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Summary. Many longitudinal studies generate both the time to some event of interest

and repeated measures data. This paper is motivated by a study on patients with a

renal allograft, in which interest lies in the association between longitudinal proteinuria

(a dichotomous variable) measurements and the time to renal graft failure. An interesting

feature of the sample at hand is that nearly half of the patients were never tested positive

for proteinuria (≥ 1 gr/day) during follow-up, which introduces a degenerate part in the

random-effects density for the longitudinal process. In this paper we propose a two-

part shared parameter model framework that effectively takes this feature into account,

and we investigate sensitivity to the various dependence structures used to describe the

association between the longitudinal measurements of proteinuria and the time to renal

graft failure.
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1. Introduction

Chronic kidney diseases affect one in nine US adults, and may lead to complications such

as high blood pressure, anemia, weak bones, poor nutritional health and nerve damage.

Furthermore, when kidney diseases progress, this may eventually lead to renal failure,

which requires dialysis or a kidney transplantation to maintain life. Many studies have

been conducted to investigate which factors may play role in the progression of chronic

kidney diseases.

Our research has been motivated by a study on patients that underwent, between

1/21/1983 and 8/16/2000, a primary renal transplantation with a graft from a deceased

or living donor in the University Hospital Gasthuisberg from the Catholic University of

Leuven (Belgium). We consider the 432 patients for whom the new graft has survived

for at least one year. The clinical interest lies in the long term performance of the new

graft, and especially in the graft survival for a ten year period. Out of the 432 patients

considered, 91 (21.1%) experienced a graft failure. The corresponding Kaplan-Meier

estimate for the time to graft failure is depicted in the top-left panel of Figure 1.

[Figure 1 about here.]

The estimated graft survival shows a smooth decrease in time with a renal graft survival

rate at ten years equal to 0.79 (95% CI: 0.75, 0.83). During the ten year follow-up

period, the patients were periodically tested for the performance of the graft. One of

the outcomes measuring this performance is the presence of proteinuria. Proteinuria is

the condition in which the urine contains an abnormal amount of protein, which is an

indication of renal graft malfunctioning. For the current analysis proteinuria was defined

as the presence of 1 gr of protein in a 24 hours urine collection. An interesting feature
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of the sample at hand is that for nearly half of the patients, proteinuria of more than 1

gr/day has never been observed. Table 1 presents the frequencies of at least one positive

finding of proteinuria during follow-up versus failure status.

[Table 1 about here.]

We observe that the use of at least one finding of proteinuria as a prognostic factor

for graft failure would result in a very high negative predictive value, since 91% of

the patients with no proteinuria history did not experience a graft failure. On the

contrary, the positive predictive value is very low (32.4%) implying that at least one

finding of proteinuria is not indicative of graft failure. However, the sample smooth

average profiles (obtained using a Nadaraya-Watson kernel regression estimate) for the

patients with at least one positive diagnosis of proteinuria, presented in the top-right

panel of Figure 1, show a steep increase for failures. This feature suggests that exploration

of the longitudinal evolution of proteinuria could be more insightful for the time to graft

failure. Thus, our aim here is to investigate the association structure between these two

processes.

The setting described above connects to the framework of joint modelling of lon-

gitudinal and time to event data (see Tsiatis and Davidian, 2004 for a review). The

majority of the research in this area has focused on continuous longitudinal responses

motivated by HIV and cancer studies. Joint models for cases where the longitudinal

measured outcome is binary have been considered for instance by Faucett et al. (1998)

and Larsen (2004), and have also been applied in the missing data context (Pulkstenis

et al., 1998; Albert, 2000). Joint models are constructed under the conditional indepen-

dence assumption, which posits that the event process and the longitudinal responses
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are independent conditionally on a latent process expressed by a set of random-effects.

These random-effects are typically assumed to be normally distributed, but relaxations

of the normality assumption have been proposed, for instance by Song et al. (2002).

