
T E C H N I C A L

R E P O R T

0667

SHARED PARAMETER MODELS WITH A

FLEXIBLE RANDOM EFFECTS DISTRIBUTION

TO STUDY SENSITIVITY IN NON-IGNORABLE

MISSINGNESS MODELS

TSONAKA, R., VERBEKE, G. and E. LESAFFRE

*

I A P S T A T I S T I C S

N E T W O R K

INTERUNIVERSITY ATTRACTION POLE

http://www.stat.ucl.ac.be/IAP



Shared Parameter Models With a Flexible

Random Effects Distribution to Study Sensitivity

in Non-Ignorable Missingness Models

Roula Tsonaka,1,∗ Geert Verbeke1 and Emmanuel Lesaffre1

1Biostatistical Centre, Catholic University Leuven,
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Summary. Longitudinal studies often generate incomplete response patterns accord-

ing to a Missing Not At Random mechanism. Shared parameter models provide an

appealing framework for the joint modelling of the measurement and missingness pro-

cesses, especially in the non-monotone missingness case, and assume a set of random

effects to induce the inter-dependence. Parametric assumptions are typically made

for the random effects distribution, violation of which leads to model misspecification

with a potential effect in the parameter estimates and standard errors. In this pa-

per we develop a general framework to investigate sensitivity of inferences to various

distributional assumptions for the random effects within the informative missingness

context. In particular, a flexible density, expressed as a mixture of normals with an

unspecified mixing distribution, is assumed that captures various shapes controlled by

a tuning parameter. Our proposal is illustrated on a randomized longitudinal study,

with non-monotone missingness, on patients with Rheumatoid Arthritis.
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1. Introduction

Missing response data often occur in longitudinal studies since subjects may be lost

to follow up or do not show up on planned visits, thus resulting in monotone and

non-monotone incomplete response profiles. Such missingness can be informative in

the sense that the reasons for non-response depend on unobserved responses. For

instance in the study that motivated this work the pain relief status of patients,

suffering from Rheumatoid Arthritis, may deteriorate and hence patients decide not

to appear in future scheduled visits. In this case, ignoring the missingness process

can lead to biased inferences regarding the scientific questions of interest. Thus, joint

modelling of the measurement and missingness processes is required to account for

informative non-response.

Shared parameter models (SPMs) provide an intuitively appealing framework for

the joint modelling of these two processes, in which it is assumed that a set of random

effects (e.g., underlying health status) induces the inter-dependence. A key assump-

tion underlying these models is the conditional independence (CI) of the measurement

and missingness processes given the true random effects values. This CI assumption

not only can be proven difficult to verify but it may also be violated when certain as-

pects of the model are misspecified. Two possible sources that can affect this assump-

tion are the following. First, parametric assumptions for the shared latent process are

usually made (Wu and Carroll, 1988; Wulfsohn and Tsiatis, 1997) that may not be

valid since there is little information about the distribution of unobservable random

effects. Second, a potential dependence of the random effects distribution on unob-

served covariates will lead to model misspecification and induce heterogeneity that

can cause severe bias in the fixed effects estimates (Fitzmaurice et al., 2004, pp 340).

These two situations suggest that conditioning on the true random effects values can
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be difficult to achieve, leading to violation of the CI assumption. This in turn implies

that the probability of non-response will still depend on unobserved responses and

thus certain parameter estimates and standard errors may be affected. To this end, a

sensitivity analysis to varying distributional assumptions for the random effects can

be invoked to investigate robustness of inferences to relaxations of common paramet-

ric assumptions. Several authors have explored methods that support the CI by either

relaxing the parametric assumptions for the random effects distribution or explicitly

handling population heterogeneity induced by unobserved covariates. In particular,

Song et al. (2002) have expressed the shared latent component as the product of a

polynomial term and the standard normal density leading thus to a smooth density

that can assume several shapes. Lin et al. (2002), Roy (2003) and Lin et al. (2004)

on the other hand, have explored a potential subpopulation structure by means of a

latent class model. In these approaches, a class indicator with a pre-specified support

size is assumed to induce the association between the longitudinal and event process,

thereby allowing a distinct behavior within each group for both processes. However,

none of these approaches focuses on investigating the impact of varying distributional

assumptions on the resulting inferences.

In this paper, we propose a method to perform sensitivity analysis within the

SPM that assumes flexible shapes for the random effects distribution controlled by a

tuning parameter. In particular, we assume that the association between the involved

processes is induced by a discrete latent variable G with unknown support size. This

variable is incorporated into the random effects component leading to a random ef-

fects density that is expressed as a mixture with an unspecified number of normal

components. Tuning the variance of the mixture normal components, various shapes

for the random effects density, supported by the data, can be captured. In addition,
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the use of a mixture model provides a natural framework to explore a potential pop-

ulation heterogeneity, since G acts as a latent group indicator. Parameter estimation

for the SPM is based on a semi-parametric method, since G has an unspecified sup-

port size, and is implemented by means of the Vertex-Exchange algorithm (Böhning,

1985; Böhning, 1999). This is a gradient-based estimation method, particularly suited

for semi-parametric mixture models, that is ensured to converge globally contrary to

the EM algorithm. The proposed model formulation resembles the random effects

distribution considered by Magder and Zeger (1996) in the ignorable linear mixed

model framework in which the EM algorithm was used as estimation procedure.

Our method is exemplified on the primary endpoint of a randomized study de-

signed to evaluate the efficacy of the trial drug in patients with Rheumatoid Arthritis

(Furst et al., 2002). Rheumatoid Arthritis is a chronic inflammatory disease that

causes pain, swelling and stiffness in multiple joints. In our study, 895 patients have

been randomized to 5 treatment groups. Their disease activity was evaluated on a

10cm Visual Analogue Scale (VAS) and recorded on 5 planned visits. However, the

disease activity can have a direct impact on the patients’ quality of life and on their

visiting behavior. As a result, 47% of the patients missed at least one visit in a

non-monotone pattern. Reasons for a missed visit were lack of efficacy, unexpected

worsening of the disease, and others. This implies a considerable loss of information

(19% missingness) that could affect inference unless properly handled. The proposed

sensitivity analysis framework is considered to (1) investigate the robustness of infer-

ence to various distributional assumptions for the shared latent component and (2)

uncover a potential subpopulation structure in the data.

