[0.0529]

1.9502
[0.0468]

1.6972
[0.0087]

1.6712
[0.0136]

β̂ 0.9635
[0.4872]

−0.322
[0.0677]

0.8795
[0.7154]

0.9501
[0.2141]

−0.534
[0.0934]

0.9201
[0.0693]

0.9321
[0.2455]

0.9235
[0.4354]

−0.009
[0.0426]

0.0345
[0.0483]

σ̂ 0.7199
[0.0669]

0.7659
[0.0362]

1.1515
[0.1158]

1.1143
[0.0907]

1.2080
[0.0477]

1.1712
[0.0335]

0.9779
[0.0217]

0.9850
[0.0610]

1.1237
[0.0273]

0.9482
[0.0310]

µ̂ 0.9401
[0.1486]

0.1412
[0.0595]

1.3656
[0.1157]

1.6069
[0.2109]

0.6197
[0.1408]

0.7158
[0.0911]

1.2719
[0.1004]

1.1263
[0.2554]

0.6580
[0.0532]

0.6735
[0.0544]

Empirical Quantiles

α̂ 2.0000
[0.0000]

1.7756
[0.0228]

2.0000
[0.0000]

1.9169
[0.1081]

1.7965
[0.0790]

1.8895
[0.0482]

1.9491
[0.0412]

1.9943
[0.0104]

1.6971
[0.0257]

1.6340
[0.0521]

β̂ 0.0000
[0.0000]

−0.755
[0.0654]

0.0000
[0.0000]

1.0000
[0.0918]

0.3214
[0.3379]

1.0000
[0.2827]

1.0000
[0.5028]

0.5500
[0.5104]

−0.125
[0.0427]

−0.210
[0.1592]

σ̂ 0.8301
[0.0227]

0.7731
[0.0130]

1.2266
[1.2429]

1.1460
[0.0572]

1.2126
[0.0427]

1.1883
[0.0218]

1.0467
[0.0454]

1.1263
[0.0228]

1.0648
[0.0149]

1.0588
[0.0173]

µ̂ 0.6102
[0.3587]

0.1139
[0.0180]

0.7790
[0.7792]

0.8900
[0.1146]

0.4485
[0.0907]

0.4045
[0.0736]

0.9551
[0.0482]

1.0459
[0.0582]

0.4556
[0.0098]

0.5150
[0.0501]

CGMM

α̂ 1.0230
[0.3361]

1.6977
[0.3755]

0.9899
[0.2633]

1.6709
[0.3695]

1.8697
[0.3533]

1.8610
[0.2088]

0.9903
[0.3722]

1.7872
[0.0242]

1.0003
[0.3309]

0.9854
[0.3684]

β̂ 1.0000
[0.4833]

−0.322
[0.5251]

0.4264
[0.4611]

1.0000
[0.4182]

−0.609
[0.6169]

0.9360
[0.0895]

0.3541
[0.4589]

1.0000
[0.0307]

0.0033
[0.5015]

−1.000
[0.8035]

σ̂ 0.8358
[0.0546]

0.6829
[1.8019]

0.9961
[1.6522]

1.1276
[0.0939]

1.4982
[12.378]

1.3817
[0.0534]

0.8474
[1.7274]

1.0703
[0.0643]

0.9708
[0.1653]

1.1654
[0.0622]

µ̂ 52.729
[17.312]

0.1925
[26.297]

−26.09
[18.754]

1.3385
[10.983]

0.2730
[35.235]

0.5027
[3.3912]

−18.82
[15.966]

1.2635
[0.0508]

7.5007
[12.473]

22.441
[19.420]

Skewed-t

ν̂ 9.5524
[2.1581]

6.6707
[1.1524]

6.7279
[1.2354]

9.7960
[2.2501]

6.0731
[1.0924]

8.0049
[1.7549]

5.4009
[0.6487]

7.2914
[1.6203]

3.7503
[0.6801]

4.0305
[1.4998]

γ̂ 1.1818
[0.1541]

0.8515
[0.1393]

1.2295
[0.2019]

1.3134
[0.1749]

0.9893
[0.1379]

1.1109
[0.1915]

1.2846
[0.2427]

1.2923
[0.2257]

1.0151
[0.1438]

1.0342
[0.1410]

λ̂ 1.0393
[0.1299]

1.0792
[0.1294]

1.4123
[0.1533]

1.4342
[0.1710]

1.6261
[0.1755]

1.5703
[0.1756]

1.2250
[0.1702]

1.3295
[0.1650]

1.3473
[0.1607]

1.3489
[0.1674]

ω̂ 0.5202
[0.2259]

0.5149
[0.3202]

0.4831
[0.4055]

0.3993
[0.3119]

0.4152
[0.3997]

0.1054
[0.4631]

0.5018
[0.4015]

0.5419
[0.3862]

0.4863
[0.3349]

0.5318
[0.3333]

Entries are estimated parameters for Constrained Indirect Inference, Empirical Quantiles, Continuous GMM and
Skewed-t density. In square brackets bootstrapped, 20 repetitions of sampling with replacement, standard errors.
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