However, note that a normal or another smooth random-effects density might be unre-

alistic for our data, since half of the patients never showed proteinuria during follow-up.

This feature, in fact, induces a bimodality in the random-effects density, which is also

evident in the plot of the Empirical Bayes (EB) estimates, obtained by the ignorable (i.e.,

ignoring the survival process) mixed-effects logistic regression, presented in the bottom-

left panel of Figure 1. This model includes as fixed-effects linear time trends with some

additional baseline covariates that will be introduced in Section 4, while intercepts and

slopes are used in the random-effects component. In particular, we observe that the

random-effects estimates for the patients with no proteinuria are concentrated around

zero, with very small dispersion compared to the estimates for the other subjects. To

overcome this problem, we propose a two-part shared parameter model which assumes

that the distribution of the longitudinal process is a two-component mixture with a de-

generate component for patients with no proteinuria history and a mixed-effects logistic

regression component for the remaining patients. This formulation allows to investigate

separately the effect of, first, the longitudinal evolution of proteinuria and, second, the

history of proteinuria, to the time to graft failure. In addition, inference for the whole

population can easily be made by mixing the probability distribution for the two parts.

Such Mixture models have been proposed in various contexts in the statistical literature.

Zero-inflated Poisson and negative binomial count models are presented in Ridout et al.

(2001), whereas two-part models for longitudinal data have been proposed by Olsen and

Schafer (2001) and Kowalski et al. (2003). Furthermore, joint modelling with cure-rate
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survival models is reviewed in Yu et al. (2004).

A final issue that we tackle in this work is the sensitivity of inference to parametric as-

sumptions for the association structure between the survival and longitudinal processes.

Sensitivity might be expected from experience in related to the joint modelling con-

texts (i.e., missing data framework). In particular, the proteinuria measurements are

not available at the observed graft failures times, and can only be identified using mod-

elling assumptions. Thus, investigation of robustness of inference to these assumptions

is needed. Here we follow a copula parameterization for the joint distribution of the un-

derlying random-effects, which allows to investigate dependence by considering different

copula functions.

The remaining of the paper is organised as follows: Section 2 presents the two-part

shared parameter model, discusses its features and refers to sensitivity analysis issues.

Section 3 presents an EM algorithm for obtaining the maximum likelihood estimates

under the proposed model. Finally, Section 4 presents the analysis of the renal graft

failure data, and Section 5 concludes the paper.

2. The Two-Part Shared Parameter Model Formulation

2.1 Submodels Specification

Joint models typically consist of three submodels, namely the longitudinal, the sur-

vival, and the random-effects models. In our formulation however, we introduce a fourth

component that accounts for the patients with no proteinuria history. In particular, let

Ti be the observed failure time for the ith patient (i = 1, . . . , n), which is the minimum

of the true failure time T ∗
i and the censoring time Ki. Set δi be the censoring indicator

that equals one for true events and zero otherwise, i.e., δi = I(T ∗
i ≤ Ki), where I(·)
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is the indicator function. Let yi denote the ni × 1 vector of binary indicators for pro-

teinuria, and let di be an indicator variable that equals one if the ith patient showed

clinically important proteinuria at least once during follow-up and zero otherwise, i.e.,

di = I(yij = 1; for some j = 1, . . . , ni). The two-part shared parameter model, omitting

covariates in the notation, is defined as

p(yi, Ti; θ) =
∑

di

p(di; θ) p(yi, Ti | di; θ)

=
∑

di

p(di; θd)

∫ ∫
p̆(Ti | bti, di; θt) p(yi | byi, di; θy) p(byi, bti | di; θb) dbyidbti, (1)

where θ> = (θ>d , θ>t , θ>y , θ>b ) is the vector of the parameters in each one of the submodels

and let also A> denote the transpose of A. Further, let p(·) denote the appropriate prob-

ability density functions for the longitudinal and random-effects parts, whereas for the

event process we set p̆(Ti | bti, di; θt) = p(Ti | bti, di; θt)
δiS(Ti | bti, di; θt)

1−δi , i.e., equal

to either the density for the true event times or the survival function for censored ob-

servations. Factorization (1) resembles the pattern mixture models factorization used in

the missing data context (Little and Rubin, 2002) that posits an inherent heterogeneity,

which deterministically groups individuals according to their proteinuria history. The

model for di is a simple logistic regression, which will be described in Section 4.

