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Abstract
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1 Introduction

The modelling of multivariate financial time series has emerged as a pole of attention among
researchers and practitioners. Typically, the assumptions underlying multivariate time series
modelling refer to the specification of the first two moments and of the distribution from
which the data is assumed to be generated. As for the moments, researchers have mainly
focussed on conditional moments and have proposed the use of VAR and GARCH type of
models, such as BEKK, CCC and DCC (cf. Bauwens, Laurent and Rombouts (2006)). As
for the distribution, many financial models rely on the multivariate Gaussian distribution as
a building block - for instance, the classical CAPM, factor models or the Black and Scholes
option pricing equation. The reason behind this choice is twofold. On one side the presence
of the central limit theorem in a sense justifies the insurgence of the Gaussian distribution
whenever the phenomenon of interest can be thought of as the aggregation of a large number
of micro-contributions. On the other side the fact that the Gaussian family of distributions
has a number of useful properties, which are very helpful in establishing theoretical results.
However, using multivariate Gaussian distributions has a major shortcoming: the tails of the
distribution are seldom able to accommodate for extreme gains and losses that are frequently
observed on financial markets. Some alternatives have been proposed in the literature. The
multivariate Student’s t and its skewed version (cf. Bauwens and Laurent (2005)) are two of
them. However, although they provide a clear improvement in the fit of the distribution, the
Student’s t has the clear shortcoming of not being closed under summation, which makes the
derivation of theoretical results much more cumbersome. An alternative is the use of copulas
(cf. Patton (2004) and references therein), which circumvents the choice of the multivariate
distribution by the appropriate choice of the marginals and the copula function. Yet, their
main advantage also turns out to be a serious shortcoming, as the cornerstone of the method
lies precisely the correct specification of a number of marginal densities which is likely to be
large.

Among other possible heavy-tailed alternatives, the multivariate stable distribution (cf.
Samorodnitsky ad Taqqu (1994)) has a special role. It originates from a generalization of
the central limit theorem in which the assumption on the finiteness of the variance of the
components is replaced by a much less restrictive one concerning a somewhat regular tail
behavior (cf. Ibragimov and Linnik (1971)). As a consequence, stable distributions enjoy
many of the properties of the Gaussian, including closeness under summation, and a number
of theoretical results in asset allocation and option pricing are available (cf. Fama (1965a)
and (1965b), Ortobelli, Huber and Schwartz (2002), Ortobelli and Rachev (2005), McCulloch
(2003) and the survey by Bradley and Taqqu (2001)).

Notwithstanding the appealing properties of the stable distribution, estimation has always
been challenging as they are defined via the characteristic function and the density function
cannot in general be expressed in a closed form. Several techniques have been put forward
for the estimation of univariate distributions, which work fairly well (cf. the survey in Garcia,
Renault and Veredas (2006) and references therein). Roughly, these techniques can be divided
in four groups. The first, and most used, is the group of characteristic function methods; the
second are the quantile based methods; the third are maximum likelihood techniques and the
last are simulation-based methods.

At the multivariate level characteristic function methods are not operational for dimension,
say, higher than three. Quantile methods are neither applicable as the concept of quantile itself
is not clear-cut in a multidimensional perspective. As for maximum likelihood, it is a complex
issue even in the univariate case, due to the absence of the density function in closed form,
and this carries over and amplifies at the multivariate level. In fact, most of the available
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results refer solely to the estimation of the so called spectral measure, that is, a measure that
contains information on the scale and skewness of the process.1 Furthermore, two approaches
has been taken on the estimation of the spectral measure. The first is based on the multivariate
characteristic function (Nolan, Panorska and McCulloch, 2001, and Pivato and Seco, 2003).
Though theoretically possible, it is not clear how to make these methods operational for the
estimation of high dimension processes. The second approach is based on one dimensional
projections of the multivariate process (Nolan, Panorska and McCulloch, 2001; Rachev and
Xin, 1993; and Cheng and Rachev, 1995). The only paper, to our knowledge, that estimates
all the parameters of the multivariate stable distribution is Nolan (2005) who extends above
mentioned results based on projections to the location and tail index.

These estimation difficulties have hindered their widespread in applied works and call for
the use of the last group of methods: simulation based methods. Since random numbers
from stable distributions can be obtained straightforwardly, simulation-based methods such
as the Indirect Inference of Gourieroux, Monfort and Renault (1993) and Efficient Method
of Moments -EMM hereafter- of Smith (1993) and Gallant and Tauchen (1996) are especially
appealing. These two methods will be refereed in the sequel as indirect estimation methods. In
the univariate case, indirect approaches have been proposed independently by Garcia, Renault
and Veredas (2006) and Lombardi and Calzolari (2006). In this paper we move a step forward,
considering an indirect approach to the estimation of elliptical stable distributions.

Elliptical stable distributions, ESD hereafter, are nested into the class of elliptical distri-
butions, introduced by Kelker (1970).2 This class is particularly compelling as it contains
important laws, some of them already mentioned (Gaussian, Student’s t and ESD), and it
possesses many of the attractive properties as the Gaussian and stable. For instance, they are
invariant to affine transformations, marginal and conditional distributions are also elliptical
and they are closed under convolution. The fact that the elliptical class of distributions in-
cludes the Student’s t and the ESD suggests that an indirect estimation approach could be
fruitful. According to the indirect methods, an auxiliary model, easy to estimate, replaces the
model of interest, and simulations performed under the latter are then used to correct for bias.
The fact that the model of interest and the auxiliary model belong to the same family and
share the same structure is helpful in establishing the asymptotic properties, as the parameters
have a one-to-one relationship.

Standard asymptotic theory of indirect estimation can be applied, as the information con-
tent on the parameters of the Student’s t is sufficient to identify the parameters of the ESD
and the score of the Student’s t distribution is asymptotically Gaussian. However, in finite
sample asymptotics do not apply. The problem, highlighted in Garcia, Renault and Veredas
(2006) and Lombardi and Calzolari (2006), is that as the tail index of the stable distribution
approaches two, and hence the distribution approaches the Gaussian, the degrees of freedom of
the Student’s t appears to be spuriously attracted by infinity. While it should not be a problem
asymptotically, it entails important estimation difficulties with finite samples. To avoid it, we
constraint the degrees of freedom to remain below an upper bound, therefore resorting to the
constrained indirect estimation of Calzolari, Fiorentini and Sentana (2004).

A comprehensive Monte Carlo study for six different values of the tail index, different
specifications of the scatter matrix and for two and five dimensions shows that the finite
sample properties of the estimates are reasonably good, unbiased in virtually all cases and

1As pointed out in Pivato and Seco (2003), the spectral measure should be called Feldheim measure, after
Feldheim (1937), and not spectral as it is unrelated with any other ”spectral measures” currently existent in
statistics.

2See Cambanis, Huang and Simons (1981) and Fang, Kotz and Ng (1990) for further references. A nice,
short and concise survey is chapter one of Frahm’s PhD thesis (2004).
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with root mean square errors that decrease with the number of indirect optimizations. The
empirical application is on weekly Morgan Stanley Corporate Indexes (MSCI) of 27 emerging
markets. We estimate the ESD on standardized residuals, filtered by a GARCH(1,1) model,
and we show that the tail index is below two and the estimated scatter matrix mimics the
empirical correlation matrix.

