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Summary. Pattern mixture models are frequently used to analyze longitudinal data

where missingness is induced by dropout. When interest lies in the marginal model,

inferences are mainly based on assumptions, in which case the two most common model

fitting techniques are, the imposition of identifying restrictions and the extrapolation

method. Here we consider the extrapolation method under a Bayesian model formula-

tion and propose a suitable prior distribution for the model parameters, which provides

a flexible tool for sensitivity analysis. In particular, a parameter that controls the differ-

ence between average trends among neighbouring patterns is introduced and sensitivity

is assessed by comparing results obtained from analyses with different values for this

parameter.

Key words: Pattern Mixture Models; Extrapolation Method; Sensitivity Analysis;

Bayesian Approach.

1. Introduction

Many longitudinal studies suffer from attrition, which causes biased inferences if the

dropout mechanism is ignored while being informative. To account for informative

dropout, a number of model-based approaches have been proposed for the joint mod-

elling of the longitudinal and dropout processes (see Little, 1995; Hogan and Laird,

1997b; Kenward and Molenberghs, 1999 for recent reviews). These approaches can be

broadly classified as either selection models or pattern mixture models (Little, 1995; Little

and Rubin, 2002). In both model frameworks inference is based on assumptions and thus

∗email: dimitris.rizopoulos@med.kuleuven.be
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tools for detecting sensitivity to these assumptions are required. Here we propose a new

method to assess the sensitivity of the inference under various assumptions in pattern

mixture models.

The rationale of the pattern mixture model is to postulate a separate model for the

longitudinal measurement process per dropout pattern. For marginal inference two im-

plications arise, namely the conditional distribution for the complete longitudinal vector

and a model for the dropout process need to be specified. By definition, except from

the pattern of completers, the conditional distribution of the unobserved given the ob-

served components of the measurement process is not identified. The two most common

procedures to overcome this underidentification problem, are the imposition of identify-

ing restrictions (Little, 1993; Little, 1994) and the extrapolation method (Verbeke and

Molenberghs, 2000). The identifying restrictions constitute a general approach where the

conditional distribution of the missing given the observed components of the measure-

ment process, in each pattern, is identified using information from the other patterns.

Several sets of restrictions have been proposed including, among others, the available

case, complete case and neighbouring case missing value restrictions (Thijs et al., 2002).

In this setting, sensitivity can be assessed by checking how much inference changes under

a range of plausible missing value restrictions. On the other hand, the extrapolation

method is typically applied when we consider simplified models, i.e., when a small num-

ber of parameters is used to define a joint distribution for the repeated measurements,

and the main interest lies in the marginal average evolutions. In this case the average

profiles for the missing components of the measurement process per pattern are obtained

by extrapolating the corresponding observed fitted longitudinal profiles. Despite the easy

implementation of the extrapolation method, sensitivity analysis is not straightforward.

This is one of the reasons why the method has not been used much and why the main

focus has been on the identifying restrictions approach.

Here we work under a linear mixed-effects measurement model and develop a Bayesian

formulation of the extrapolation method, which under a suitable specification of the prior

distributions for the model parameters, provides a flexible tool for sensitivity analysis. In

particular, a set of informative priors for the fixed-effects parameters is introduced, which

through a sensitivity parameter controls the average profiles in each dropout pattern. Our
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suggestion resembles the usage of subjective parameters, introduced by Rubin (1977) to

account for nonrespondents in sample surveys. Specifically, the formulation we follow

expresses the subjective notion that the average profiles (controlled by the fixed-effects

parameters) of neighbouring patterns are more alike than the average profiles of more

distant patterns. We further extend this notion and let the sensitivity parameter to

depend on the time lag between the dropout times of the neighbouring patterns.