For the survival process we assume an accelerated failure time model defined as

log Ti = w>
i γ + diγd + bti + σtεi, εi ∼ P , (2)

where θ>t = (γ>, γd, σt), and wi is a vector of baseline covariates. Parameter γd measures

the effect of proteinuria history in the logarithm of time to graft failure, which, according

to Table 1, is expected to be highly significant. The random-effect bti represents a

frailty term that captures unobserved heterogeneity induced, e.g., by omitted covariates
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(Keiding et al., 1997). The errors εi are assumed to follow the distribution function P ,

with corresponding survival function S and density function p, and σt denotes a scale

parameter (Kalbfleisch and Prentice, 2002, ch. 3). In this work we consider parametric

models for P ; non-parametric alternatives in the joint modelling framework have been

proposed by Tseng et al. (2005).

The model for the longitudinal process conditionally on di contains a degenerate part

in order to account for the fact that yij = 0,∀j when di = 0. For the patients with

proteinuria history, we model the longitudinal evolution of proteinuria findings using a

mixed-effects logistic regression. In particular, we assume that




Pr(yij = 0,∀j) = 1, if di = 0

Pr(yij = 1 | byi) = πij = exp(x>ijβ + z>ijbyi)/
{
1 + exp(x>ijβ + z>ijbyi)

}
, if di = 1,

(3)

where θy = β is the vector of regression coefficients, yij equals one if the ith patient had

a proteinuria finding at the jth time, and zero otherwise, byi are subject-specific random-

effects dictating patient’s longitudinal trajectories, and Xi and Zi are design matrices

for the fixed- and random-effects, respectively.

The common parameterization used in joint models postulates that bti = αbyi, where

α denotes an association parameter. That is, the longitudinal and survival processes

share, in fact, the same random-effect byi, with α2 being a rescaling factor for the vari-

ance of byi. However, this parameterization assumes perfect correlation between the un-

derlying random-effects, which may be unrealistic in many applications. In view of the

above mentioned potential sensitivity, we therefore relax this assumption and estimate

the correlation between the random-effects of the two processes. This parameterization

is similar to the joint model of Henderson et al. (2000) who considered two correlated
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Gaussian processes to induce dependence. In particular, for the patients with proteinuria

history we use a copula representation for the joint distribution of byi and bti. Copulas

(Nelsen, 1999) are multivariate distribution functions with uniform marginals that can

be used to construct multivariate densities and investigate dependence. Under (1) the

random-effects density then takes the form

p(byi, bti | di; θb) =





p(bti; ωt), if di = 0

c(Hy(byi; ωy), Ht(bti; ωt); α) p(byi; ωy) p(bti; ωt), if di = 1,

(4)

where c(·) is the density of the copula C(·), Hy(·) and p(byi) are the marginal cumulative

distribution function and the probability density function for byi, respectively, and Ht(·)

and p(bti) are defined analogously for bti. The parameter vector for the random-effects

density is θ>b = (α, ω>y , ω>t ), where α is the parameter of the copula, and ωy and ωt are the

parameter vectors for the two marginals. The advantage of the copula parameterization

is that it allows for separate modelling of the association structure and the marginals,

thus facilitating exploration of dependence. In particular, the c(Hy(byi; ωy), Ht(bti; ωt); α)

part of (4) is the function that specifies the association type between the two marginals

Hy(·) and Ht(·).