The plan of the paper is as follows. Section 2 introduces elliptical distributions and, in
particular, the ESD and Student’s t. Section 3 presents the indirect estimation methods and
prove its asymptotic properties in our setting as well as the one-to-one relationship between the
parameters of the two distributions. A detailed simulation study highlights the small sample
properties of the estimators in Section 4. Next, we illustrate the method to 27 emerging
markets indexes and Section 6 concludes and gives directions for further research.

2 Elliptical Distributions

A k dimensional random vector X is elliptically distributed if

X =d µ + RΛU(k),

where µ is a k dimensional vector of location parameters, Λ is a k × k full rank arbitrary
matrix of scale parameters and U(k) is a k dimensional random vector uniformly distributed
in the unit sphere with k − 1 dimensions

Sk−1 =
{

x ∈ R
k : ‖x‖2 = 1

}

.

R is the so called generating variate of X. It is a nonnegative random variable stochastically
independent of U(k). The starting point in the construction of an elliptically distributed
random variable is U(k), which is radial. It is premultiplied by Λ, such that ΛU(k) is not
radial anymore but rather elliptical, with the generating variate R giving the thickness, or
thinness, of the tails of RΛU(k). The vector µ shifts the location of the density. If Λ equals
the identity matrix, the density of X remains radial. Λ is a matrix such that Σ = ΛΛ′ is a
positive definite matrix of rank k and Σ is called the dispersion or scatter matrix of X. We
are ultimately interested in Σ, though elliptical distributions are expressed in terms of Λ. In
fact, the decomposition of Σ in terms of Λ is itself irrelevant as Λ is not identified.3

Some important densities are embedded in the class of elliptical distributions: Gaussian,

Student’s t and ESD among others.4 We obtain a Gaussian distribution if R =
√

χ2
k. Similarly,

the Student’s t is obtained if R =
√

νχ2
k/χ2

ν where χ2
k and χ2

ν are stochastically independent.

Finally, we obtain an ESD if R =
√

χ2
k

√

Sα/2, where Sα/2 is a positive, and hence totally

skewed to the right, α/2 stable distributed random variable and χ2
k and Sα/2 are stochastically

independent.

From these examples it is evident the close connection between the Student’s t and ESD.
The location and scale parameters play the same role in both distributions. The tail parameter,
either α or ν, enters in both cases through the generating variate. This leads to the intuitive

3Indeed, let T be an orthonormal matrix then Σ = ΛΛ
′ = ΛTT

′
Λ

′ = Λ
∗
Λ

∗
′

and therefore Λ and Λ
∗

generate the same scatter matrix.
4Hereafter we will skip the term multivariate. Nonetheless, the reader should always keep in mind that R is

a random variable and U
(k) is a random vector, thus X is a random vector as well.
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idea, proven in the next section, that if the true data generating process is stable but the
assumed distribution is Student’s t, a change in the location of the elliptical stable process will
lead to a change in the location in the Student’s t, and likewise for a change in the scale.

The class of elliptical distributions possesses a number of useful properties, among which
we highlight closeness to affine transformations, conditional and marginal distributions being
also elliptical and closeness to aggregation (cf. Fang, Kotz and Ng (1990) for further details.).
As for the last property, it is worth remarking that the sum of i.i.d. elliptically distributed
random vectors remains elliptical in the sense that the resulting distribution belongs to the
elliptical class, but it is not necessarily the same type as that of their addends. For instance,
the sum of two Student’s t distributions is elliptical but not Student’s t. By contrast, the sum
of two Gaussians (elliptical stables) remains Gaussian (elliptical stable).

Another important property of the elliptical distributions is that the density function can
be expressed in terms of the density function of the generating variate. More precisely, the
p.d.f. of X is given by

fX(x) =
√

|Σ−1|gR
(

(x − µ)′Σ−1(x − µ)
)

(1)

where |·| denotes the determinant,

gR(t) =
Γ
(

k
2

)

(2π)k/2

√
t
−(k−1)

fR(
√

t)

and fR is the p.d.f. of the generate variate. For instance in the Student’s t case

fR(t) =
2t

k
fF

(

t2

k

)

where fF represents the p.d.f. of a Fk,ν distributed random variable and hence fR(t) is the
p.d.f. of the random variable

√

kFk,ν . After some arrangements the p.d.f. of X takes the form

fX(x) =
Γ
(

k+ν
2

)

Γ
(

ν
2

)

( |Σ−1|
(νπ)k

)1/2(

1 +
(x − µ)′Σ−1(x − µ)

ν

)−
k+ν

2

, (2)

which is a Student’s t density with ν degrees of freedom and µ and Σ are the location and scale
parameters. Unfortunately, it does not exist an equivalent closed form expression of (2) for
the ESD. However, the fact that the Student’s t and the ESD are elliptical paves the road to
the use of indirect methods, where the Student’s t density (2) is used for estimating indirectly
the ESD.

3 Indirect Estimation

Let X be a sample of T i.i.d. copies from an ESD. Given (1), its log likelihood is5

ln `?(θ,x) =
1

2
ln |Σ−1| + ln gR

(

(x − µ)′Σ−1(x − µ)
)

,

where θ = (α,Σ, µ) ∈ Θ =]0, 2[×R
k×k
++ × R

k, α is the tail index, Σ a k × k positive defi-
nite scatter matrix, µ a k × 1 location parameter vector and gR is the generating variate of

5From this section on, we will slightly change the notation. Because we will use the Student’s t and the
elliptical stable distributions, we will denote differently to the location and scatter parameters of each law.
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√

χ2
k

√

Sα/2. This is the model of interest. However, as previously noted, this log likelihood

has not a closed-form expression and has difficult tractability.6 Instead, we assume, mistakenly
but on purpose, that X follows a Student’s t distribution with density (2) and therefore we
can easily maximize the log likelihood

ln ˜̀(ζ,x) = ln
Γ
(

ν+k
2

)

Γ
(

ν
2

) +
1

2
ln

( |Ψ−1|
(νπ)k

)

− k + ν

2
ln

(

1 +

(

(x − δ)′Ψ−1(x − δ)
)

ν

)

where ζ = (ν,Ψ, δ) ∈ Z =]0,∞[×R
k×k
++ × R

k, ν is the tail index, Ψ a k × k positive definite
scatter matrix and δ a k × 1 location parameter vector. This is the auxiliary model.7 Since
this model is misspecified, the estimators that maximize the above log-likelihood, ζ̂(x), are
not necessarily consistent. The central idea of indirect methods is to exploit simulations under
the model of interest to correct for the asymptotic bias.

Let Xs(θ), s = 1, . . . , S, be S simulated sample of T i.i.d. copies from an ESD and for a
given arbitrary parameter vector θ. And let

ζ̂s(θ) = arg max
ζ∈Z

ln ˜̀(ζ;xs(θ))

be the maximum likelihood estimator of the Student’s t distribution.8 Furthermore let

ζ̂S(θ) =
1

S

S
∑

s=1

ζ̂s(θ).

The Indirect Inference estimates, θ̂(x), are the values for which the following distance is
minimized

[

ζ̂(x) − ζ̂S(θ)
]

Ω
[

ζ̂(x) − ζ̂S(θ)
]

where Ω is a symmetric nonnegative matrix defining the metric.9 Alternatively, EMM considers
directly the score of the Student’s t

T
∑

t=1

∂ ln ˜̀(ζ;x)

∂ζ
.