Our research is motivated by a randomized, double-blind parallel group, multi-center

study for the comparison of two oral treatments (terbinafine 250mg/day versus itracona-

zole 200mg/day) for toenail dermatophyte onychomycosis (TDO). The study is described

in full by De Backer et al. (1996). TDO is a common toenail infection, difficult to treat,

affecting more than 2 out of 100 persons. Antifungal compounds, classically used for the

treatment of TDO, need to be taken until the whole nail has grown out healthy. The

development of new such compounds, however, has reduced the treatment duration to

3 months. The aim of the present study was to compare the efficacy and safety of 12

weeks of continuous therapy with either terbinafine or itraconazole. In total, 2× 189 pa-

tients were randomized and distributed in 36 centers. Subjects were followed up during

12 weeks of treatment and followed further, up to a total of 48 weeks. Measurements

were taken at baseline, every month during treatment, and every 3 months afterwards,

resulting in a maximum of seven measurements per subject. A subset of these data is

used here that contains 150 patients taking terbinafine and 148 taking itraconazole. Due

to a variety of reasons, 72 (24.2%) out of the 298 patients left the study prematurely,

resulting in 7 dropout patterns. Out of the 7 patterns, 3 are very sparse, containing 7

(2.4%), 7 (2.4%) and 3 (1%) subjects, respectively. Table 1 summarizes the number of

subjects still in the study at each occasion, for both treatment groups separately as well

as the number of subjects per dropout pattern.

[Table 1 about here.]

Further, as an informal exploratory graphical tool, Figure 1 depicts the sample average

profiles at each occasion versus time, for each dropout pattern. We can observe that

the sparse patterns (especially patterns 2 and 7) present different average evolutions

compared with the patterns with more individuals.

[Figure 1 about here.]
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Previous analyses of the same data (Verbeke et al., 2001; Verbeke and Molenberghs,

2000) showed a significant nonignorable dropout mechanism under a selection model. In

addition, the use of the extrapolation method in the pattern mixture framework revealed

an interesting feature: although the sparse patterns have a very small contribution to

the marginal means, the shape of their unreliable (due to sparseness) estimated average

evolutions significantly alter the shape of the marginal average evolutions. In this paper

and according to the proposed method we use a pattern mixture model framework and

allow the average profiles of the sparse patterns to be affected by the average profiles

of more frequent but neighbouring patterns, which are expected to show similar average

evolutions. A detailed analysis of the Toenail study can be found in Section 5.

The paper is organized as follows: Section 2 briefly reviews the pattern mixture

models and their features, and also provides the intuitive justification for the method

we propose. Section 3 presents the theoretical framework under which our method is

implemented and in Section 4 we discuss the interpretation of the sensitivity parameter

and moreover we form a connection with the identifying restrictions approach. Finally,

Section 5 illustrates the performance of our method in the Toenail study and in Section

6 we conclude and refer to some extensions.

2. Pattern Mixture Models and the Extrapolation Method

Let Y and R denote the measurement and dropout process, respectively. For an incom-

plete sequence, R denotes the occasion at which dropout occurs, while for a complete

sequence, R equals to the number of the planned measurements plus one. According to

R the measurement process is decomposed into Y = (Y o, Y m) with Y o denoting the

observed and Y m the missing response vectors. Under the pattern mixture framework

the joint distribution of Y and R is factorized as (covariates are allowed but omitted in

the notation)

p (Y , R) = p (Y |R) p (R) , (1)

where p(·) denotes a probability density function. This factorization expresses that sub-

jects with the same dropout times are more alike than subjects with different dropout

times. This in turn states that subjects with the same dropout times share the same

measurement process and thus a model is fitted for each dropout pattern separately.

4



Usually in longitudinal studies the main focus of inference is on the marginal aver-

age evolutions, i.e., E[Y ], while the correlation between the repeated measurements is

regarded as nuisance. Under factorization (1) these evolutions take the form

E[Y ] =

∫
y

{∫
p(y|r)p(r)dr

}
dy

=

∫ {∫
yp(y | r)dy

}
p(r)dr, (2)

that is, E[Y ] is the expectation of the pattern-specific average evolutions E[Y |R] with

respect to p(R). It can be seen from (2) that this marginal expectation requires specifica-

tion of E[Y m | Y o, R], i.e., of the expected evolution of the subjects after they dropped

out. However, it should be emphasized that the observed data do not contain any infor-

mation on these average profiles beyond the times of dropout. Hence, assumptions are

needed. As noted earlier, the two main strategies to deal with this underidentification

problem are, to impose identifying restrictions or to extrapolate beyond the last obtained

measurement. Although the first strategy makes explicit assumptions about the uniden-

tified distribution Y m|Y o in each dropout pattern, the simplicity of the extrapolation

method is apparent, especially when simplified models are considered and the main in-

terest lies only in the specification of E[Y ]. By simplified models we imply mixed-effects

models with simple functional forms to capture the mean longitudinal profiles (e.g., lin-

ear or quadratic time trends) and a random-effects structure to model the associations

between individual responses.