2.2 Sensitivity Analysis

As stated in Section 1, our interest here is in exploring the association structure

between the graft failure process and the proteinuria measurements. According to the

two-part shared parameter model presented in Section 2.1, this association is expressed

first, by the parameter γd which measures the effect of proteinuria history on the time to

graft failure, and second, by the dependence between the frailty term bti and the random-
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effects byi of the longitudinal proteinuria model. The copula is the key part of (4) that

describes the association between bti and byi. Varying the choice of the copula function

leads to different shapes of association structure. This is illustrated in the bottom-right

panel of Figure 1, which depicts the contours of four copulas assuming standard normal

marginals. In order to obtain comparable contour plots, we have chosen the copula

parameter α such that the association between the two normal marginals equals 0.5 in

terms of Kendall’s τ . However, we observe that the copula function can significantly

alter the shape of the association, even though all the other components (i.e., marginals

and global association measure) of the bivariate densities remain the same. Thus, in

order to investigate the effect of the choice of the copula function in the shape of the

association between bti and byi, we suggest that a sensitivity analysis is performed.

The influence of modelling assumptions to the inference under joint models has also

been noted in the missing data context, for instance in the discussion of Diggle and

Kenward (1994). In particular, some of the discussants of that paper have warned

against the use of likelihood ratio tests for testing informative dropout since such tests

heavily rely on the assumed modelling structure. In our setting, testing for informative

dropout corresponds to a test for the association structure between the longitudinal and

survival processes. Thus, using similar arguments, inference regarding the strength of the

dependence between the involved processes can be affected by the choice of the copula.

3. EM Algorithm

In this section we focus on the estimation of θ∗ = (θ>t , θ>y , θ>b )>, since estimates for θd

are easily obtained by fitting separately the logistic regression for Pr(di = 1; θd). The

maximum likelihood estimates for the model parameters θ∗ are obtained using an EM
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algorithm, in which byi and bti are treated as missing data.

For the E-step, we set Ã to denote E {A(byi, bti) | yi, Ti; θ}, i.e., the expected value of

any function A(·) of byi and bti with respect to p(byi, bti | yi, Ti, di; θ). These expectations

are approximated using a Gauss-Hermite quadrature rule; more details can be found

in Appendix A. For the M-step, unfortunately the complete data log-likelihood for the

two-part shared model does not have closed form solutions with respect to θ∗. Thus,

the expected value of the complete data log-likelihood is numerically maximized using

a quasi-Newton algorithm. This procedure requires computation of the expected score

vector of the complete data log-likelihood, which we denote by ˜̀(·). The expressions of

˜̀(·) for β, γ, γd, σt have the form

˜̀(β) =
n∑

i=1

X>
i (yi − π̃i)

˜̀{(γ>, γd)} = σ−1
t

n∑
i=1

ãiẅi

˜̀(σt) = σ−1
t

n∑
i=1

ζ̃iai − δi,

where π̃i =
∫

p(byi | yi, Ti, di)/[1 + exp{−(Xiβ + Zibyi)}]dbyi, ẅ>
i = (w>

i , di), ai =

−δi{∂ log p(ζi)/∂ζi} − (1− δi){∂ log S(ζi)/∂ζi}, and ζi = (log Ti − w>
i γ − diγd − bti)/σt.

To define the expression of ˜̀(·) for the parameters θ>b = (α, ω>y , ω>t ) of the random-

effects model, we assume normal marginals with mean zero, and we distinguish the

following cases. First, we consider the elliptical copulas class and specifically the normal

and Student’s-t copulas. The normal copula combined with normal marginals results

in a multivariate normal distribution with known derivatives for the variance compo-

nents. The Student’s-t copula involves the inverse cumulative distribution function of

the Student’s-t distribution and thus ˜̀(·) is approximated numerically using a central

10



difference approximation. Second, for archimedean copulas, ˜̀(α) is derived for each par-

ticular copula separately, whereas for the parameters ωy and ωt of the marginal models

we use the result (Nelsen, 1999, ch. 4) that the density of the copula function has the

form

c(u, v) = −g(2)(C(u, v))g(1)(u)g(1)(v)