The EMM estimates, θ̌(x), are the values for which the following distance is minimized

{

S
∑

s=1

∂ ln ˜̀(ζ;xs(θ))

∂ζ

}′

Υ

{

S
∑

s=1

∂ ln ˜̀(ζ;xs(θ))

∂ζ

}

6It should be emphasized that difficult does not imply impossible. Nolan (2005) shows how to compute the
log-likelihood numerically.

7Admittedly, the Student’s t is not the only good candidate for the auxiliary model. For instance, the
symmetric generalized hyperbolic distribution is also appropriate. The choice of the Student’s t motivated by
Demarta and McNeil (2005), Frahm, Junker and Szimayer (2005) and Frahm (2006) whom suggest that this
distribution as a reference model for elliptically contoured distributions.

8In actual facts, it is not strictly necessary to work with standard maximum likelihood, and more efficient
algorithms such as the EM (Meng and van Dijk, 1995) can be employed. However, as we will point out later, we
will follow a gradient based approach according to which the estimation of the auxiliary model is required only
once and it is instead crucial the availability of an analytic version of the gradient; for this reason we believe
that ML is more appropriate in this context.

9Typically, the optimal matrix is the inverse of the product of the scores.
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where Υ is a symmetric nonnegative definite matrix. Gourieroux, Monfort and Renault (1993)
shown that, choosing appropriately the weighting matrices, the two methods are asymptotically
equivalent and hence θ̌(x) − θ̂(x) → 0 as T → ∞.

In order to identify θ it is needed that the dimension of ζ is at least as big as that of
θ. If both dimensions are equal, as it is the case of the elliptical distributions considered
in this article, θ̌(x) does not depend of Υ and one can choose the Indirect Inference or the
EMM estimators that suits the best for the practical problem to be analyzed. For instance,
EMM is especially useful when an analytic expression for the gradient of the auxiliary model
is available, since it allows us to avoid the numerical optimization routines in the estimation
of the auxiliary model.10

The asymptotic behavior of the log-likelihood of the auxiliary model is

lim
T→∞

1

T
ln ˜̀(ζ;xs(θ)) = Eθ

[

ln ˜̀(ζ;xs(θ))
]

and the solution of the maximization problem is

b(θ) = arg max
ζ∈Z

Eθ

[

ln ˜̀(ζ;xs(θ))
]

,

that is ζ̂S(θ) is a consistent estimator of b(θ), the binding function that maps the parameters
space of the true model onto the parameter space of the auxiliary model. The indirect estimator
of θ is thus based on the evaluation of the binding function at the true optimum θ0. b(θ) defines
the pseudo-true value of the Student’s t parameters when the true probability distribution is the
ESD. The fact that the model of interest and the auxiliary model belong to the same family
of elliptical distributions allows us to devise a one-to-one relationship between the binding
function and θ. Intuitively, the location parameters are the same for both distributions and
the difference in the tail behavior between the two generating variates is exclusively given by α
and ν. Hence, Ψ is very informative for estimating Σ. Following Garcia, Renault and Veredas
(2006), we denote

b1(α,µ,Σ) = ν

b2(α,µ,Σ) = δ

b3(α,µ,Σ) = Ψ

The following proposition proves that the relationship is one to one.

Proposition 1 Let a ∈ R
k be a k dimensional vector and ∆ ∈ R

k×k an arbitrary matrix of
full rank. Then for any k dimensional vector µ ∈ R

k and scatter matrix Σ such that
Σ = ΛΛ′, Λ ∈ R

k×k,

b1(α,µ + a,∆Σ∆′) = ν

b2(α,µ + a,Σ) = δ + a

b3(α,µ,∆Σ∆′) = ∆Ψ∆′

that is δ ↔ µ, Ψ ↔ Σ and α ↔ ν.

10Because they are equivalent, hereafter we will use them indistinguishably though we will favour the EMM
estimator for reasons that will become clear at the end of this section.
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Proof Let an elliptically distributed random vector

X =d µ + RSΛU(k),

where RS =
√

χ2
k

√

Sα/2. Its characteristic function corresponds to

ϕXS (t) = exp(it′µ)

∫

∞

0
ϕU(r2t′Σt)dFRS (r)

where ϕU(·) is the characteristic function of U(k) and FRS is the cdf of
√

χ2
k

√

Sα/2.

Consider instead the integration with respect to FRSt , the cdf of
√

νχ2
k/χ2

ν

ϕXSt(t) = exp(it′µ)

∫

∞

0
ϕU(r2t′Σt)dFRSt(r)

A change in the location and the scale Y := a + ∆X, corresponds to

ϕYS (t) = E[exp(it′(a + ΛX))]

exp(it′(µ + a))

∫

∞

0
ϕd(r

2t′∆Σ∆′t)dFRS (r),

and as well to

ϕYSt(t) = E[exp(it′(a + ΛX))]

exp(it′(µ + a))

∫

∞

0
ϕd(r

2t′∆Σ∆′t)dFRSt(r)

which are the characteristic functions of the elliptically distributed random vectors,
YSt =d (µ + a) + RSt∆ΛU(k) and YS =d (µ + a) + RS∆ΛU(k), with identical lo-
cation and scatter matrices.�

This means that a change in the location only affects the location parameter and a scale
change only affects the scatter matrix. Moreover, the generating variate of the affinely trans-

formed vector remains the same. Therefore even if we estimate with R =
√

νχ2
k/χ2

ν , the affine

transformation does not affect the tail index. In other words, the location and scale parameters
of the Student’s t carry over exclusively information on the location and scale parameters of
the ESD respectively: δ ↔ µ and Ψ ↔ Σ. Hence the tail index is not modified by location
and scale changes but by the stability index: α ↔ ν.

Under some regularity conditions -see Appendix- the EMM estimator θ̌(x) is consistent for
fixed S and T → ∞. Furthermore, θ̌(x) is asymptotically Gaussian for fixed S and T → ∞

√
T (θ̌(x) − θ0)

d−→ N (0,W(S,Υ))

where

W(S, Υ) =

(

1 +
1

S

)

[

∂2Eθ[ln ˜̀(ζ,x(θ))]

∂ζ∂θ′

′

Υ∗∂2Eθ[ln ˜̀(ζ,x(θ))]

∂ζ∂θ′

]−1

(3)

and

Υ∗ = lim
T→∞

V ar

{

√
T

∂ ln ˜̀[b(θ);x]

∂ζ

}

.
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A consistent estimator for W̌ is11

W̌(S,Υ) =

(

1 +
1

S

)

[

∂2 ln ˜̀(ζ;x)

∂θ∂ζ′

′

Υ̌∗∂2 ln ˜̀(ζ;x)

∂θ′∂ζ

]−1

where

Υ̌∗ =
1

T





∂ ln ˜̀(ζ;x)′

∂ζ

∣

∣

∣

∣

∣

ζ=ζ̂

∂ ln ˜̀(ζ;x)

∂ζ′

∣

∣

∣

∣

∣

ζ=ζ̂



 .