The paper is organized as follows: Section 2 presents the proposed modelling

framework, Section 3 summarizes some theoretical results, Section 4 gives the details
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for the estimation procedure, Section 5 evaluates the performance of the proposed

model via simulation, Section 6 presents the results of the analysis of the clinical trial

dataset and finally in Section 7 we summarize and conclude.

2. The Semi-Parametric Shared Parameter Model

2.1 The Shared Parameter Model

Suppose that for a random sample of size n, Yi, with elements yij (i = 1, . . . , n; j =

1, . . . , ni; max(ni) = N ), denotes the vector of the observed longitudinal responses

for the ith individual, and Ri is the corresponding sequence of response indicators

rij ∈ {0, 1}, with 1 denoting that yij is observed and 0 otherwise. Thus, here we

mainly focus on the more general non-monotone case rather than on the most common

dropout case.

Under the SPM framework, the joint density of the Y and R processes for the ith

individual is factorized as

f(Yi, Ri; θ) =

∫
f(Yi | bi; θ) f(Ri | bi; θ) f(bi; θ) dbi, (1)

where f(Yi | bi; θ) and f(Ri | bi; θ) are the conditional, on the random effects values

bi, densities for the Y and R processes respectively, f(bi; θ) is the random effects

density and θ the parameter vector. The model formulation (1) posits that the two

processes are linked at the individual level through the random effects, and assumes

that conditioning on the true random effects values, an ignorable mechanism applies,

in which the non-response probability is independent of unobserved responses.

For the longitudinal responses Yi we assume the linear mixed effects model (LMM)

Yi = Xiβ
(1) + Zi(β

(2) + bi) + εi, (2)

where β(1) and β(2) denote regression coefficient vectors, Xi is the design matrix for

fixed effects with no random effects counterpart, Zi is the design matrix for covariates
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with both fixed and random effects and bi is the q-dimensional random effects. The

error terms εi are assumed independent of bi, and follow a multivariate mean zero

normal distribution with variance σ2 and an unstructured correlation matrix Pi(ρ)

that is parameterized by the vector ρ and depends on i through its dimension only,

i.e., εi ∼ Nni
(0, σ2Pi(ρ)). For the missingness process R, the probability of response,

pij = Pr(rij = 1), is modelled using a mixed effects logistic regression

logit(pij) = wT
ijα

(1) + zT
ij(α

(2) + γ bi),

where wij is the jth row of the fixed effects design matrix Wi, α(1) and α(2) the re-

gression coefficient vectors, zij the jth row of Zi and the superscript T denotes the

transpose matrix. As above covariates in Zi are not included in Wi. The measure-

ment and missingness processes are linked through the random effects term and their

association is quantified by the parameter γ.

2.2 The Semi-Parametric Model

In this paper we relax the common parametric assumptions for the random effects

distribution and assume that it is a mixture with mixing distribution G. In particular,

the marginal density of the random effects bi is given by

f(bi; G) =

∫

ΩM

f(bi | µ,D) dG(µ), (3)

where f(bi | µ, D) is a kernel density with location parameter µ ∈ M, where M

denotes the parameter space of µ, and a potential nuisance parameter D. Here we

have chosen a q-variate normal density kernel with mean vector µ and covariance

matrix D. Equation (3) postulates that µ is distributed according to the distribution

G. In general, G can be a member of the set ΩM of all distribution functions,

including both discrete and continuous. However, Laird (1978) and Lindsay (1983)
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have shown that the non-parametric maximum likelihood estimate (NPMLE) of G, is

discrete with finite support, and thus ΩM reduces to the set of discrete distributions.

Incorporating this result in (3) leads to a mixture density with an unspecified number

of normal components, i.e.,

f(Yi, Ri; G, θ) =

∫
f(Yi | bi; θY ) f(Ri | bi; θR)

∑
c

πc f(bi | µc, D) dbi, (4)

where θT = (θT
Y , θT

R) is the parameter vector for the Y and R processes, µc are the

support points and πc the corresponding weights of G. We call the model defined

by (4) Semi-Parametric SPM (SPSP), since a parametric assumption is made for

each mixture component whereas the number of components is determined from the

available data. In this case, the parameter vector (θ, D, µc, πc) is high dimensional

and often interest lies in the parameter vector θ, whereas µc and πc are treated as

nuisance parameters. The covariance matrix D controls the flexibility of the random

effects density allowing thereby for various shapes. In particular, as it has also been

noted in Magder and Zeger (1996), when det{D} → 0, where det{.} denotes the

determinant, the estimated density approaches the NPMLE, whereas large det{D}

values lead to an oversmoothed density. Intermediate det{D} values would reveal

potential skewness, kurtosis and multimodality in the random effects density.

The proposed formulation (4) enjoys a number of appealing features. First, the

common normality assumption for the random effects component is relaxed by as-

suming additional variability in its mean parameter introduced by G. In addition,

since no particular assumption is made on the distribution of the shared latent pro-

cess, flexible shapes and association structures between the involved processes can be

achieved controlled by the component covariance matrix D. This suggests that our

proposal provides a general framework for sensitivity analysis under the Missing Not
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At Random mechanism since the shape of the random effects distribution implicitly

determines the dependence of the missingness process on the missing response compo-

nents. To see this, consider the complete response vector Yi that is decomposed into

Y o
i and Y m

i , the observed and missing components, respectively. Then the conditional

distribution of Ri given the complete data Y o
i , Y m

i is given by

f(Ri | Y o
i , Y m

i ) =

∫
f(Ri | bi)f(bi | Y o

i , Y m
i ) dbi,

which implies that the probability of non-response depends on Y m
i only through the

posterior f(bi | Y o
i , Y m

i ). The choice for the prior f(bi) affects the shape of the pos-

terior of bi, especially when few measurements per individuals are observed. Finally,

the proposed model provides a natural framework for exploring a potential subpop-

ulation structure and classify the individuals based on their posterior probabilities.

In particular, this probability for the ith individual to belong to the cth group is

f(µc | Yi, Ri; θ̂, Ĝ), where θ̂ and Ĝ are the model based estimates. The individuals

are classified according to their maximum posterior probability.