[g(1)(C(u, v))]3
,

which leads to the following general formulae

˜̀(ωy) = ˜̀
1(ωy) + ˜̀

2(ωy)

`1(ωy) =
n∑

i=1

[{
g(3)(C(ui, vi))
g(2)(C(ui, vi))

− 3
g(2)(C(ui, vi))
g(1)(C(ui, vi))

}
cu(vi) +

g(2)(ui)
g(1)(ui)

]
∂u

∂ωy
(5)

˜̀
2(ωy) =

1
2

n∑

i=1

tr(−D−1Q) + tr(D−1QD−1ṽbyi)) + b̃>yiD
−1QD−1b̃yi,

where g(·) is the generator function of the archimedean copula with g(l)(·) denoting its

lth derivative, cu(v) = ∂C(u, v)/∂u is the conditional distribution function for V given

U = u, U = Hy(byi; ωy) and V = Ht(bti; ωt), D is the covariance matrix of the normal

marginal for byi, Q = ∂D/∂ωy, b̃yi =
∫

byip(byi | yi, Ti, di)dbyi, ṽbyi =
∫

[byi − b̃yi]
2p(byi |

yi, Ti, di)dbyi, and ˜̀(ωt) is derived analogously. The form of ∂u/∂ωy, for the univariate

and the bivariate case, is presented in Appendix B. Finally, based on the above expression

both ˜̀
1(ωy), using `1(ωy) from (5), and ˜̀

1(ωt) are numerically approximated using the

procedure described in Appendix A.

4. Renal Graft Failure Analysis

We continue with the analysis of the renal graft failure study which was introduced

in Section 1. In total, the patients made on average 62.8 visits (standard deviation

21.9 visits), resulting in 27,147 records. The patients with proteinuria history made on

average 61.6 visits (standard deviation 24.3 visits), resulting in 13,676 records, whereas
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the patients with no proteinuria history made on average 64.2 visits (standard deviation

19.1 visits), resulting in 13,471 records.

The specification of the components of two-part shared parameter model (1) is as

follows. First, for the history of proteinuria a logistic regression is used. Second, for

the survival process a Weibull model is assumed, which seems to provide a relatively

appropriate fit, according to the top-left panel of Figure 1. For completeness the M-

step under the Weibull model is presented in Appendix C. Third, for the longitudinal

processes and based on the ignorable analysis (i.e., ignoring the event process), a random-

slopes logistic regression is adopted. The covariate effects that are considered in all the

above submodels are gender, weight, tobacco habits (no-smoker, smoker, ex-smoker), age

(older than 55), and long dialysis (if dialysis before transplant). Finally, for the random-

effects model and in order to investigate the influence of parametric assumptions on the

size of the association between the two processes, we performed a sensitivity analysis

under the Gaussian, Student’s-t (df = 4), Frank, and Clayton copula functions assuming

normal marginals. All models were fitted using the EM algorithm described in Section

3, and all computations have been performed in R (R Development Core Team, 2006).

Due to the large sample size nine quadrature points are used in the Gauss-Hermite rule;

however, we expect that the procedure described in the Appendix A provides parameter

estimates and standard errors of good quality.

The parameter estimates and standard errors under the scenarios considered are

presented in Tables 2 and 3.

[Table 2 about here.]

[Table 3 about here.]
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As can been seen, the choice of the copula function has a direct impact on certain para-

meter estimates. For instance, the gender effect is statistically lower for the Frank copula

compared to the Student’s-t copula. Moreover, the association between the survival and

longitudinal processes varies from −0.179 (std. error: 0.035) to −0.535 (std. error:

0.074), which is different from the common perfect correlation assumption discussed in

Section 2.1. As expected the estimated association is negative suggesting that the lower

the probability of proteinuria findings, the longer the graft survives. In addition, for

all copulas we observe a significant effect of proteinuria history indicating that patients

with no proteinuria maintain their new graft longer. The effects of the copula function

are also apparent in the plots of EB estimates for the random-effects of the longitudinal

process and the marginal survival function for the event process, presented in Figures 2

and 3.