Indirect estimators are asymptotically well behaved because the information content on
the parameters of the Student’s t is sufficient to identify the parameters of the ESD and the
score of the Student’s t distribution is asymptotically Gaussian. However, in finite samples the
information content in ν is not sufficient to identify α as it approaches to 2 because ν̌ tends to
infinity. This is a finite sample artifact, as asymptotically tends to its true value, and to avoid
it we constrain ν to remain below an upper bound ν̄. Let

β̂(x) = arg max
β∈Z×R

ln ˜̀(ζ;x(θ)) + (ν − ν̄)ρ

be the constrained estimator of the Student’s t distribution that satisfies the inequality restric-
tion plus the slackness restriction (ν − ν̄)ρ = 0. The parameter set is β = (ζ, ρ) ∈ Z × R and
ν̄ is the upper bound for ν. Equivalently for β̂(θ).

Calzolari, Fiorentini and Sentana (2004) have shown that the EMM estimator under con-
straints is analogous to that derived by Gallant and Tauchen (1996) and the weighting matrix
remains the same. The reason why theoretical results for EMM remain unchanged is that
the score is taken with respect to ζ and not with respect to ρ and hence θ remains exactly
identified. However, results change for Indirect Inference as the multiplier ρ is also minimized
and therefore θ is overidentified and an optimal weighting matrix is needed. Furthermore,
this optimal matrix takes a complicated form as it accounts for the inequalities and the slack-
ness condition. All in one, the inclusion of constraints in the Student’s t distribution does
not change standard EMM estimation while it does in Indirect Inference. For this reason we
choose the former method for the Monte Carlo study and the empirical illustration.

4 Monte Carlo study

In order to proceed with the Monte Carlo study and to indirectly estimate the stable param-
eters, we need to produce random samples from an ESD. In the first part of this section we
explain how to simulate while in the second we explain the Monte Carlo study and its results.

Simulating from an ESD is fairly simple. This is due to the fact that the tail index appears
only in the generating variate, which is univariate. In other words, in order to simulate random
numbers from an ESD it suffices to be able to simulate from its univariate counterpart -using,
for instance, the Chambers, Mallows and Stuck (1976) method. The ESD can be rewritten as

X =d µ +
√

Sα/2G (4)

11The following expressions are specific to the i.i.d. case. The general expressions for serial dependence can
be found in Appendix 2 of Gourieroux, Monfort and Renault (1993).
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where G =
√

χ2
kΛU(k) ∼ N (0,Σ). Therefore to simulate X we only need to simulate from a

multivariate Gaussian density and from a univariate stable density. More precisely, if

A ∼ Sα/2

(

(

cos
πα

4

)2/α
, 1, 0

)

and G ∼ N (0,Σ) independent of A then A1/2G ∼ Sα (Σ, 0, µ). Notice that if α approaches 2,

then
√

Sα/2

√

χ2
k →

√

χ2
k. This is a counter intuitive result as A has a location parameter 0

and a scale that equals 0 for α = 2. However, A converges to a Dirac delta measure. To see
this, take the Laplace transform of X defined in (4)

E (exp(−γA)) = exp(−γα/2)

As α → 2, exp(−γα/2) → exp(−γ), which is the Laplace transform of a Dirac delta function.
That is,

√

Sα/2 converges in distribution to a degenerate random variable with value 1. Because
an elliptical stable random vector can be viewed a scale mixture of normal random vector, it
is also referred as sub Gaussian random vectors.

We use this procedure for the Monte Carlo study. To check the finite sample properties
of the estimator, we conduct a thorough Monte Carlo study for a number of combinations of
values for α and Σ, while setting the location parameter µ equal to zero. The upper bound
ν̄ is set to 100. Note that whether the bound is higher or lower is not important (cf Garcia,
Renault and Veredas (2006)) as what matters is that the estimated degrees of freedom are not
attracted by infinity. We simulate 100 draws of 500 observations for a grid of parameter values,
two different dimensions (2 and 5) and two different values of the indirect draws (S equal to
1 and 5). The stability index α takes values 0.7, 1.1, 1.5, 1.7, 1.9 and 1.95. As for the scatter
matrices, we choose four specifications. The first is the identity, corresponding to the spherical
case. The second is diagonal with different elements: diag(Σ) = (0.5, 2) for dimension 2 and
diag(Σ) = (0.25, 0.5, 1, 2, 4) for dimension 5. In the third scenario the scatter matrix has the
same diagonal elements as in the previous case but with off-diagonal elements σ12 = 0.2 for
dimension 2 and

Σ =













0.25 0.25 0.4 0 0
0.25 0.5 0.4 0 0
0.4 0.4 1 0 0
0 0 0 2 2.55
0 0 0 2.55 4













for dimension 5. In the last case, the diagonal elements are as in the previous case and off-
diagonal elements σ12 = 0.9 for dimension 2 and

Σ =













0.25 0.25 0.4 −0.4 −0.9
0.25 0.5 0.4 −0.5 −1
0.4 0.4 1 −1.1 −1.6
−0.4 −0.5 −1.1 2 2.55
−0.9 −1 −1.6 2.55 4













for dimension 5.

The last three cases for dimension 2, the off-diagonal can be seen, loosely speaking, as
correlations (or more precisely standardized covariations) as one of the diagonal elements is
the inverse of the other. Therefore we consider a case where the two random variables are
uncorrelated, another where they are weakly correlated and a last one where they are strongly
correlated. Likewise, for the 5-dimensional case, the last three cases have some meaning in
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terms of standardized covariations. In the second case all random variables are uncorrelated.
In the third they are positively block correlated while in the last case they are positively block
correlated and negatively off-block correlated.12.

Tables 1 and 2 show the results for dimension 2 while Tables 3-6 show the results for
dimension 5. Due to space constraints we only show the median and the root mean square
error (RMSE).13 In general, except for some pathological cases, results indicate that estimators
are unbiased. Furthermore, small biases present when S = 1 are corrected when S = 5.
Admittedly, a closer look to higher moments -not shown here- such as skewness and kurtosis,
reveals that they are not Gaussian but this is not surprising as this is a finite sample exercise.
Nonetheless, the density of the estimators are, in some sense, well behaved. Figure 1 shows
the kernel densities for one of the cases in dimension 2 and S = 5. Though not Gaussian, they
do not present remarkable skewness or kurtosis, which are positive indications given that the
density is for only 100 estimates.

In most of the cases, particularly for dimension 2, the RMSE for S = 5 are lower than for
S = 1, indicating that, as the theory predicts, the higher the number of indirect draws, the
lower the variance of the estimators -see (3). However, the exception is the location parameter
vector, µ, for which results in terms of RMSE are not conclusive. Nonetheless, clearly the
RMSE of the scatter matrix parameters and the tail index reduces substantially when S = 5.

Last, as a further check we have also partly carried out the Monte Carlo study with a
multivariate skewed-t distribution (cf. Bauwens and Laurent (2005) and Azzalini and Capitanio
(2003)) as auxiliary model. In this case we don’t remain anymore within the elliptical class
and, furthermore, we need an appropriate weighting matrix that is given by the inverse of the
product of the scores of the auxiliary model. Simulation results did not change significantly
with respect to the Student’s t case, suggesting that the skewness parameter does not convey
significant information for estimating an elliptical distribution.