3. Estimation Procedure - Geometric Results

Maximization of the log-likelihood function `n(θ,G) corresponding to model (4) re-

quires the search for the optimal set (θ̂, Ĝ) = (θ̂, µ̂1, . . . , π̂1, . . .) that satisfies `n(θ̂, Ĝ) =

sup
θ∈Θ,G∈ΩM

`n(θ, G). In the LMM context, the EM algorithm has been used to obtain

the NPMLE of the mixing distribution G (Laird, 1978; Magder and Zeger, 1996).

Since the EM algorithm requires prespecification of the support size, two approaches

are in use. First, the model is fitted with a relatively large number of mixture compo-

nents. This approach often suffers from numerical instability since many components

will have zero weight which lies on the boundary of the parameter space. Second,

the model is repeatedly fitted with an increasing number of components as long as
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distinct support points with positive weight are returned. In this case, the computa-

tional burden will become considerable since many model fits would be needed for a

moderate true number of components.

We consider here the Vertex-Exchange Method (VEM), suggested by Böhning

(1985), to estimate G. This is a stable algorithm that can reliably maximize flat like-

lihood surfaces encountered in mixture models. This algorithm iteratively maximizes

the log-likelihood `n(G) in the set ΩM of all discrete distributions over a prespecified

grid µ1, . . . , µC (see Section 3.1), for large C, based on the properties of the direc-

tional derivative of the log-likelihood from one distribution G1 to another G2. In

particular, in each iteration the algorithm searches for the direction that maximizes

the log-likelihood increase and weights are exchanged between points that contribute

the least and the most. An approximate NPMLE of G is obtained when a very dense

grid is chosen.

3.1 Estimation of G

The search for the optimal Ĝ is not straightforward and thus some theoretical

results will be briefly presented. Lindsay (1983) has shown that, for every θ, the

log-likelihood

`n(G) =
K∑

k=1

δk log f(Yk, Rk; G, θ), k = 1, . . . , K, (5)

where δk is the multiplicity of f(Yk, Rk; G, θ) with
∑K

k=1 δk = n, is a concave functional

over the set of all convex combinations of f(Yk, Rk; G, θ). Thus, provided that the log-

likelihood is bounded, there is a unique f̂ = (f̂(Y1, R1; G, θ), . . . , f̂(YK , RK ; G, θ)) that

maximizes `n(G). The corresponding maximum likelihood (ML) estimate Ĝ, known as

the NPMLE of G (Laird, 1978), is discrete with at most K support points. However,

a common problem in the mixture setting is that there is no unique combination of µc
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and πc that maximizes `n(G). In other words, Ĝ is not unique, but fixing its support

points µc will lead to a unique solution. In this case, for reasons explained in Section

4.1, characterizations of Ĝ can be achieved in terms of directional derivatives and

algorithms for finding Ĝ are constructed based on the general Mixture ML Theorem

(Lindsay, 1983; Simar, 1976; Jewell, 1982). The directional derivative D(G1, G2) of

`n(G) at G1 in the direction of G2 is defined as

D(G1, G2) = lim
s→0

`n((1− s)G1 + sG2)− `n(G1)

s
=

n∑
i=1

f(Yi, Ri; G2, θ)− f(Yi, Ri; G1, θ)

f(Yi, Ri; G1, θ)
.

When G2 is degenerate at µ, then G2 = Gµ and the directional derivative gets

D(G1, Gµ) =
∑n

i=1 f(Yi, Ri; µ, θ)/f(Yi, Ri; G1, θ)−n. Alternatively, characterizations

can be achieved using the gradient function of `n(G)

d(µ,G1) =
1

n

n∑
i=1

f(Yi, Ri; µ, θ)

f(Yi, Ri; G1, θ)
, (6)

which is related to D(G1, Gµ) through

D(G1, Gµ) = nd(µ,G1)− 1. (7)

For the estimation of G the VEM, described in Section 4.1, is used that is based

on the following conditions of the general ML theorem:

1. Ĝ maximizes `n(G) if and only if, for all µ ∈M, D(Ĝ, Gµ) ≤ 0 or d(µ, Ĝ) ≤ 1.

2. µ is in the support of Ĝ only if D(Ĝ, Gµ) = 0 or d(µ, Ĝ) = 1.

4. Optimization Procedure

4.1 Algorithm

An iterative two-step procedure is proposed for obtaining the optimal set (θ, π1, . . . , πC)

that maximizes the observed data log-likelihood `n(θ, G). In the first step, for fixed

θ, `n(G) is maximized in the set ΩM of all discrete distributions G over a prespecified
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grid µ1, . . . , µC by means of the VEM algorithm. In the second step, for the estimated

G of the first step, θ is estimated using quasi-Newton.

Initial values: Initial values θ0 = (θ0
Y , θ0

R) for the parameters of the Y and R processes,

can be obtained by fitting the appropriate ignorable mixed effects models, whereas

an initial G0 may be defined by setting the weights π0
c equal to 1/C.

VEM step: Estimate G1 given θ0, which implies that estimation of the weights π1
c

is only required. As it has been explained in Section 3.1, for fixed θ the problem

reduces to one of maximizing a concave functional over a convex set. The VEM

is a gradient based algorithm that is built on the idea of searching at each itera-

tion the direction, among a prespecified grid of support points, that increases the

likelihood. More precisely, the VEM at each iteration exchanges weights between

the points that contribute the least and the most to the likelihood increase (de-

noted respectively as µ− and µ+ with corresponding weights π− and π+). In partic-

ular, convex combinations of the form G0 + sπµ−{Gµ+ − Gµ−} are considered where

s ∈ [0, 1] is the step length, G0 denotes the current approximation to G and Gµ+

and Gµ− are degenerate distributions on the points µ− and µ+. A first order ap-

proximation of ∆ = `(G0 + sπµ−{Gµ+ − Gµ−}) − `(G0) around s = 0 results in

sπµ−{D(G0, Gµ+)−D(G0, Gµ−)} and implies that maximization of ∆ is equivalent to

identifying the points µ− and µ+ that respectively minimize and maximize D(G0, Gµ)

over µ. In addition, based on (7) the gradient function (6) can equivalently be used,

to identify µ− and µ+ which is easier to compute than D(.). Once these points have

been identified, their weights are exchanged according to π1
µ− = (1 − s) π0

µ− and

π1
µ+ = s π0

µ− + π0
µ+ , in which an update for the step length s is found as the maxi-

mizer of `(G1)− `(G0), using a line search method.
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quasi-Newton step: θ1 is estimated for fixed G1. Since there are no closed form solu-

tions numerical procedures are used. Here we use a quasi-Newton algorithm which

requires the derivatives of (5) with respect to θ, that are presented in the Appendix.