[Figure 2 about here.]

[Figure 3 about here.]

The EB estimates are defined as the posterior modes, i.e.,

arg max
byi,bti

p(byi, bti | yi, Ti, di; θ̂) ≡ arg max
byi,bti

{p(Ti | bti, di; θ̂t) p(yi | byi, di; θ̂y) p(byi, bti | di; θ̂b)},

whereas the marginal survival function is computed by

Ŝ(Ti) =
∑

d

p(di; θ̂d)

∫
S(Ti | bti, di; θ̂t) p(bti | di; θ̂b) dbti

Figure 2 shows that the EB estimates are generally higher for failures than for non

failures. This indicates that patients who experience graft failure either start with low

probability of showing clinically important proteinuria and quickly develop it or they
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start with relative high probability of showing proteinuria and maintain it. The marginal

survival function has been computed for a nonsmoking female patient, younger than 55

with median weight and no previous dialysis, and contrary to the EB estimates show

that the normal and Student’t-t copulas provide a very similar result. A final interesting

feature is that patient’s age has a significant effect in the odds of at least one findings of

proteinuria but not in the longitudinal evolution of proteinuria.

In conclusion, the variability we observe in the overall results under the different

copulas could be regarded as variability due to modelling assumptions, which is a clear

indication that the common normality assumption for the distribution of random-effects

may prove difficult to verify.

5. Conclusion

We have proposed a new shared parameter model for the joint modelling of longitudinal

binary measurements and time to event data, and demonstrated its use through a real

data example. The main strength of this framework is that it effectively handles the

existence of excess zeros patterns in the binary responses by assuming a degenerate part

in the longitudinal response model. In addition, it was shown in the application that

the shared parameter models with binary responses are not robust with respect to the

assumptions for the random-effects distribution, and thus a sensitivity analysis should

be performed. A potential drawback of the proposed model is that the logistic regression

part in the two-part longitudinal process defined in (3), does not impose the constraint

that Pr(yij = 0,∀j) = 0. We expect that this feature could lead to some bias, especially

for small ni, but this is not the case for our application.

Several extensions of the proposed model can be considered. First, the parametric
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distributional assumptions for the survival process can be relaxed either within the accel-

erated failure time framework, or by considering a Cox-type proportional hazards model.

Second, the indicator two-part can be extended to cover the case of excess ones as well,

by postulating a multinomial model for di. Finally, other types of longitudinal responses

(e.g., semicontinuous random variables with point masses at one or more locations) can

be easily handled under the proposed framework by simply changing the appropriate

parts in the EM algorithm.
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Appendix A

Approximate E-Step

The integrals involved in the specification of the E-step do not have a closed form solution

and thus are approximated using the Gauss-Hermite quadrature rule. In particular,

E {A(byi, bti) | yi, Ti} =

∫ ∫
A(byi, bti) p(byi, bti | yi, Ti, di) dbyidbti

≈ 2q/2
∑
t1···tq

htA(t
√

2) p(t
√

2 | yi, Ti, di) exp(‖t‖2),
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where q denotes the integral dimension,
∑

t1···tq
is used as shorthand for

∑
t1

· · ·∑
tq

, t> =

(t1, . . . , tq) are the abscissas with corresponding weights ht, and ‖ · ‖2 denotes the square

of the Euclidean distance.

A known problem of the Gaussian-Hermite rule (Pinheiro and Bates, 1995), is that

it assumes that the main mass of the integrand is around zero, which might not be

the case for certain individuals. The adaptive Gauss-Hermite rule solves this problem

by centering and rescaling the integrand in each iteration, increasing however dramati-

cally the computational burden. In order to avoid both the poor approximation of the

simple Gauss-Hermite rule and the computational complexity of the adaptive rule, we

use the Empirical Bayes estimates and their standard error from the ignorable models,

to center and scale the integrand. Even though this procedure is not a fully adaptive

rule, we expect that the ignorable EB estimates provide a good approximation to the

patients’ standing in the random-effects dimension, resulting in an acceptable integral

approximation with a moderate number of quadrature points.