5 Illustration

We illustrate the method with an application to 27 MSCI (Morgan Stanley Composite Index)
emerging markets indexes. The MSCI indexes are free float-adjusted market capitalization
indexes that are designed to measure equity market performance. The emerging markets areas
and countries we consider are: East Asia (Philippines, Sri Lanka, Pakistan, China, South
Korea, India, Indonesia, Russia, Thailand, Taiwan and Malaysia), Eastern Europe (Poland,
Czech Republic and Hungary), South America (Mexico, Colombia, Chile, Argentina, Brazil,
Venezuela and Peru), Africa (South Africa, Egypt and Morocco) and Middle East (Israel,
Turkey and Jordan).

12In fact, the off diagonal values have been chosen such that the standardized covariation matrices are,
approximately,

Ξ =

�
�����

1 0.7 0.8 0 0
0.7 1 0.6 0 0
0.8 0.6 1 0 0
0 0 0 1 0.9
0 0 0 0.9 1

�
�����

and Ξ =

�
�����

1 0.7 0.8 −0.6 −0.9
0.7 1 0.6 −0.5 −0.7
0.8 0.6 1 −0.8 −0.8
−0.6 −0.5 −0.8 1 0.9
−0.9 −0.7 −0.8 0.9 1

�
�����

for the third and fourth specifications respectively. These cases may correspond to two portfolios. One with
a risk-free and a risky set of assets, with positive covariation in between but not within. The second has two
risky sets of assets where one set is hedging the other, and hence the negative covariation

13More detailed results, including mean, standard deviation, maximum and minimum are available upon
request.
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[FIGURE ONE ABOUT HERE]

We use weekly prices, in USD, between April 2001 to April 2006, hence 261 observations
per country. Figure 2 shows the indexes for a sample of six countries: 2 East Asian and
1 for the other areas. Volatility behaviour is very heterogeneous. Some countries display
strong clustering, like Jordan and Czech Republic, while other present large deviations but
not clusters, like Malaysia and Sri Lanka. It is known (Ghose and Kroner, 1995) that heavy
tails generated by GARCH effects can be mistakenly interpreted as evidence in favour of stable
distributions. To safeguard against this, we consider standardized GARCH(1,1) residuals such
that the remaining heteroskedasticity is not due to dynamic conditional volatility.

Figure 3 shows the standardized residuals for the same indexes as in previous figure. The
volatility clustering has disappeared, as it is clearly visible for Czech Republic and Jordan.
However, they do not appear to be Gaussian. The kurtosis coefficients range from 3.56 for
Mexico to 7.93 for Sri Lanka, meaning that a fat-tailed distribution can be an appropriate
choice. Figure 4 shows a heat map of the empirical correlations of the standardized residu-
als. Clusters by geographical areas are very clear. For instance Eastern European and Latin
American countries are very related. Others, like Israel (the second from the upper right) and,
surprisingly, China (the fourth from the left bottom), are not correlated at all with any other
country.

Admittedly, the application is subject to certain critiques. First the tail index α is the
same for all countries. We estimated univariate stable distributions for each country and, as
expected, the tail indexes are not constant across countries. They vary from 1.5 to 2. Yet this
shortcoming is in fact applicable to any multivariate distribution like the Student’s t, skewed-t
or the Gaussian, in which case is even worse as the tail index is fixed to 2. Second, data are
skewed yet we do not allow for asymmetries. Last we consider constant covariation, which may
not be the case for the MSCI indexes. Despite all these shortcomings, this estimation exercise
is purely illustrative and an application in a dynamic and asymmetric context is beyond the
scope of the paper; though it is an interesting research avenue, as explained in the conclusions.

[FIGURE TWO ABOUT HERE]

[FIGURE THREE ABOUT HERE]

The estimated tail index is 1.75, implying thicker tails than in the Gaussian case. The
estimated degrees of freedom for the Student’s t is 7.19, which produces a mismatch in the
existence of moments with respect to the stable distribution. Figure 5 shows the estimates for
the location vector. They all vary around zero, which makes sense as the standardized residuals
have mean equal to zero. As for the scatter matrix, we do not show all the results, because
of space limitations.14 Instead, we present the estimated covariations for the six countries
above considered, which are the solid lines in Figure 6 while the dotted lines are the empirical
covariances. The estimated covariations are very close to the empirical ones in all cases. We
may compare then with the estimate covariances matrices of the Student’s t, plotted in Figure
7. Clearly the estimated scatter matrix of the Student’s t distribution has a worst fit than
the estimated scatter matrix of the stable distribution. In fact, one can observe that, for
Student’s t, the estimated covariations are higher than one, which is not sensible as residuals
are standardized.

14Detailed results are of course available upon request.
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[FIGURE FOUR ABOUT HERE]

[FIGURE FIVE ABOUT HERE]

[FIGURE SIX ABOUT HERE]

6 Conclusion

In this paper we propose indirect estimation methods for multivariate elliptical stable distri-
butions. Theory shows that the Student’s t distribution is an adequate auxiliary model and
standard asymptotics of indirect methods apply. A Monte Carlo study points out that even
for small samples, 500 observations, estimates have reasonable properties. Finally an empirical
study further illustrates the proposed method.

Further research can take several directions. First, an obvious generalization is to allow
for skewness. The reader may be tempted to extend the indirect methods to asymmetric
stable distributions. However, we do not think that this may be a sensible decision as in the
asymmetric case, skewness and scatter are merged into the so called spectral measure, which
takes very complicated forms. Furthermore, simulation from an asymmetric multivariate stable
distributions turns out to be difficult hindering the use of indirect inference estimation methods,
as precisely these methods are appropriate when simulating from the model of interest is
straightforward.15 An alternative is to use a recent method proposed by Nolan (2005), which
is based on projections parameter functions. Another alternative is the use of generalized
elliptical distributions (cf. Frahm (2004)), which share many of the properties of the elliptical
distributions.

Another direction of further research is the extension to a time series context. In particular,
allow the location vector and the scatter matrix to be time varying. For instance VAR and
multivariate GARCH type of models are natural choices. On these grounds one has to be
careful on the way VAR and GARCH models are defined as the inexistance of moments of orders
higher that α entails some difficulties. For instance univariate GARCH models under stable
distribution has been analyzed by Mittnik, Paolella and Rachev (2002). This extension seems
appropriate, given that most of the economic processes are time dependent. Furthermore,
from a theoretical perspective it is feasible as Gourieroux, Monfort and Renault (1993) and
Calzolari, Fiorentini and Sentana (2004) do not assume i.i.d. returns in their analysis.

A Assumptions

C1. X is strictly stationary and ergodic.

C2. ln ˜̀(ζ,x) is twice continuously differentiable with respect to ζ.

C3. Eθ[ln ˜̀(ζ,x)] is twice continuously differentiable with respect to θ and ζ and has an
unique maximum.

C4. b(θ) is unique

15Nonetheless, it is worth noticing that simulation of multivariate stable distributions is possible -Modarres
and Nolan (1994).
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C5. b(θ) and Eθ[ln ˜̀(ζ,x)] admit the unique solution θ = θ0 and are continuously differen-
tiable at θ.

C6.