Repeat 2 and 3 until convergence. The algorithm has converged when both

conditions have been satisfied: (1) maxµd(Ĝ(it), µ) < 1 + ε, which guarantees that

`(Ĝ(it) | θ̂(it−1)) − `(Ĝ(it−1) | θ̂(it−1)) < ε, and (2) `(Ĝ(it), θ̂(it)) − `(Ĝ(it−1), θ̂(it−1)) < ε′

for small ε, ε′ (i.e., 10−3 and 10−8, respectively) with it denoting the iteration.

4.2 Implementation Issues

For the implementation of the two-step procedure, a number of issues must be

considered. First, the integral over the random effects in (4) is approximated using the

Gauss-Hermite quadrature rule. Second, according to Section 3.1, obtaining a unique

Ĝ requires fixing its support points µc. Since Ĝ has a finite number of support points,

a finite grid with points µ1, . . . , µC is specified and thus the choice of an appropriate

range and choice of the number of points is required. Regarding the range, a grid is

chosen for the scaled random effect b∗i = S−1
b bi instead of bi to avoid specification of

an unnecessarily huge grid. The matrix Sb represents an approximate estimate of the

choleski decomposition of the random effects covariance matrix and is chosen equal

to the choleski decomposition of D̂Y
b of the corresponding ignorable measurement

model. Thus, a grid for b∗i defined in [−ν, ν]q = [−ν, ν]× . . .× [−ν, ν] with ν = 3 or 4

would in most cases be sufficient. Regarding the number of grid points, a dense grid

must be chosen such that the maximum distance between the true unknown mixture

means µtrue ∈ [µc−1, µc] and the assumed grid points µc is sufficiently small, i.e.,

(µc − µc−1)/2 ≤ 0.1. Thereby the resulting solution will not differ considerably from
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the NPMLE. The effect of the number of grid points considered is further investigated

in Section 6. We should note that the computing time required to perform a single

iteration of the algorithm increases directly with the number of grid points.

A feature of the mixture density (4) that we have not discussed so far is that, in

general, E(b∗i ) =
∑C

c=1 πcµc 6= 0 contrary to the commonly used zero mean normal

distribution. This may lead to an overparameterized and unidentified model. To

circumvent this we fix, through the iterative procedure, the parameters β(2) in model

(2) at the value estimated by the ignorable mixed effects model. At the end of the

estimation procedure, β(2) will be updated by β(2) + Ŝb

∑C
c=1 π̂cµc.

Finally, the covariance matrix D controls the flexibility of the random effects

density that can vary from an almost discrete to an oversmoothed solution. As a

practical guideline, choosing values of det{D} in (0, det{d D̂Y
b }], where D̂Y

b is the

estimated by the ignorable LMM random effects covariance matrix and d > 0, would

in most cases capture all these shapes. According to our experience, for the univariate

case d = 1/4 is sufficient.

4.3 Properties of the MLEs

Assuming that the log-likelihood `n(θ, G) satisfies the regularity conditions spec-

ified by Kiefer and Wolfowitz (1956) both Ĝ and θ̂ are consistent. In addition, the

maximum likelihood estimator for θ is asymptotically normal with covariance equal

to the inverse of the efficient information matrix (see van der Vaart, 1996). However,

in Section 6 approximate standard errors are estimated using the second derivative

matrix of the profile log-likelihood `n(θ | Ĝ) evaluated at θ̂. To evaluate the quality

of the standard error estimates under `n(θ | Ĝ) we use the non parametric Bootstrap

method and a close similarity has been observed. This result has also been corrob-
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orated by Follmann and Lambert (1989) in which the random effects distribution in

mixed effects logistic regression is estimated using non-parametric ML.

5. Simulation Study

The aim of this simulation study is first to evaluate the performance of the proposed

model, and second to investigate the sensitivity of inference to violations of the com-

monly used normality assumption. Thus, comparisons between the SPSP presented

in Section 2.2 and the SP (1) that assumes normal random effects will be made.

5.1 Set-up

The longitudinal process Y is simulated from a LMM with linear predictor: ηY
ij =

β0 + β1tij + β2Titij + bi + εij, where the subscripts i = 1, . . . , n and j = 1, . . . ,N de-

note the subject and visit, respectively, tij is the time variable, Ti the treatment

indicator and bi the random effects component. The parameter vector is taken

(β0, β1, β2) = (−1.2, 0.5,−1.5). Note that Ti is not included in ηY
ij as a main ef-

fect because a randomized study is considered. For the error component, we as-

sume εi ∼ NN (0, σ2
Y ) with σY = 0.5. The sample size was chosen n = 50, 200 and

N = 5, 15 equally spaced visit times were assumed. Regarding the R process, a

model that allows for non-monotone missingness was considered. That is the binary

indicator rij was simulated from a mixed effects logistic regression with linear predic-

tor ηR
ij = α0 + α1Ti + α2tij + γbi, where (α0, α1, α2) = (1.6, 2.5,−0.5). The assumed

values for the regression parameters have been chosen such that the percentage of

missingness is around 30% when N = 5 and 60% when N = 15. The Y and R

processes are linked through the shared random intercepts bi, and their association

is measured by the parameter γ = 0.7. According to the parameterization used in

Section 3, β(1) = (β1, β2), β(2) = β0, α(1) = (α1, α2) and α(2) = α0. Regarding the
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random effects component bi four cases are considered: (i) a unimodal distribution,

i.e., N(0, σ2
b ) with σb = 2, (ii) a bimodal symmetric mixture of normal components,

i.e., 0.5 × N(−2, 0.52) + 0.5 × N(2, 0.52), (iii) a bimodal symmetric mixture of Stu-

dent’s t components with 3 df, i.e., 0.5 × t3(−2, 0.52) + 0.5 × t3(2, 0.5
2) and (iv) a

skewed distribution, i.e., Log-Normal(0, 0.972). The parameter values for the assumed

random effects distribution have been chosen such that for all scenarios V ar(bi) ' 4.

Combining the above choices results in 16 scenarios, for which 500 datasets were sim-

ulated. Each dataset was fitted under 2 different models, namely the SPSP and the

SP model. Comparisons between parameter estimates are based on the Root Mean

Squared Error (RMSE) over the 500 datasets. Comparisons of the fitted random

effects densities are made via the Mean Root Integrated Square Error (MRISE).