In the extrapolation method, in accordance with the pattern mixture methodology,

we consider a different mean, and possibly covariance, structure per dropout pattern.

Then, a full specification of E[Y ] is derived by extrapolating the observed fitted profiles

E[Y o|R] to obtain E[Y m|R]. As also Hogan and Laird (1997a) note, the main disad-

vantage of this simplified approach is that it makes the awkward requirement that each

dropout pattern occurs sufficiently often in order to estimate the pattern-specific parame-

ters reliably. Otherwise estimates from sparse patterns could severely affect the marginal

average evolutions. The method we propose to overcome this problem and in addition

to avoid the restriction of having a separate measurement distribution for each dropout

pattern, is to estimate the average evolutions in each pattern by borrowing information

from the neighbouring patterns. This can easily be implemented under a Bayesian ap-
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proach using properly chosen informative prior distributions. In fact this method can be

thought of as an extension of the intuitive idea driving the pattern mixture factorization,

i.e., while in ordinary pattern mixture models individuals with the same dropout times

share the same average evolutions, here we move to the pattern level and allow neigh-

bouring patterns to have more similar average evolutions than more distant patterns (i.e.,

with larger time lags in their dropout times). Specifically we introduce a set of sensitivity

parameters which tune the degree of resemblance of the average profiles in neighbouring

patterns. Thereby we can check the sensitivity of inferences under a range of values for

these parameters. The central feature of our proposal is that it explicitly acknowledges

the underidentification problem by using extra information from patterns that identify

Y m|Y o, which is in line with the identifying restrictions approach as it is also seen in

Section 4.3. In the next section we describe how our proposal can be implemented under

the Bayesian approach.

3. Likelihood, Prior Specification and Posterior Conditionals

3.1 Likelihood

Let k = 1, . . . , K denote the dropout pattern, with k = 1 corresponding to the

completers and consider a random sample of n (i = 1, . . . , n) individuals with ni available

measurements. For the measurement process in each pattern we assume a linear mixed-

effects model with pattern-specific fixed-effects

yi = X iβk + Zibi + εi, (3)

εi ∼ N(0,Σik) and bi ∼ N(0, Dk),

where yi is the ni× 1 response vector for the ith individual, X i and Zi are known ni× p

and ni × q design matrices for the fixed- and random-effects, respectively, βk denotes

a p × 1 fixed-effects vector for the kth dropout pattern, bi is the q × 1 random-effects

vector with corresponding covariance matrix Dk, εi are the random errors with covariance

matrix Σik, which depends on i only through its dimensions ni, and εi is independent

of bi. Here we consider only pattern-specific average profiles, whereas the covariance

structures Dk and Σik are assumed to be the same across patterns, i.e., Dk = D and

Σik = Σi, ∀k, respectively.
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For the missingness process we assume that the dropout indicator ri ∈ {1, 2, . . . , K}
follows a Multinomial distribution. In particular, the marginal dropout model p(ri; π) is

of the form

log
πik

πiK

= αk + wt
iδk, k = 1, . . . , K − 1, (4)

where πik = Pr(ri = k) denotes the individual’s probability for pattern k, πiK =

1−∑K−1
k=1 πik, αk are the cut-points, and δk is a vector of regression coefficients for the co-

variate vector wi. This formulation enables the dropout probabilities to depend on base-

line covariates and treatment. Under the Multinomial model, the marginal average evolu-

tions defined in (2) take the form of a weighted sum, i.e., E[Y i] =
∑K

k=1 πikE[Y i|Ri = k].

Under (1), (3) and (4), and suppressing condition on covariates for notational sim-

plicity, the conditional on the random-effects likelihood of the model has the form

p (y, r|b; β,Σ,π) =

{
n∏

i=1

p(ri; π)

}
×

{∏
i∈P1

p (yi|bi; β1,Σi) · . . . ·
∏

i∈PK

p (yi|bi; βK ,Σi)

}
, (5)

where Pk denotes the set of individuals available in the kth dropout pattern.