∂2 ln ˜̀(ζ,x)

∂ζ∂ζ
−H0 = op(1)

√
TEθ[ln ˜̀(ζ,x)] →d N (0, I0)

C7. The asymptotic covariance between the gradients of two units s1 and s2 of the simulated
sample is constant.
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Figure 1: Densities of the estimated parameters of one the Monte Carlo cases for dimension 2.
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Figure 2: MSCI indexes for a selection of countries.
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Figure 3: Standardized GARCH(1,1) residuals .
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Figure 4: Heat map of the empirical correlations of standardized residuals. The darker (lighter)
the higher (lower) the empirical correlations. For representation purposes main diagonal has
been replaces by zeros, and hence the white.

Figure 5: Estimated location parameters
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Figure 6: Results for the stable distribution: Estimated covariations (solid line) and empirical
correlations (dotted line) of standardized residuals for six countries.
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Figure 7: Results for the Student’s t distribution: Estimated covariations (solid line) and
empirical correlations (dotted line) of standardized residuals for six countries.
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α True 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95
Median 0.72 1.13 1.71 1.90 1.95 0.71 1.12 1.72 1.89 1.95 0.73 1.13 1.70 1.89 1.95 0.70 1.10 1.74 1.88 1.94
RMSE 0.11 0.17 0.07 0.03 0.02 0.05 0.16 0.04 0.04 0.02 0.07 0.10 0.06 0.03 0.01 0.04 0.08 0.08 0.06 0.03

σ11 True 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Median 0.97 0.94 0.96 1.00 1.03 0.48 0.48 0.44 0.51 0.51 0.49 0.47 0.48 0.50 0.52 0.50 0.49 0.49 0.51 0.50
RMSE 0.20 0.13 0.10 0.10 0.16 0.08 0.07 0.17 0.08 0.06 0.06 0.05 0.06 0.05 0.06 0.02 0.03 0.09 0.27 0.05

σ22 True 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Median 0.98 0.95 0.97 1.02 1.01 2.00 1.94 1.92 2.01 2.01 2.00 1.91 1.94 2.03 2.03 2.00 1.99 1.83 2.00 2.01
RMSE 0.20 0.14 0.11 0.11 0.13 0.19 0.32 0.15 0.23 0.10 0.22 0.16 0.15 0.21 0.08 0.04 0.13 0.27 0.16 0.13

σ12 True 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.9 0.9 0.9 0.9 0.9
Median -0.06 -0.05 -0.05 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.02 0.16 0.15 0.15 0.16 0.17 0.90 0.89 0.78 0.90 0.90
RMSE 0.11 0.08 0.07 0.06 0.07 0.08 0.18 0.05 0.06 0.05 0.09 0.07 0.06 0.06 0.07 0.03 0.06 0.15 0.10 0.09

µ1 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0.36 1.19 3.45 2.64 1.09 0.40 -0.32 0.54 2.05 0.86 -0.02 -0.28 1.41 4.46 3.46 0.00 -0.16 1.62 0.53 0.98
RMSE 6.76 7.35 8.81 11.0 12.0 3.31 15.6 4.40 8.94 9.89 3.57 3.76 4.83 11.0 9.62 1.78 3.83 8.40 12.4 10.0

µ2 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 1.86 1.70 0.56 0.25 0.65 0.17 0.00 0.86 1.72 0.48 0.08 1.86 0.03 9.00 4.14 0.00 0.00 1.12 0.25 0.01
RMSE 5.83 6.00 9.42 8.21 12.8 6.89 59.1 16.5 24.9 10.4 6.29 12.1 13.9 27.9 26.6 3.47 7.51 7.56 26.6 21.7

Entries are the true parameter, the median of the 100 replications of 500 observations and the Root Mean Square Error (RMSE). For the ease of exposition the median and
RMSE of the location parameters have been multiplied by 100.
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α True 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95
Median 0.71 1.11 1.68 1.89 1.94 0.70 1.11 1.69 1.89 1.95 0.70 1.10 1.70 1.89 1.95 0.70 1.10 1.70 1.90 1.95
RMSE 0.06 0.06 0.06 0.04 0.03 0.04 0.06 0.06 0.04 0.02 0.05 0.07 0.05 0.04 0.02 0.03 0.04 0.04 0.05 0.01

σ11 True 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Median 0.99 0.97 0.97 1.01 1.01 0.49 0.48 0.48 0.50 0.50 0.49 0.48 0.48 0.50 0.51 0.50 0.50 0.49 0.50 0.50
RMSE 0.16 0.08 0.08 0.11 0.18 0.05 0.04 0.04 0.08 0.05 0.05 0.05 0.04 0.05 0.05 0.01 0.01 0.02 0.11 0.05

σ22 True 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Median 1.00 1.00 1.01 1.03 1.04 2.00 2.00 2.00 2.04 2.02 2.00 2.00 2.00 2.02 2.01 2.00 2.00 2.00 2.02 2.01
RMSE 0.11 0.06 0.07 0.15 0.21 0.12 0.13 0.15 0.23 0.16 0.12 0.16 0.11 0.23 0.23 0.01 0.04 0.06 0.19 0.12

σ12 True 0 0 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0.9 0.9 0.9 0.9 0.9
Median 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.20 0.20 0.20 0.21 0.21 0.90 0.90 0.90 0.91 0.90
RMSE 0.09 0.03 0.03 0.04 0.07 0.05 0.04 0.02 0.04 0.04 0.06 0.03 0.03 0.04 0.05 0.01 0.02 0.03 0.12 0.06

µ1 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 1.48 2.93 1.86 0.21 0.31 0.82 0.98 2.78 4.22 0.77 0.92 0.95 2.45 2.64 -0.25 0.00 0.23 0.35 0.03 0.59
RMSE 8.67 8.49 9.52 8.58 13.4 2.55 3.25 5.18 8.02 9.23 4.26 3.58 5.00 8.10 9.93 1.31 3.74 5.83 7.35 10.5

µ2 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 1.78 1.54 1.87 0.00 0.07 0.00 4.90 1.58 0.34 0.22 0.02 1.30 1.56 -0.12 -0.08 0.00 0.05 0.43 0.02 -0.05
RMSE 7.37 5.82 9.36 10.6 9.46 5.12 13.5 14.9 20.0 12.5 7.61 12.6 16.6 17.0 15.67 2.35 7.68 11.7 15.3 21.9

See legend Table 1
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α True 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95
Median 0.72 1.13 1.68 1.89 1.94 0.70 1.10 1.69 1.89 1.94 0.70 1.10 1.70 1.88 1.95 0.70 1.10 1.70 1.89 1.95
RMSE 0.12 0.10 0.05 0.05 0.01 0.11 0.08 0.05 0.02 0.05 0.16 0.02 0.03 0.01 0.01 0.04 0.03 0.04 0.02 0.01

σ11 True 1 1 1 1 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Median 1.00 1.01 1.01 1.01 1.03 0.25 0.26 0.25 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
RMSE 0.06 0.08 0.08 0.07 0.06 0.04 0.02 0.02 0.03 0.05 0.05 0.02 0.02 0.02 0.01 0.03 0.03 0.02 0.03 0.01

σ22 True 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Median 1.00 1.01 1.00 1.02 1.01 0.50 0.50 0.50 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
RMSE 0.05 0.11 0.07 0.07 0.07 0.05 0.05 0.04 0.03 0.04 0.06 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.07 0.02