5.2 Results

The results of the simulation study are shown in Table 1 which contains the true

values and the estimates of the model parameters under the different settings. In

addition, among the various scenarios we present for each distributional assumption

only the case with n = 50 and N = 5. For the other scenarios the main conclusions

are discussed.

[Table 1 about here.]

When the true random effects distribution is normal, both the SPSP and SP

produce estimates with very close RMSE values for all parameters and even in the

small sample case. However, the “correct” SP provides a better approximation to the

true normal density than the SPSP. This is due to the fact that the one estimated

by the SPSP model density is less smooth. When the longitudinal measurements

are increased to N = 15 or when n = 200 the same conclusions can be drawn.
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As expected, increasing the sample size improves the efficiency and more accurate

estimates are obtained. Thus, the simulation results under the unimodal scenario

suggest that our proposed method can be successfully used even if heterogeneity is

not present. Besides, such information is usually not available in practice.

When the random effects are not normally distributed, the SPSP model produces

more efficient and less biased parameter estimates in comparison to the SP model. The

results are more pronounced for the skewed scenario, i.e., the log-Normal distribution.

In addition, the SPSP model gives more accurate estimates of the true density than

the SP according to the values of the RMSE in all non-normal scenarios considered.

6. Application

A double-blind randomized clinical trial with 895 patients suffering from Rheumatoid

Arthritis has been recently conducted in order to evaluate the safety and efficacy of

the trial drug. The patients were randomized to 5 treatment groups i.e., 3 doses of

the trial drug, standard treatment and placebo, and they were followed for 3 months

after randomization. Follow-up was scheduled at Day 0, Week 2, 4, 8 and 12, and the

endpoint we consider here is the evaluation of the disease activity by the patient on a

10cm VAS (0cm for no disease activity and 10cm for high disease activity). However,

for various reasons some patients missed some of their scheduled visits resulting in

non-monotone missingness that reaches 19%. The percentage of missingness per visit

is 5%, 18%, 28%, 38% and 7%, respectively. The low percentage at the last visit is

explained by the protocol condition that all patients should be reached at the end

of the trial by any means (e.g., by phone), even if they did not show up at the trial

center for their last visit. Thus it is reasonable to assume that the reason for non-

response at the last visit is not related to the VAS score (Missing Completely At
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Random (Rubin, 1976)), since missingness is due to contact failure. In the sample

there are 19 observed patterns of missingness with the completers representing almost

53%. In order to model the evolution of the disease activity while adjusting for non-

monotone missingness we use the proposed SPSP framework. Thereby, we investigate

the effect of various distributional assumptions for the random effects on the resulting

inferences. In addition, a potential grouping of the study population is explored and

identification of the profiles of the non-compliant individuals is made.

The longitudinal evaluations of the disease are modelled using a LMM with linear

predictor ηY
ij = xT

ij β + bi, where i = 1, . . . , 895, j = 1, . . . , ni, β denotes the vector

of the regression parameters, xij = [1, (1, T2i, T3i, T4i, T5i) × tij, (1, T2i, T3i, T4i, T5i) ×

t2ij, Genderi, Agei, BMIi, DaysDi] denotes the jth row of the fixed effects design matrix,

bi is the subject-specific random intercept and ni is the number of measurements for

the ith patient, with max(ni) = 5. The covariate BMI denotes the Body Mass

Index and DaysD is the recorded number of days that the patient was provided with

treatment. The treatment effect T2i, . . . , T5i was not included as a main effect in

ηY
ij due to randomization and since at the first visit, i.e., Day 0, there was no drug

administration. In the explanatory analysis, the longitudinal outcome was fitted

under the ignorable LMM, and revealed that a serial correlation structure in addition

to the random intercepts component is required. Thus, in the SPSP model it is also

assumed that εi ∼ Nni
(0, σ2Pi), where the matrix Pi describes the correlation of the

within-subject errors εi. In particular, a general correlation structure is used, with

the correlation between different time points represented by a different parameter i.e.,

cor(εij, εij′) = ρjj′, for j 6= j′.

The missingness profiles are modelled using a mixed effects logistic regression

with linear predictor ηR
ij = wT

ij α + γ bi, where i = 1, . . . , 895, j = 1, . . . , 4, α
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is the regression parameter vector and wij = [1, T2i, T3i, T4i, T5i, (1, T2i, T3i, T4i, T5i) ×

tij, (1, T2i, T3i, T4i, T5i)×t2ij] denotes the jth row of the fixed effects design matrix. The

Y and R processes are linked through the random effect bi and their association is

measured by the parameter γ. The probability of response at the jth visit was mod-

elled only for the first 4 visits, since only for these visits a non ignorable missingness

mechanism may occur, whereas for the last visit missingness is assumed completely

at random and thus the probability of response was fixed at 1.

According to Section 2.2, bi is modelled as a mixture density with an unspecified

number of normal mixture components. The model is estimated according to the

procedure described in Section 4.1. Initial values for the model parameters of the

Y and R process are obtained, respectively, from the ignorable LMM and the mixed

effects logistic regression with normal random effects. In order to investigate the

robustness of the algorithm to starting values, multiple sets of initial values have been

considered that varied around the ignorable models estimates. The grid of support

points for b∗i was chosen in [−3, 3] that corresponds to [−3σ̂Y
b , 3σ̂Y

b ] = [−6, 6] for bi,

where σ̂Y
b is the ignorable LMM estimate of the random effects standard deviation.

Wider grids have been also considered at the expense of computing time but the

resulting solutions did not change. The involved integral over the random effect is

approximated using Gauss-Hermite quadrature rule with h = 51 quadrature points.

Regarding the number of grid points, two cases are considered i.e., 61 and 101 points

corresponding to a maximum error, |µc−µtrue|/2, of order 0.1 and 0.06, respectively.

To investigate the sensitivity of inference to various shapes of the random effects

distribution we have varied the component variance such that
√

D = 0.1, 0.4, 0.7, 1.

The fitted random effects densities for these 8 scenarios are shown in Figure 1.