3.2 Prior Specification

For a Bayesian approach, specification of prior distributions for all the model para-

meters is required. Proposals for prior distributions for the variance components under

model (3) and for the probabilities in the multinomial model p(ri; π) have been exten-

sively studied (see e.g., at Gelman, 2006; Gilks et al., 1993; Gelman et al., 1995) and

thus we will not further discuss them here. In particular, we use the inverse Wishart

distribution for Σi and D (or inverse Gamma or half-t in the case of scalar variance

components) and the Dirichlet distribution for π = (π1, . . . , πK)t. Our main focus now is

on specifying a meaningful prior for the fixed-effects β1, . . . , βK which will easily allow

sensitivity analysis.

As we have already noted, the pattern mixture factorization (1) postulates that sub-

jects in the same dropout pattern share the same measurement distribution. We extend

this belief to the dropout patterns level. In particular, it is assumed that the fixed-effects

parameters between the patterns are a priori correlated, and the degree of this correla-

tion is controlled through a set of parameters. This can be formally expressed under the
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following set of prior conditional distributions

β1 ∼ N(0,V )

β2|β1 ∼ N(β1, γ1∆2)

β3|β2 ∼ N(β2, γ2∆3) (6)

...

βK |βK−1 ∼ N(βK−1, γK−1∆K),

where, we set β1 the fixed-effects vector of the completers, β2 the fixed-effects vector for

subjects with the last measurement missing, and so on. The covariance matrix for the

pattern of completers is taken to be V = 106Ini
, whereas the ∆k’s are assumed to be

diagonal matrices quantifying prior information about the dispersion of the fixed-effects

for the rest of the patterns, with γk > 0 being a sensitivity parameter.

The form of these prior conditionals expresses that, a priori, the fixed-effects parame-

ters of the dropout pattern with N − s available measurements are normally distributed

around the fixed-effects parameters of the dropout pattern with N − s + 1 available

measurements. The γ = (γ1, . . . , γK−1)
t parameters control the variability of this dis-

tribution, indicating how different the fixed-effects parameters of neighbouring patterns

are allowed to be. In order each γk−1 to have the same effect on all βk = (βk1, . . . , βkp)
t

of the kth pattern, we use the ∆k matrices that provide an indicative estimate for the

variability of βk. Thus,
√

γk−1 in fact expresses the number of the standard deviations
√

∆k,jj, βkj is assumed to vary around βj,k−1, ∀j ∈ {1, . . . , p}, k = 2, . . . , K. More

details regarding choices for the sensitivity parameters and ∆k’s are given in Section 4.

An extra assumption that we make is that the joint prior for β = (β1, . . . , βK) satisfies

a first order Markov property, namely

p(β1, . . . , βK) = p(β1) · p(β2|β1) · p(β3|β2,β1) · . . . · p(βK |βK−1, . . . , β1)

= p(β1) · p(β2|β1) · p(β3|β2) · . . . · p(βK |βK−1). (7)

Although this restriction is not strictly required in order to fit the model (i.e., we can

construct a joint distribution for β for which (6) holds without requiring (7)), it leads to

simpler posterior conditionals that enhance interpretability. The required joint distribu-

tion for β, under assumption (7), can be obtained by applying Doob’s theorem (Doob,

1942) in a Gauss-Markov process.
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3.3 Full Posterior Conditionals

Taking advantage of the conjugacy between the likelihood and the priors, the full

posterior conditionals of the fixed-effects parameters β1, . . . , βK take the form

βk|. ∼ N (VkMk,Vk) , k = 1, . . . , K, (8)

where βk|. denotes the conditional distribution of the parameter vector βk given the

observed data and all the other parameters, including the random-effects, and

M1 =


∑

i∈P1

Ai + ∆−1
2 β2/γ1


 and V1 =


∑

i∈P1

Bi + V −1 +
1
γ1

∆−1
2



−1

M2 =


∑

i∈P2

Ai + ∆−1
2

β1

γ1
+ ∆−1

3

β3

γ2


 and V2 =


∑

i∈P2

Bi +
1
γ1

∆−1
2 +

1
γ2

∆−1
3



−1

...