σ33 True 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Median 1.00 1.00 1.00 1.02 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RMSE 0.06 0.09 0.08 0.07 0.07 0.04 0.06 0.05 0.05 0.04 0.05 0.01 0.02 0.04 0.01 0.02 0.02 0.03 0.02 0.01

σ44 True 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Median 1.00 1.00 0.99 1.01 1.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
RMSE 0.07 0.09 0.09 0.07 0.06 0.03 0.09 0.10 0.06 0.04 0.05 0.02 0.02 0.04 0.02 0.03 0.03 0.05 0.03 0.02

σ55 True 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Median 1.00 0.99 0.99 1.00 1.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.01 4.00 4.00 4.00 4.01 4.01
RMSE 0.07 0.10 0.09 0.08 0.05 0.02 0.16 0.14 0.08 0.07 0.03 0.01 0.02 0.07 0.02 0.02 0.02 0.09 0.07 0.02

σ12 True 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Median -0.01 -0.05 -0.04 -0.03 -0.02 0.00 -0.02 -0.02 -0.01 -0.01 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
RMSE 0.07 0.06 0.05 0.04 0.04 0.05 0.03 0.02 0.02 0.03 0.07 0.02 0.01 0.03 0.01 0.05 0.03 0.02 0.01 0.01

σ13 True 0 0 0 0 0 0 0 0 0 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Median 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
RMSE 0.02 0.06 0.04 0.03 0.03 0.08 0.02 0.02 0.03 0.02 0.07 0.02 0.01 0.06 0.02 0.03 0.03 0.02 0.03 0.02

σ23 True 0 0 0 0 0 0 0 0 0 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Median 0.01 0.02 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.40 0.40 0.40 0.40 0.39 0.40 0.40 0.40 0.39 0.39
RMSE 0.03 0.11 0.10 0.08 0.04 0.06 0.02 0.02 0.02 0.02 0.08 0.03 0.02 0.02 0.02 0.03 0.04 0.03 0.02 0.02

σ14 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.4 -0.4 -0.4 -0.4
Median -0.02 -0.01 -0.03 -0.03 -0.01 0.00 -0.01 -0.02 -0.02 0.00 0.00 0.00 0.00 -0.00 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40
RMSE 0.06 0.08 0.09 0.06 0.04 0.06 0.03 0.04 0.03 0.04 0.07 0.02 0.02 0.02 0.03 0.02 0.04 0.02 0.03 0.03

σ24 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5 -0.5 -0.5 -0.5 -0.5
Median -0.01 -0.03 -0.02 0.00 0.01 0.00 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.49 -0.50 -0.50 -0.50 -0.49 -0.49
RMSE 0.03 0.14 0.09 0.06 0.03 0.07 0.03 0.03 0.03 0.04 0.10 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.02

See legend Table 1
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σ34 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.1 -1.1 -1.1 -1.1 -1.1
Median 0.01 0.02 0.02 0.02 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 -0.00 -1.10 -1.10 -1.10 -1.10 -1.10 -1.10
RMSE 0.04 0.10 0.10 0.07 0.05 0.06 0.03 0.03 0.04 0.03 0.05 0.01 0.01 0.03 0.01 0.03 0.03 0.03 0.02 0.01

σ15 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.9 -0.9 -0.9 -0.9
Median -0.02 -0.06 -0.05 -0.05 -0.04 0.00 -0.01 -0.03 -0.03 -0.02 0.00 0.00 0.00 -0.02 -0.91 -0.90 -0.90 -0.91 -0.91 -0.91
RMSE 0.05 0.11 0.10 0.07 0.06 0.05 0.04 0.05 0.05 0.03 0.07 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.05 0.03

σ25 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1
Median -0.01 -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
RMSE 0.06 0.11 0.08 0.04 0.04 0.04 0.05 0.05 0.05 0.03 0.07 0.02 0.01 0.04 0.01 0.03 0.02 0.04 0.02 0.01

σ35 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.6 -1.6 -1.6 -1.6 -1.6
Median 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.60 -1.60 -1.60 -1.60 -1.61 -1.60
RMSE 0.06 0.05 0.03 0.04 0.04 0.05 0.05 0.06 0.05 0.03 0.04 0.02 0.02 0.05 0.02 0.02 0.06 0.04 0.02 0.02

σ45 True 0 0 0 0 0 0 0 0 0 0 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55
Median 0.00 -0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 2.55 2.55 2.55 2.54 2.54 2.55 2.55 2.55 2.54 2.54
RMSE 0.06 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.04 0.06 0.05 0.01 0.01 0.03 0.02 0.02 0.03 0.06 0.02 0.02

µ1 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0.63 0.49 0.80 0.11 0.28 0.06 0.10 0.73 1.84 0.40 0.00 0.02 0.00 0.06 -0.11 0.00 0.06 0.13 -0.03 -0.11
RMSE 3.62 6.68 7.37 6.50 8.90 2.48 1.50 2.61 3.82 6.49 2.58 1.61 1.96 4.12 1.69 2.01 2.41 4.98 1.84 1.69

µ2 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0.72 1.65 1.13 -0.01 0.40 0.36 1.30 1.10 1.06 0.65 0.00 0.00 0.03 0.19 0.19 0.00 0.03 0.03 0.18 0.19
RMSE 3.86 6.96 9.27 5.05 6.82 3.23 3.11 4.25 5.22 6.04 1.92 1.30 3.11 3.77 1.47 1.25 2.52 10.02 3.89 1.47

µ3 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0.00 -0.18 1.38 0.01 -0.04 0.22 0.19 0.53 0.44 0.27 0.00 0.00 0.01 0.00 0.81 0.00 -0.04 0.05 0.53 0.81
RMSE 3.75 9.17 7.36 4.78 4.30 4.35 4.07 6.00 5.41 9.00 2.31 2.21 3.73 5.67 2.25 1.16 2.16 6.92 1.88 2.25

µ4 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0.81 1.25 0.44 -0.35 -0.21 0.00 0.98 1.07 0.43 0.00 0.00 0.03 0.00 -0.08 0.25 0.00 0.00 -0.04 0.16 0.25
RMSE 3.53 9.71 6.94 4.89 6.57 5.04 8.08 11.97 7.64 17.28 3.94 2.14 4.75 2.34 1.46 1.40 2.01 8.13 1.59 1.46

µ5 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0.81 1.69 0.60 0.22 0.38 0.02 0.02 0.90 0.09 0.42 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.11 0.13 0.07
RMSE 2.98 10.13 10.22 5.88 5.60 4.02 8.51 23.29 22.07 21.72 1.95 1.63 7.09 2.34 0.97 0.99 2.81 11.88 0.95 0.97

See legend Table 1
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α True 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95 0.7 1.1 1.7 1.9 1.95
Median 0.71 1.10 1.69 1.89 1.94 0.71 0.98 1.69 1.89 1.95 0.70 1.10 1.70 1.89 1.94 0.70 1.10 1.70 1.90 1.95
RMSE 0.11 0.04 0.05 0.03 0.06 0.06 0.24 0.03 0.01 0.01 0.01 0.02 0.03 0.02 0.01 0.04 0.02 0.05 0.02 0.01