[Figure 1 about here.]
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It is evident that increasing dramatically the number of grid points, for the same

√
D value, does not change considerably the shape of the estimated density. Thus,

consideration of a moderate number of grid points, such as 61 for this study, is ad-

visable. Figure 1 shows also that increasing
√

D, for fixed number of points, results

in different shapes of the random effects distribution, that vary from an almost dis-

crete (Figure 1a) to a very smooth (Figure 1d) solution. Assuming a discrete random

effects distribution is unrealistic, while the oversmoothed solution obscures interest-

ing features in the data. On the contrary an intermediate solution corresponding to

Figures 1b and 1c reveals useful features of the data without being neither too rough

nor too smooth. Moreover, in Tables 2 and 3 the impact of the various distribu-

tional assumptions on the estimated parameters and standard errors is investigated.

Different inferences are found for some parameters under different
√

D values. In

particular, for the age effect the p-value, using the Wald test at 5%, varies from 0.03

(
√

D = 0.1) to 0.824 (
√

D = 0.4). Similar conclusions are derived for the covariates

BMI, DDays and certain correlation parameters. Regarding the treatment effect, the

marginal fitted evolutions are statistically different for at least two groups but the

p-value varies from 0.0002 (
√

D = 1) to 0.0130 (
√

D = 0.1).

[Table 2 about here.]

[Table 3 about here.]

As can be seen in Table 2, all models suggest that there is a statistically significant

(p-value < 0.001) negative association between the Y and R processes but its size

varies from -1.367 (std.err. 0.0812) to -2.156 (std.err. 0.2067). A negative association

implies that, the higher the disease activity, the lower is the probability of showing up.

The classification of the individuals using the model with 61 grid points and
√

D = 0.4
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reveals that the patients are grouped into 3 classes. These classes have a direct

interpretation regarding compliance. In particular, one class represents the patients

that stayed few days on drug (median 20 days), whereas the rest represent the patients

that stayed many days on drug (84 and 87 median days, respectively). Regarding the

visiting behavior, the 2 classes represent the completers and the patients that missed

at most 2 visits.

Finally, the standard errors presented in Tables 2 and 3 have been estimated, as

it has been explained in Section 4.3, using the second derivative matrix of `n(θ | Ĝ)

evaluated at θ̂. For the model with
√

D = 0.4, the standard errors have been also

estimated using non-parametric Bootstrap with 200 replicates. The standard errors

derived by the two methods are similar for many parameter estimates, suggesting

that the observed hessian returns quite reliable standard errors.

7. Discussion

A shared parameter model with a flexible random effects distribution has been pro-

posed for analysing longitudinal responses while adjusting for non monotone missing-

ness. The density of the shared latent process has been expressed as a mixture with an

unspecified number of normal components, allowing thereby for general shapes of dis-

tribution for the random effects. This formulation provides a method for performing

sensitivity analysis within the SPM framework by considering various random effects

distributions that vary from an almost discrete to an oversmoothed one. For the

same dataset tuning the component variance potential skeweness and multimodality

is revealed. Thereby more reliable parameter estimates and empirical bayes estimates

of better quality than the typical normal distribution can be derived.

Even though our presentation of the proposed model has been concentrated on
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the non monotone missingness case, monotone missingness mechanisms can be eas-

ily handled by replacing the logistic mixed effects model by an appropriate dropout

model. In addition, in our model formulation we have considered only a shared ran-

dom intercept term. Extensions to random slopes is mathematically straightforward,

though more computationally intensive depending on the number of grid and quadra-

ture points used.

The proposed methodology can be easily applied to ignorable mixed effects mod-

els as well, allowing thus for flexible random effects distributions. As in the missing

data context, the component covariance matrix controls the flexibility of the assumed

distribution. However, in the complete data case, the data provide information on the

shape of the random effects density and choice of the optimal D is required. Regard-

ing this choice the following suggestions can be made. According to our experience

choosing D ≈ σ̂Y
b /4 in the univariate case, where σ̂Y

b is the estimated variance un-

der the ignorable mixed model with normal random effects, would be in most cases

sufficient, whereas larger values may lead to an oversmoothed solution. More for-

mal solutions include the use of the EM algorithm at a second stage or information

criteria. In particular, the solution obtained from estimating the SPSP model with

D ≈ σ̂Y
b /4 using the two-step procedure described in Section 4.1 can be used as initial

value for the EM algorithm which will then refine D. The use of the EM in this case

will not suffer from the convergence difficulties mentioned in Section 3 since a good

starting point is provided. Regarding the use of information criteria for choosing the

optimal D, further research is required in determining the effective number of param-

eters which to our knowledge has not yet been investigated in the literature in this

context. Finally, the use of the inverse of the second derivative matrix of `n(θ | Ĝ)

evaluated at θ̂ has been suggested for the estimation of standard errors. However,
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further investigation on the impact of considering the efficient information matrix

proposed by van der Vaart (1996) is required.
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Appendix A

Derivatives for the SPSP model

Here we present the partial derivatives of the log-likelihood (5) with respect to θ =

(β(1), β(2), σ2, α(1), α(2), γ,P(ρ)). In particular, we get

∂`

∂β(1)
=

n∑
i=1

1

σ2f(Yi, Ri; G)

H∑

h=1

$hf(Yi, Ri | bih; θ)f(bih; G)Pi(ρ)−1XT
i ηih,

∂`

∂β(2)
=

n∑
i=1

1

σ2f(Yi, Ri; G)

H∑

h=1

$hf(Yi, Ri | bih; θ)f(bih; G)Pi(ρ)−1ZT
i ηih,

where
∑H

h=1 corresponds to the Gauss Hermite quadrature rule with H abscissas and

corresponding weights $h, f(bih; G) =
∑C

c=1 πcf(bih; µc, D) is the mixture random

effects density and f(Yi, Ri | bih; θ) denotes the joint conditional density of the Y and

R processes given as

f(Yi, Ri | bih; θ) = (2π)−ni/2|Σi|−1/2 exp{−1

2
ηT

ihΣ
−1
i ηih} ×

N−1∏
j=1

p
rij

ij (1− pij)
(1−rij),

where ηih = Yi − Xiβ
(1) − Zi (β(2) + bih), Σi = σ2Pi(ρ) and pij = expit{wT

ijα
(1) +

zT
ij(α

(2) + γbih)},

∂`

∂σ2
=

n∑
i=1

1

2σ2f(Yi, Ri; G)