MK =


 ∑

i∈PK

Ai + ∆−1
K βK−1/γK−1


 and VK =


 ∑

i∈PK

Bi +
1

γK−1
∆−1

K



−1

,

where Ai = X t
iΣ

−1
i (yi − Zibi), Bi = X t

iΣ
−1
i X i, and X t

i denotes the transpose of X i.

Further, the conjugate form of the priors chosen for Σi and D leads to known posterior

conditionals and thus to a straightforward implementation of the Gibbs sampler (see

Gilks et al., 1993; Carlin, 1996).

Examining the form of the above posterior conditionals, we observe that the priors

(6) also protect against overfitting in sparse patterns. In particular, in patterns with few

individuals both terms
∑

i∈Pk
X t

iΣ
−1
i (yi − Zibi) and

∑
i∈Pk

X t
iΣ

−1
i X i are downplayed,

while the effect of the fixed-effects of the neighbouring patterns becomes of more impor-

tance. Another approach to take into account sparse patterns in the pattern mixture

framework has been proposed by Roy (2003), using a latent class indicator.

4. Features of the Proposed Method

4.1 Interpretation of the Sensitivity Parameters

Our proposal to associate the βk’s through the γ parameters is in the spirit of the

subjective parameters proposed by Rubin (1977). Rubin considered the univariate case

using a simple linear model and postulated a prior conditional distribution for the pa-

rameters of the nonrespondents, with mean equal to the parameters of the respondents
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and with variance controlled by what he called subjective parameters. This formulation

provided a prior intuitive range for the plausible values of the parameter of the nonrespon-

dents. Analogously, in our case the vector γ = (γ1, . . . , γK−1)
t of sensitivity parameters

expresses a subjective relationship between the fixed-effects parameter vectors of the dif-

ferent dropout patterns, which implicitly also controls the fixed-effects parameter vector

for the nonrespondents. Based on formulation (6) and under an approximate Normal or

Student’s-t distribution for the posterior of the fixed-effects, a plausible range for
√

γk−1

is from zero to four or five, since it reflects the number of
√

∆k,jj standard errors around

βkj. As a practical guideline a sensitivity analysis for increasing
√

γk−1 by steps of one

is suggested; in case of very sensitive results this could be refined by steps of 0.5.

The whole methodology we have developed so far considers a different γ parameter

for each dropout pattern, except from the pattern of completers. Unfortunately, this

impedes practicality since a simultaneous consideration of different values for all the γ

parameters is required. A functional form of these parameters could be used instead, to

simplify matters. In particular, in order to take into account the time lag between the

dropout times we use here

γk = γ(tk+1 − tk), (9)

where γ ∈ (0,∞) and tk+1−tk denotes the time lag in the dropout times between pattern

k + 1 and pattern k. Other functional forms could be used as well.

Moreover, under (9) the γ parameter can also be used to partially determine the

dropout mechanism, under Rubin’s taxonomy (Rubin, 1976; Little and Rubin, 2002).

In fact, depending on the choice of the value of γ, we can see from (6) that we move

from a Missing Completely At Random (MCAR) to a Missing Not At Random (MNAR)

direction. More specifically, for γ → 0 we force all the dropout patterns to share the same

fixed-effects parameters which, combined with the fact that we assume the same variance

components across patterns, implies MCAR. On the other hand for γ → ∞ we let each

dropout pattern to have its own fixed-effects parameter vector. However, we note that

there is no value of γ leading to a Missing At Random (MAR) dropout mechanism. Even

though this fact could be regarded as a potential drawback of the proposed method,

the sensitivity analysis can be easily augmented by fitting the linear mixed model to

the available data which provides a valid fit under MAR. Further, by setting γ ≈ 0
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we explicitly restrict the model to MCAR, and consequently discrepancies between the

fitted average evolutions and the sample average evolutions for γ → 0 can be regarded

as evidence against MCAR. However, since both MAR and MNAR are assumptions that

cannot be tested based on the data at hand, we should note that the observed data

containing only information to reject MCAR. Thus, focus is given on sensitivity of the

results under various choices for γ and not in estimating it.

4.2 Choosing the Dispersion Matrices ∆k

The dispersion matrices ∆k, introduced in (6), are closely related to the γ parameters.