Appendix B

Derivatives of the Normal cdf

Here we present the form of ∂u/∂ωy = ∂Hy(byi; ωy)/∂ωy, used in the M-step of the EM

algorithm, where Hy(byi; ωy) denotes the normal cumulative distribution function (cdf)

with zero mean and variance components parameterized through ωy. We present two

cases; univariate and bivariate random-effects. First, in the univariate case, with byi

representing a random-intercepts term, we get

∂

∂ωy

Hy(byi; ωy) = −byi

ωy

p(byi; ωy),
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where p(byi; ωy) denotes the normal probability density function with zero mean and

standard deviation ωy. Second, in the bivariate case, where byi = (by1i, by2i), we use

the parameterization of the bivariate normal cdf considered in Drezner and Wesolowsky

(1989):

Hy(by1i, by2i; ωy1, ωy2, ρ) =
(ωy1ωy2)−1

2π
√

1− ρ2

by1i∫

−∞

by2i∫

−∞
exp

{
−h2

1/ω2
y1 + h2

2/ω2
y2 − 2ρh1h2/ωy1ωy2

2(1− ρ2)

}
dh1dh2

= Hy(by1i; ωy1)Hy(by2i; ωy2) +
1
2π

ρ∫

0

exp{−(b2
y1i/ω2

y1 + b2
y2i/ω2

y2 − 2rby1iby2i/ωy1ωy2)/2(1− r2)}√
1− r2

dr,

which leads to the following expressions for the partial derivatives with respect to ρ, ωy1,

and ωy2

∂Hy(by1i, by2i; ωy1, ωy2, ρ)
∂ρ

=
exp{−(b2

y1i/ω2
y1 + b2

y2i/ω2
y2 − 2ρby1iby2i/ωy1ωy2)/2(1− ρ2)}
2π

√
1− ρ2

,

∂Hy(by1i, by2i; ωy1, ωy2, ρ)
∂ωy1

= −by1i

ωy1
p(by1i; ωy1)Hy(by2i; ωy2)

+

ρ∫

0

B(r) exp{−(b2
y1i/ω2

y1 + b2
y2i/ω2

y2 − 2rby1iby2i/ωy1ωy2)/2(1− r2)}
2π
√

1− r2
dr,

where

B(r) =
2by1i

ω2
y1

√
1− r2

(
by1i

ωy1
− rby2i

ωy2

)
,

and ∂Hy(by1i, by2i; ωy1, ωy2, ρ)/∂ωy2 is derived analogously. The integral over r can be

easily approximated using an adaptive Gauss-Kronrod rule (Piessens et al., 1983).

Appendix C

M-Step under Weibull model

The form of ˜̀{(γ>, γd)} and ˜̀(σt) under the Weibull model is

˜̀{(γ>, γd)} = σ−1
t

n∑
i=1

{exp(ζ̃i)− δi}ẅi

˜̀(σt) = σ−1
t

n∑
i=1

Ãi − (1 + ζ̃)δi,
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where ζ̃i = (log Ti − w>
i γ − diγd − b̃ti)/σt, with b̃ti =

∫
bti p(byi | yi, Ti, di) dbti, and

Ai = ζi exp(ζi).
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Figure 1. Top left panel: Kaplan-Meier estimate (with associated 95% CI) for time to
graft failure, with superimposed Weibull fit. Top right panel: sample smooth average profiles
(obtained using a Nadaraya-Watson kernel regression estimate) for proteinuria versus year since
entry, for patients with at least one finding of proteinuria during follow-up. Bottom left panel:
empirical Bayes estimates under an ignorable random slopes logistic regression for proteinuria,
including all patients. The rectangle around zero contains the patients with no proteinuria
history and it is magnified in the third quadrant. Bottom right panel: contour plots of the
Normal, Student’s-t (df = 4), Clayton, and Frank copula for standard normal marginals and
Kendall’s τ = 0.5.
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Figure 2. Empirical Bayes estimates for the random-effects in the longitudinal processes
under the Gaussian, Student’s-t (df = 4), Frank, and Clayton copulas, for the patients with
proteinuria history.
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Table 1
Contingency table for findings of proteinuria versus renal graft failure.