H∑

h=1

$hf(Yi, Ri | bih; θ)f(bih; G)[
1

σ2
ηT

ihPi(ρ)−1ηih − pi],

∂`

∂α(1)
=

n∑
i=1

1

f(Yi, Ri; G)

H∑

h=1

$hf(Yi, Ri | bih; θ)f(bih; G)
N−1∑
j=1

(rij − pij)wij,

∂`

∂α(2)
=

n∑
i=1

1

f(Yi, Ri; G)

H∑

h=1

$hf(Yi, Ri | bih; θ)f(bih; G)
N−1∑
j=1

(rij − pij)zij,

∂`

∂γ
=

n∑
i=1

1

f(Yi, Ri; G)

H∑

h=1

$hf(Yi, Ri | bih; θ)f(bih; G)
N−1∑
j=1

(rij − pij)zijbih,

∂`

∂ρ
=

n∑
i=1

1

2f(Yi, Ri; G)

H∑

h=1

$hf(Yi, Ri | bih; θ)f(bih; G)Ai,

where Ai = −tr{P−1
i (ρ)∂Pi(ρ)

∂ρ
}+ 1

σ2 η
T
ihP−1

i (ρ)∂Pi(ρ)

∂ρ
P−1

i (ρ)ηih.
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Figure 1. Rheumatoid Arthritis study - Estimated random effects density obtained
by fitting the SPSP model with varying number of grid points and flexibility. (a)√

D = 0.1, (b)
√

D = 0.4, (c)
√

D = 0.7, (d)
√

D = 1. The solid and dashed lines
correspond to the fit with 61 and 101 equidistant grid points respectively.
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Table 1
Simulation study results: Evaluation of the SPSP model and comparison versus the

SPM, n = 50 and N = 5

True Parms True SPSP SP

Distr Value Est (sd) (RMSE) Est (sd) (RMSE)
β0 -1.20 -1.17 (0.2943) (0.2952) -1.19 (0.3302) (0.3300)
β1 0.50 0.50 (0.0516) (0.0517) 0.50 (0.0494) (0.0494)
β2 -1.50 -1.50 (0.0644) (0.0644) -1.50 (0.0594) (0.0593)
α0 1.60 1.68 (0.6929) (0.6962) 1.67 (0.6990) (0.7013)

Normal α1 2.50 2.61 (0.5024) (0.5130) 2.60 (0.4971) (0.5072)
α2 -0.50 -0.52 (0.1755) (0.1763) -0.52 (0.1754) (0.1762)
γ 0.70 0.73 (0.1438) (0.1472) 0.73 (0.1439) (0.1475)
σ 0.50 0.49 (0.0307) (0.0313) 0.49 (0.0309) (0.0322)
σb 2.00 1.97 (0.1851) (0.1880) 1.97 (0.1957) (0.1977)√

ISE 0.12 (0.0314) 0.03 (0.0207)
β0 -1.20 -1.19 (0.3083) (0.3081) -1.19 (0.3516) (0.3514)
β1 0.50 0.49 (0.0481) (0.0484) 0.50 (0.0504) (0.0503)
β2 -1.50 -1.50 (0.0522) (0.0522) -1.50 (0.0623) (0.0623)
α0 1.60 1.63 (0.7675) (0.7674) 1.62 (0.7708) (0.7704)

Normal α1 2.50 2.58 (0.5093) (0.5156) 2.59 (0.5169) (0.5244)
Mixture α2 -0.50 -0.51 (0.1926) (0.1929) -0.51 (0.1911) (0.1912)

γ 0.70 0.73 (0.1277) (0.1299) 0.73 (0.1304) (0.1342)
σ 0.50 0.49 (0.0287) (0.0302) 0.49 (0.0303) (0.0319)
σb 2.06 2.10 (0.0915) (0.0986) 2.04 (0.0923) (0.0941)√

ISE 0.21 (0.0669) 0.42 (0.0065)
β0 -1.20 -1.20 (0.3163) (0.3160) -1.17 (0.4111) (0.4121)
β1 0.50 0.50 (0.0472) (0.0474) 0.50 (0.0467) (0.0466)
β2 -1.50 -1.50 (0.0569) (0.0570) -1.50 (0.0614) (0.0613)
α0 1.60 1.68 (0.7924) (0.7958) 1.70 (0.8171) (0.8219)

t α1 2.50 2.64 (0.5016) (0.5196) 2.64 (0.5125) (0.5313)
Mixture α2 -0.50 -0.53 (0.2026) (0.2040) -0.52 (0.2013) (0.2025)

γ 0.70 0.72 (0.1288) (0.1309) 0.73 (0.1307) (0.1336)
σ 0.50 0.50 (0.0369) (0.0372) 0.49 (0.0327) (0.0338)
σb 2.06 2.16 (0.1209) (0.1547) 2.16 (0.1779) (0.2013)√

ISE 0.18 (0.0640) 0.36 (0.0082)
β0 -1.20 -1.38 (0.2299) (0.2901) -0.75 (1.3311) (1.4026)
β1 0.50 0.54 (0.1111) (0.1186) 0.50 (0.0613) (0.0612)
β2 -1.50 -1.52 (0.1046) (0.1061) -1.51 (0.0760) (0.0761)
α0 1.60 1.61 (0.7124) (0.7117) 1.96 (1.2031) (1.2553)

Log- α1 2.50 2.54 (0.4427) (0.4440) 2.55 (0.4369) (0.4389)
Normal α2 -0.50 -0.51 (0.1846) (0.1849) -0.51 (0.1849) (0.1852)

γ 0.70 0.75 (0.2354) (0.2354) 0.71 (0.2120) (0.2121)
σ 0.50 0.55 (0.1542) (0.1617) 0.50 (0.0337) (0.0339)
σb 2.00 1.49 (0.2607) (0.5777) 1.89 (1.0230) (1.0274)√

ISE 0.28 (0.0455) 0.41 (0.0385)
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Table 2
Rheumatoid Arthritis study - Results for the Y and R process: Parameter estimates
with standard errors in the brackets calculated using the root of the inverse hessian

matrix at convergence. For the
√

D = 0.4 scenario non-parametric bootstrap
standard errors are also given in the second bracket.