σ11 True 1 1 1 1 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Median 1.00 1.00 0.98 1.00 1.02 0.25 0.24 0.26 0.25 0.28 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
RMSE 0.08 0.08 0.06 0.07 0.08 0.03 0.03 0.06 0.05 0.07 0.01 0.01 0.02 0.03 0.01 0.02 0.02 0.02 0.06 0.01

σ22 True 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Median 1.01 1.00 1.00 1.03 1.04 0.50 0.50 0.53 0.51 0.51 0.50 0.50 0.51 0.50 0.50 0.50 0.50 0.50 0.51 0.50
RMSE 0.07 0.07 0.07 0.07 0.09 0.06 0.04 0.08 0.04 0.03 0.02 0.02 0.03 0.03 0.01 0.02 0.01 0.02 0.07 0.01

σ33 True 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Median 1.00 1.00 1.00 1.01 1.02 1.00 1.00 1.02 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
RMSE 0.08 0.08 0.05 0.08 0.07 0.05 0.06 0.05 0.05 0.05 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.06 0.01

σ44 True 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Median 1.00 1.01 1.01 1.04 1.02 2.00 2.00 2.05 2.02 2.01 2.00 2.01 2.01 2.00 2.00 2.00 2.00 2.00 1.98 2.00
RMSE 0.08 0.09 0.07 0.09 0.07 0.02 0.09 0.10 0.07 0.06 0.02 0.02 0.04 0.04 0.03 0.03 0.02 0.04 0.13 0.02

σ55 True 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Median 1.00 0.99 0.97 1.01 1.02 4.00 4.00 4.00 4.00 4.00 4.00 3.99 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.01
RMSE 0.08 0.09 0.10 0.07 0.07 0.04 0.16 0.06 0.04 0.05 0.01 0.02 0.03 0.04 0.01 0.02 0.01 0.07 0.08 0.02

σ12 True 0 0 0 0 0 0 0 0 0 0 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Median 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.40
RMSE 0.08 0.04 0.03 0.03 0.03 0.04 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.03 0.02 0.02 0.03 0.01

σ13 True 0 0 0 0 0 0 0 0 0 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Median -0.01 -0.01 -0.01 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.39 0.40
RMSE 0.10 0.05 0.03 0.03 0.03 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.04 0.03 0.03 0.04 0.01

σ23 True 0 0 0 0 0 0 0 0 0 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Median 0.00 0.00 0.00 0.01 0.01 0.00 -0.01 0.02 0.01 0.01 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
RMSE 0.09 0.08 0.07 0.06 0.05 0.05 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.06 0.02 0.02 0.05 0.01

σ14 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.4 -0.4 -0.4 -0.4 -0.4
Median 0.00 -0.01 0.00 -0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.40 -0.40 -0.40 -0.41 -0.40
RMSE 0.10 0.07 0.07 0.07 0.05 0.06 0.03 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.05 0.02 0.03 0.04 0.01

σ24 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5 -0.5 -0.5 -0.5 -0.5
Median 0.01 0.01 0.02 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.50 -0.50 -0.50 -0.51 -0.50
RMSE 0.11 0.06 0.06 0.06 0.05 0.06 0.05 0.02 0.02 0.02 0.01 0.01 0.01 0.03 0.01 0.02 0.02 0.02 0.05 0.01

See legend Table 1
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σ34 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.1 -1.1 -1.1 -1.1 -1.1
Median 0.00 0.00 0.00 -0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.10 -1.10 -1.10 -1.12 -1.10
RMSE 0.11 0.08 0.06 0.07 0.04 0.07 0.04 0.03 0.03 0.03 0.01 0.02 0.02 0.03 0.03 0.04 0.02 0.02 0.08 0.01

σ15 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.9 -0.9 -0.9 -0.9 -0.9
Median 0.00 0.03 0.03 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.90 -0.90 -0.90 -0.90 -0.90
RMSE 0.09 0.08 0.07 0.08 0.04 0.08 0.04 0.02 0.02 0.02 0.01 0.01 0.02 0.03 0.02 0.03 0.04 0.03 0.04 0.01

σ25 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1
Median 0.00 -0.02 -0.02 -0.01 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 -0.01 -0.01 -1.00 -1.00 -1.00 -1.00 -1.01
RMSE 0.08 0.07 0.06 0.06 0.05 0.05 0.09 0.03 0.02 0.02 0.01 0.01 0.02 0.03 0.03 0.03 0.01 0.03 0.04 0.02

σ35 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1.6 -1.6 -1.6 -1.6 -1.6
Median 0.00 0.00 -0.01 0.00 -0.01 0.00 0.00 -0.03 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 -1.60 -1.60 -1.60 -1.61 -1.60
RMSE 0.10 0.03 0.03 0.09 0.03 0.06 0.07 0.05 0.04 0.03 0.02 0.02 0.03 0.05 0.04 0.03 0.02 0.02 0.07 0.01

σ45 True 0 0 0 0 0 0 0 0 0 0 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55
Median 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 -2.55 2.54
RMSE 0.07 0.04 0.03 0.03 0.04 0.04 0.06 0.05 0.07 0.06 0.02 0.03 0.02 0.02 0.03 0.05 0.02 0.04 0.11 0.02

µ1 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0.88 0.78 1.46 0.52 0.01 0.63 0.37 0.95 0.38 -0.04 0.11 0.01 0.22 0.16 0.28 0.09 0.01 0.14 -0.26 -0.03
RMSE 3.99 5.12 8.28 9.15 6.24 1.76 1.76 2.28 2.05 4.22 0.89 1.27 2.11 3.05 3.59 2.04 1.96 4.23 6.65 1.91

µ2 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0.74 0.15 1.18 -0.19 -0.11 0.00 0.24 -0.19 0.30 0.29 -0.11 0.00 -0.05 0.07 0.10 0.08 -0.02 -0.13 -0.94 0.35
RMSE 3.51 4.53 8.06 3.87 7.51 2.93 2.72 3.58 4.66 5.77 1.36 1.80 3.32 4.68 5.56 1.68 2.81 6.16 8.31 2.96

µ3 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median -0.13 -0.37 -1.06 -0.19 -0.18 -0.05 -0.32 -0.08 0.05 0.24 0.04 -0.02 -0.31 0.01 -0.06 0.00 0.00 -0.03 -1.55 0.14
RMSE 3.10 5.11 7.31 6.74 6.45 3.98 4.91 5.56 5.35 7.73 1.79 2.72 3.66 6.22 6.78 2.92 2.56 6.41 14.69 3.02

µ4 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 1.32 1.41 3.18 0.17 0.22 0.16 2.96 0.19 0.20 0.21 0.30 0.71 0.54 -0.23 -0.02 0.18 0.11 0.16 -0.87 0.05
RMSE 4.23 5.72 10.94 6.97 11.02 5.14 10.16 7.47 6.98 16.06 1.31 1.99 6.69 2.14 2.78 2.06 1.61 7.10 11.91 2.08

µ5 True 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Median 0.08 -0.32 -0.23 -0.14 -0.18 -0.12 -0.04 -0.30 0.07 -0.01 -0.14 -0.36 -0.34 0.16 0.09 -0.14 -0.04 -0.03 -0.82 0.07
RMSE 4.04 8.76 7.91 7.22 7.50 2.87 8.80 8.31 2.24 12.45 1.04 2.42 9.46 1.49 2.10 1.27 2.25 10.74 10.30 1.43

See legend Table 1
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