Proteinuria Failure No Failure Total

at least once 72 (32.4%) 150 (67.6%) 222

never 19 (9%) 191 (91%) 210
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Table 2
Parameter estimates (standard errors) under the Gaussian, Student’s-t (df = 4), Frank,
and Clayton copulas, for the fixed-effects of the longitudinal and survival processes, and

the logistic regression for proteinuria history.

Intercept Year No Prtn Gender Weight TBG TBG Age Dialyses

Snce Entr History Female smoker ex-smoker

Lng-Gaus -3.53 (0.24) 0.36 (0.04) 0.76 (0.35) 1.07 (0.21) -0.03 (0.38) 0.76 (0.19) -0.83 (0.21) 0.04 (0.01) -0.38 (0.05)

Lng-St-t -3.96 (0.18) 0.31 (0.03) 0.57 (0.21) 1.37 (0.23) -0.47 (0.11) 1.19 (0.15) -0.46 (0.11) 0.06 (0.01) -0.31 (0.03)

Lng-Frnk -4.20 (0.23) 0.30 (0.04) 0.73 (0.27) 0.77 (0.35) -0.33 (0.13) 1.22 (0.17) -0.53 (0.12) 0.06 (0.01) -0.30 (0.05)

Lng-Clay -2.32 (0.25) 0.45 (0.03) 1.01 (0.25) 1.34 (0.20) 0.03 (0.13) 0.59 (0.18) -0.94 (0.10) 0.01 (0.01) -0.39 (0.03)

Srv-Gaus 2.53 (0.17) 1.52 (0.21) 0.53 (0.19) -0.01 (0.01) -0.45 (0.30) 0.36 (0.19) -0.19 (0.27) 0.05 (0.16)

Srv-St-t 2.34 (0.17) 1.44 (0.22) 0.54 (0.19) -0.01 (0.01) -0.48 (0.31) 0.44 (0.18) -0.29 (0.26) 0.02 (0.16)

Srv-Frnk 1.73 (0.18) 2.47 (0.34) 0.49 (0.20) -0.01 (0.01) -0.37 (0.33) 0.44 (0.19) -0.17 (0.27) -0.01 (0.17)

Srv-Clay 3.51 (0.19) 0.71 (0.22) 0.52 (0.22) -0.01 (0.01) -0.57 (0.37) 0.44 (0.21) -0.09 (0.30) -0.04 (0.19)

Prtn Hist 0.08 (0.21) -0.36 (0.23) -0.02 (0.01) -0.55 (0.49) -0.10 (0.22) 1.26 (0.29) -0.21 (0.20)
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Table 3
Parameter estimates (standard errors) under the Gaussian, Student’s-t (df = 4), Frank,

and Clayton copulas, for the variance components.

Kendall’s-τ Longitudinal Longitudinal Longitudinal Survival Survival

intercept slopes correlation frailty scale

Gauss -0.235 (0.088) 2.449 (0.237) 0.729 (0.069) -0.739 (0.022) 0.544 (0.053) 0.860 (0.068)

Std-t -0.251 (0.098) 2.245 (0.136) 0.668 (0.044) -0.703 (0.032) 0.564 (0.045) 0.867 (0.066)

Frank -0.535 (0.074) 4.464 (0.284) 1.348 (0.101) -0.862 (0.020) 0.614 (0.034) 0.922 (0.076)

Clayn -0.179 (0.035) 2.745 (1.215) 0.817 (0.342) -0.883 (0.110) 0.496 (0.073) 0.970 (0.084)
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