Y - Process

Parms
√

D = 0.1
√

D = 0.4
√

D = 0.7
√

D = 1
Int 6.877 (0.4250) 5.750 (0.4035) (0.3216) 5.353 (0.3998) 5.496 (0.4035)
tij -0.653 (0.0546) -0.644 (0.0536) (0.0521) -0.642 (0.0553) -0.650 (0.0543)
t2ij 0.043 (0.0042) 0.042 (0.0042) (0.0038) 0.042 (0.0043) 0.043 (0.0042)

Genderi -0.226 (0.1310) -0.137 (0.1270) (0.1241) -0.139 (0.1260) -0.070 (0.1261)
Agei -0.010 (0.0046) -0.001 (0.0045) (0.0045) -0.001 (0.0044) 0.002 (0.0044)
BMIi 0.013 (0.0082) 0.028 (0.0081) (0.0079) 0.028 (0.0080) 0.031 (0.0080)
DaysDi 0.002 (0.0019) 0.004 (0.0017) (0.0070) 0.010 (0.0017) 0.002 (0.0017)
T2i × tij -0.007 (0.0715) -0.027 (0.0720) (0.0756) -0.020 (0.0744) -0.034 (0.0724)
T3i × tij 0.059 (0.0701) 0.042 (0.0704) (0.0707) 0.038 (0.0727) 0.029 (0.0710)
T4i × tij 0.224 (0.0774) 0.242 (0.0763) (0.0731) 0.263 (0.0789) 0.266 (0.0775)
T5i × tij 0.160 (0.0734) 0.154 (0.0727) (0.0789) 0.168 (0.0752) 0.171 (0.0737)
T2i × t2ij 0.001 (0.0056) 0.002 (0.0056) (0.0056) 0.002 (0.0058) 0.002 (0.0057)

T3i × t2ij -0.006 (0.0055) -0.005 (0.0055) (0.0053) -0.005 (0.0057) -0.004 (0.0056)

T4i × t2ij -0.015 (0.0061) -0.016 (0.0060) (0.0053) -0.017 (0.0062) -0.018 (0.0061)

T5i × t2ij -0.013 (0.0057) -0.012 (0.0057) (0.0060) -0.013 (0.0059) -0.014 (0.0058)

σ2 4.456 (0.1468) 4.257 (0.1373) (0.5048) 3.843 (0.1639) 4.197 (0.1402)
σ2

b 1.365 1.383 (0.8451) 2.226 1.415
R - Process

Parms
√

D = 0.1
√

D = 0.4
√

D = 0.7
√

D = 1
Int 4.455 (0.3424) 4.617 (0.4229) (0.5538) 4.457 (0.4365) 4.909 (0.5437)
T2i -0.744 (0.1688) -0.826 (0.1893) (0.2180) -0.831 (0.1888) -0.903 (0.2008)
T3i 0.038 (0.0184) 0.047 (0.0198) (0.0199) 0.050 (0.0196) 0.055 (0.0208)
T4i -0.207 (0.4730) -0.300 (0.5442) (0.5720) -0.355 (0.5453) -0.346 (0.6186)
T5i -0.237 (0.4481) -0.170 (0.5552) (0.5378) -0.133 (0.5570) -0.054 (0.6288)
tij 0.208 (0.4228) 0.122 (0.5270) (0.5114) 0.142 (0.5271) 0.077 (0.5975)
t2ij 0.373 (0.4577) 0.405 (0.5821) (0.5500) 0.386 (0.5829) 0.470 (0.6568)

T2i × tij 0.021 (0.2394) 0.103 (0.2719) (0.3113) 0.118 (0.2698) 0.152 (0.2864)
T3i × tij -0.138 (0.2333) -0.062 (0.2783) (0.2770) -0.041 (0.2764) -0.019 (0.2927)
T4i × tij -0.714 (0.2203) -0.717 (0.2717) (0.2866) -0.667 (0.2665) -0.745 (0.2837)
T5i × tij -0.155 (0.2411) -0.176 (0.2887) (0.2924) -0.176 (0.2857) -0.199 (0.3029)
T2i × t2ij -0.007 (0.0259) -0.012 (0.0285) (0.0297) -0.013 (0.0282) -0.016 (0.0299)

T3i × t2ij 0.021 (0.0254) 0.014 (0.0292) (0.0265) 0.012 (0.0288) 0.010 (0.0306)

T4i × t2ij 0.077 (0.0243) 0.076 (0.0284) (0.0275) 0.072 (0.0277) 0.079 (0.0295)

T5i × t2ij 0.005 (0.0263) 0.006 (0.0299) (0.0286) 0.008 (0.0294) 0.008 (0.0312)

γ -1.767 (0.0812) -1.820 (0.1298) (0.4526) -1.367 (0.1176) -2.156 (0.2067)

log-Lik -8422.377 -8929.576 -8966.621 -8947.095
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Table 3
Rheumatoid Arthritis study - Results for the correlation matrix: Parameter

estimates with standard errors in the brackets calculated using the root of the inverse
hessian matrix at convergence. For the

√
D = 0.4 scenario non-parametric bootstrap

standard errors are also given in the second bracket.

Correlation

Parms
√

D = 0.1
√

D = 0.4
√

D = 0.7
√

D = 1
ρ21 0.239 (0.0487) 0.212 (0.0455) (0.1315) 0.061 (0.0599) 0.178 (0.0486)
ρ31 0.195 (0.0472) 0.169 (0.0461) (0.1351) 0.019 (0.0609) 0.135 (0.0489)
ρ32 0.589 (0.0259) 0.579 (0.0258) (0.0748) 0.508 (0.0342) 0.559 (0.0278)
ρ41 0.249 (0.0445) 0.221 (0.0441) (0.1279) 0.086 (0.0577) 0.188 (0.0469)
ρ42 0.358 (0.0389) 0.331 (0.0399) (0.1178) 0.216 (0.0527) 0.302 (0.0427)
ρ43 0.567 (0.0274) 0.553 (0.0280) (0.0853) 0.480 (0.0368) 0.532 (0.0302)
ρ51 0.107 (0.0386) 0.077 (0.0389) (0.1361) -0.056 (0.0489) 0.042 (0.0405)
ρ52 0.364 (0.0327) 0.343 (0.0329) (0.1106) 0.242 (0.0425) 0.317 (0.0346)
ρ53 0.471 (0.0277) 0.455 (0.0282) (0.0912) 0.377 (0.0363) 0.433 (0.0298)
ρ54 0.595 (0.0256) 0.583 (0.0262) (0.0732) 0.527 (0.0329) 0.564 (0.0283)
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