In particular, they provide a variability basis such that the γ’s have a unified effect on all

the fixed-effects parameters. Thus, their choice has a direct effect on γ’s interpretation, as

it has been described in Section 3.2. In the absence of any prior information, a practical

method to obtain ∆k’s is to fit the linear mixed-effects model in each pattern, under

maximum likelihood, and use the diagonal elements of the inverse information matrix for

β̂k’s.

4.3 Connection with the Identifying Restrictions Approach

As we discussed in Section 2, a common criticism of the extrapolation method is that

the assumptions about the dropout process in terms of MCAR, MAR and MNAR are

not immediately clear. Thus, identifying restrictions for the distribution of Y m|Y o are

usually regarded as a better choice, since explicit assumptions are made. In fact, the

methodology we have developed here is an improvement of the extrapolation method

towards the identifying restrictions approach.

To see this we consider the simple scenario of two dropout patterns, namely the

completers with a total of N measurements and the dropouts with N − s available mea-

surements. According to (3), the longitudinal measurement model for the two patterns

is of the form 


Y o

Y m


 =




Xo 0

0 Xm







βdo

βdm


 + Zb + ε (10)

Y = Xβc + Zb + ε, (11)

where (10) is the model for the pattern of dropouts, with βdm and βdo denoting the fixed-

11



effects parameter vectors corresponding to the missing and observed cases, respectively,

and Xo and Xm denote the first N − s and the last s rows of the design matrix X

for the dropouts. Similarly, (11) is the model for the pattern of completers with βc the

corresponding fixed-effects parameter vector. Moreover, for simplicity of exposition, we

assume that cov(ε) = Σi = σ2Ini
, where ni is the number of measurements for the ith

individual (either N or N − s here).

Since we work under the normality assumption, the predictive distribution Y m|Y o

for the dropouts is of the form

Y m|Y o ∼ N(Xmβdm + V 1(y
o −Xoβdo), V 2), (12)

where V 1 = ZmDZt
o[ZoDZt

o + σ2I]−1, V 2 = [ZmDZt
m + σ2I] − V 1ZoDZt

m, and

Zm, Zo are defined analogously to Xm, Xo. Under the restriction of common variance

components in the two patterns, the only unidentified component in (12) is the parameter

vector βdm.

Considering the above example, the only difference between the ordinary extrapola-

tion method, an identifying restrictions approach and the method we propose here is in

the choice of βdm and βdo in (12). The extrapolation method assumes a common βe in

place of βdm and βdo. In particular, the ordinary extrapolation method sets βe ≡ βdo

whereas our method assumes that βe ≡ β∗, where β∗ is the fixed-effects parameter vector

based on (8). On the other hand, the complete case, available case, and neighbouring

case missing values restrictions coincide in the case of two patterns (see e.g., Thijs et al.,

2002) and assume that βdm ≡ βc. If we consider the posterior conditional means as

point estimators for the fixed-effects parameters and moreover assume negligible prior

information for the case that we estimate βdo and βc separately, we get that

βdo =

[∑
i∈Pd

X t
iX i

]−1 [∑
i∈Pd

X t
i(y

o
i −Zibi)

]
,

βc =

[∑
i∈Pc

X t
iX i

]−1 [∑
i∈Pc

X t
i(yi −Zibi)

]
,

β∗ =

[
γ

∑
i∈Pd

X t
iX i + σ2∆−1

]−1 [
γ

∑
i∈Pd

X t
i(y

o
i −Zibi) + σ2∆−1βc

]
,

where ∆ quantifies the prior variability of βdo, and Pc and Pd denote the sets of com-

pleters and dropouts, respectively. Based on the above expressions we can see that our
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approach is a compromise between the ordinary extrapolation method and the identi-

fying restrictions approach, since β∗ can be regarded as a weighted average of both βc

and βdo with weights determined by the sensitivity parameter γ and σ2∆−1. Thus using

β∗, Y m|Y o is identified using information from both the completers and the dropouts,

whereby relaxing also the assumption of completely different measurement models per

dropout pattern.

5. The Toenail Study

We continue with the analysis of the Toenail study which was introduced in Section 1. For

our purposes, we will only consider one of the secondary endpoints, i.e., the unaffected

nail length which is measured as follows: initially, the treating physician indicates one of

the affected toenails as the target nail; at each occasion, the unaffected nail length of the

target nail is measured in millimeters. This response obviously relates to the toe size.

Therefore, we will only include here those patients for whom the target nail was one of

the two big toenails. This reduces our sample under consideration to 150 subjects for

the terbinafine group and 148 subjects for the itraconazole group.

Our primary interest is in the comparison of the average evolutions between the two

treatment groups. Previous analyses of the same data (Verbeke et al., 2001; Verbeke and

Molenberghs, 2000) using both selection and pattern mixture models, have suggested a

potential sensitivity of the results. Namely, there seemed to exist a discrepancy between

the marginal average evolutions obtained from the selection model and those from the

pattern mixture model using the extrapolation method. A possible explanation was

that the sparse patterns significantly alter the shape of the marginal average evolutions

obtained from the latter approach. In the light of these findings, here we allow the

patterns to affect each other according to our proposal and perform a sensitivity analysis.

The previous analyses also showed that quadratic time trends adequately capture the

mean longitudinal profiles, while random-intercepts satisfactorily model the correlation

structure. Following these results, we also here assume that p(Y |R) is a linear mixed

model of the form

Y o
ij =





(βA0(k) + bi) + βA1(k)tij + βA2(k)t2ij + εij, group A

(βB0(k) + bi) + βB1(k)tij + βB2(k)t2ij + εij, group B

(13)
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where A denotes the terbinafine group, B denotes the itraconazole group, ti is the time

variable and β(k) denotes the coefficient of the kth dropout pattern. For the last two

patterns (recall that k = 1 corresponds to the completers) it is immediately seen that we

only have information to fit constant average trends and linear average trends, respec-

tively. Thus, we restrict the parameters in model (13), according to βA1(7) = βA1(6),

βA2(7) = βA2(6) = βA2(5), and βB1(7) = βB1(6), βB2(7) = βB2(6) = βB2(5). Moreover,

for k = 7 there is only one measurement per subject and thus no random-intercepts can

be included into the model.

To assess the sensitivity of the results we have considered
√

γ values in the set

S = {0.01, 0.5, 1, 2, 5}. The two extremes, namely 0.01 and 5, are taken such that

they correspond to small and large variance for the prior conditionals (6), respectively.

Indicative estimates for the ∆k matrices are obtained by fitting model (13) per dropout

pattern under maximum likelihood. In order to supplement the sensitivity analysis with

the MAR scenario, we also fit the linear mixed effects model to the available data. For

each value in S, 60000 Gibbs sampling iterations are used of which the first 10000 are

discarded as burn-in. For each chain common graphical checks (e.g., trace-plots, etc.)

were performed to assess convergence.

The dropout probabilities are estimated under the multinomial model presented in

Section 3.1. We initially assume different cell probabilities for the two groups; however,

the likelihood ratio test with the model that assumes equal cell probabilities was non sig-

nificant (p-value = 0.443). The estimated dropout probabilities and their corresponding

standard errors, for the reduced model, are presented in Table 2.

[Table 2 about here.]

The evaluation of the marginal expectations relies on the extrapolation of the fitted aver-

age profiles using the posterior modes obtained from (8). In order to enhance predictabil-

ity and under the restrictions in model (13), for the patterns with one and two available

measurements we borrow the linear and quadratic time effects, or just the quadratic time

effect, from the patterns with two and three available measurements, respectively. Figure

2 depicts the marginal average evolutions for the various values of the γ parameter; in

each panel, the sample marginal average evolutions are also plotted in order to check the

fit of the model on the observed data.
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[Figure 2 about here.]

In general, we observe some sensitivity in the shapes of the fitted average evolutions,

while MAR and
√

γ = 2 seem to provide a good fit to the observed data. However, the

fit to the observed should not be considered as a criterion for model selection since the

observed profiles are incomplete (e.g., see Diggle et al., 2002, sec. 13.3). A comparison

between the fitted MCAR evolutions (i.e.,
√

γ = 0.01) and the sample evolutions reveals

discrepancies of the fitted model, especially in baseline for the itraconazole group and

onwards for the terbinafine group. This finding suggests that the MCAR assumption is

not valid, which is in line with the findings of Verbeke et al. (2001) using a selection

modelling approach.

The main interest of the study was to compare marginal average differences between

the two treatment groups. Taking into account the randomization, i.e., no treatment

difference at baseline, and under (13) this can be formally expressed through the following

hypothesis,

H0 :





7∑
k=1

πkβA1(k)−
7∑

k=1

πkβB1(k) = 0

7∑
k=1

πkβA2(k)−
7∑

k=1

πkβB2(k) = 0

,

versus the alternative that H0 does not hold. Taking advantage of the MCMC output

we estimate directly the probability of at least one marginal fixed-effect parameter being

equal for the two treatments, i.e.,

P = 1− Pr
(
{|β̃1| < ε} ∩ {|β̃2| < ε}

)
, (14)

where β̃m = βm/σ̂βm , σ̂βm is an estimate of the standard deviation for the posterior

distribution of βm, and βm =
7∑

k=1

πk(βAm(k) − βBm(k)), with m = 1, 2. Based on an

approximate Normal or Student’s-t assumption for the posterior distribution of the mar-

ginal fixed-effects β̃m, we take ε equal to 2. The estimates of P are presented in Table

3.

[Table 3 about here.]

In all cases there is not enough evidence of a significant treatment effect, which is in

agreement with the results of the previous analyses. However, we observe small fluc-

tuations, especially for the two extreme γ values and the MAR setting. This reveals
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a potential sensitivity of inference to the chosen value of γ, which could be of major

importance if the treatment effect was more significant.

6. Conclusion

We have proposed a new method for sensitivity analysis in pattern mixture models under

the extrapolation method and demonstrated its usage through a real data example. The

two main strengths of this procedure are that it specifies a flexible relationship between

the fixed-effects parameters which is in line with the identifying restrictions approach

and also shares the simplicity of the ordinary extrapolation method.

The linear mixed-effects measurement model we have considered in Section 3.1 is

a constrained version of the full pattern mixture model, assuming that the covariance

structures D and Σi are the same across patterns. This simplified version of the model

could have an effect on the precision estimates, especially when there are big discrep-

ancies between the covariance structures of different patterns. In cases where there are

indications for different covariance structures among different patterns, our approach

could be extended to the covariance parameters as well. In particular, a set of prior

conditionals, in the spirit of (6), could be postulated for the variance components and

appropriate modifications could be applied to the posterior conditionals. However, two

potential difficulties with such an extension arise; firstly, Metropolis-Hastings steps would

be required in the MCMC algorithm since the posterior conditionals are not of known

forms, and secondly, there would be a much larger set of sensitivity parameters to be

considered.
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Figure 1. Average profiles for each dropout pattern, based on sample means at each
occasion. For each pattern the number of subjects in group A (terbinafine group) and in
group B (itraconazole group) is denoted by nA and nB, respectively.
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Figure 2. Fitted marginal average evolutions for various values of γ and MAR. The
solid line denotes the terbinafine group and the dashed line the itraconazole group. The
bold solid and dashed lines with circles depict the sample marginal average evolutions,
for the terbinafine group and the itraconazole group, respectively.
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Table 1
Toenail Data. Summary of the number of observations taken at each occasion in the

TDO study, for each group separately and in total.

# Observations # patients per dropout pattern

Time (months) terbinafine itraconazole Total terbinafine itraconazole Total

0 150 148 298 1 6 7

1 149 142 291 3 4 7

2 146 138 284 6 7 13

3 140 131 271 9 7 16

6 131 124 255 11 15 26

9 120 109 229 2 1 3

12 118 108 226 118 108 226
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Table 2
Fitted dropout probabilities and standard errors under the multinomial model.

Dropout pattern k: 1 2 3 4 5 6 7

Fitted prob. π̂k 0.758 0.010 0.087 0.054 0.044 0.023 0.023

Stand. error π̂k 0.025 0.006 0.016 0.013 0.012 0.009 0.010
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Table 3
Estimated probability of at least one marginal fixed-effect being equal for the two

treatments, for various values of γ under (9) and MAR.

√
γ 0.01 0.5 1 2 5 MAR

P 26.27% 22.71% 22.48% 22.54% 23.56% 16.82%
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