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Abstract

This paper proposes a general and simple procedure that can be applied to establish classification
rules for application with multiple-class longitudinal data. The procedure is applied to pre-clinical
pharmaco-electroencephalogram (EEG) studies aiming at characterizing psychotropic drug effects on
the basis of spectral EEG analysis. It is a flexible hierarchical supervised learning tool, allowing to
take the specific nature of the multiple drug classes into account, as well as the longitudinal aspect
of the data. Several variations to this procedure are applied to the EEG data, generally producing
comparable results, in particular similar association between the sleeping stages and the psychotropic
drug classes.
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1 Introduction

Classification techniques are used in a wide range of human activity. One such use, for example, is the

preliminary diagnosis of a patient’s disease in view of instantaneously selecting treatment while awaiting

conclusive test results. In fact, the term could be used in any context in which some decision is made on

the basis of available information, and a classification procedure is then some formal method for making

such judgments in a particular situation. In this research, we will construct a method for application with

a continuously accruing sequence of cases, in which each newly collected case must be assigned to one of
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a number of pre-defined classes on the basis of observed features. To build such a classification procedure

from a set of data for which we know the true classes, we will employ discrimination and/or supervised

learning.

For longitudinal data classical discriminant analysis or conventional supervised learning is not nec-

essarily one’s best option, since it ignores the correlation between measurements on the same subject. Of

course, developing classification rules for complex data structures, such as multiple-class problems within

a longitudinal design, is a non-trivial task and requires appropriately tailored methods. The combination

of precisely these features is encountered in so-called pharmaco-electroencephalogram (EEG) experiments,

conducted to establish classification rules for differing psychotropic drug classes. These experiments moti-

vate our research. Classical supervised learning analysis is not suited to handle the combination of these

features. A flexible two-step procedure called doubly hierarchical discriminant analysis (Wouters et al ,

2006) has been proposed to deal with such problems.

In this paper, we aim to classify psychotropic drugs based on the sleep wake behaviour of rats. The

so-called doubly hierarchical discriminant analysis or DHDA, introduced by Wouters et al (2006), has been

shown to perform adequate in the experimental data described in the next section, but there was room

for improvement, as acknowledged by aforementioned authors. Here, we introduce a more general form of

the DHDA procedure, called doubly hierarchical supervised learning analysis, and apply several particular

instances of the procedure to the data.

In the next section, the data are described and some background on the experiments is provided.

In Section 3, the methodology is explained, starting from the general form of the doubly hierarchical

supervised learning analysis, followed by a number of different versions. In Section 4, these variations to

the theme are put to the test on the data and afterwards the results will be compared.

2 Data Description

Many different recording technologies exist today for measuring brain activity. A graphical record of

electrical activity of the brain, produced by an electro-encephalograph (EEG), is one of them. EEG
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experiments have been used for many purposes. We are interested in particular in EEG studies aiming

at characterizing psychotropic drug effects on the basis of spectral EEG analysis. Psychotropic drugs

can be divided into 5 major classes: antidepressants, antipsychotics, anxiolytics, hypnotics and stimulants

(Deniker, 1982; Oughourlian, 1984; Cohen and Cailloux-Cohen, 1995), each one typically named according

to its main indication in psychiatry. Classifying drugs solely based on chemical structure would create

numerous categories, which would not necessarily be indicative of their therapeutic use. New chemical

entities ideally should be classified based on their potential therapeutic activity as early as possible in the

drug discovery process. Availability of an advanced classification model or tool that uses a standardized

physiological read-out, such as the EEG, would greatly aid efficient determination of psychoactive properties

of newly synthesized chemicals.

Pharmaco-electroencephalographical studies aim to characterize psychotropic drug effects, usually

on the basis of spectral EEGs, which reflect cortical brain activity. Frequency measurements, in Hertz, range

from below 3.5 Hz per second (so-called delta activity), over 4–7.5 Hz/s (theta activity), 8–12 Hz/s (alpha

activity), and finally above 13 Hz/s (beta activity). EEG registrations are reliably carried out in humans

and mammals alike. In rodents, the EEG can be used to determine sleep-wake architecture, when carried

out in conjunction with movement monitoring and a so-called electromyogram (EMG), which records muscle

activity. It clearly defines states of vigilance that can be separated out and used to classify psychotropic

agents. Typically, six sleep-wake stages are distinguished, irrespective of the treatment received: (1) active

wake (AW), characterized by movement, theta activity, and high EMG; (2) passive wake (PW), without

movement; (3) light sleep (SWS1), characterized by EEG spindles (short lasting burst of phasic brain

activity, indicative of transitions in neuronal synchronization); (4) deep sleep (SWS2), with slow waves and

prominent delta activity; (5) intermediate stage sleep (IS), with spindle-like activity against a background

of theta activity and low EMG; (6) Rapid Eye Movement or REM Sleep (RS), with theta activity and very

low EMG.

The study considered here includes 26 psychoactive agents at 4 different doses, including a zero

dose. For each of these compounds 32 rats were randomly assigned to the 4 doses. The brain signals of

the rats are monitored during a period of 16 hours, divided into a light period (10 hours) and a period
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of darkness (6 hours). The treatment is administered at the beginning of the light period and after each

experiment 3 weeks of washout period are considered before using the same rat in another experiment.

The effects of the compounds on sleep-waking behavior are assessed using several hypnogram parameters.

For every interval of 30 minutes the time spent in each of the six sleeping stages is measured (in minutes).

The set of data constructed based on this experiment includes the compound-dose combinations

for which we know exactly to which class they belong. These compound-dose combinations are also

extensively used in clinical practice. The data consist of 64 compound-dose combination: 26 placebos, 14

antidepressants, 7 antipsychotics, 2 anxiolytics, 5 hypnotics, and 10 stimulants.

3 Doubly Hierarchical Supervised Learning Analysis

Doubly hierarchical discriminant analysis (DHDA) has been proposed by Wouters et al (2006). In this

paper, we propose a more general form of the DHDA procedure, called doubly hierarchical supervised

learning analysis (DHSLA).

Figure 1, About Here.

The procedure is schematically represented in Figure 1. In a first stage, the longitudinal profiles

are modeled and appropriate summaries extracted from the model fit. These summary measures are then

used, in the second stage, as input for the supervised learning analysis, in view of classifying the data. This

second stage proceeds in a hierarchical fashion. Let us zoom in on each of the two stages in turn.

3.1 Stage I: Modelling the Longitudinal Data

In the first stage, we model the longitudinal data so as to obtain relevant summaries from the profiles. A

modelling approach that allows for capturing complexities and intricacies in the data, while lending itself

easily to the obtention of simple summaries is to be preferred. While several approaches are possible, we will

use so-called fractional polynomial mixed models (FPMM). Linear mixed effects models (LMM) are a widely

used tool for modelling longitudinal data (Verbeke and Molenberghs, 2000). To capture the irregular trends

in our profiles, we combine the LMM with the use of fractional polynomial predictor functions (Royston



5

and Altman, 1994). The details of this approach can be found in Wouters et al (2006). In our case, for

each compound-dose combination and each sleeping stage, separate models are fitted to the light and dark

periods. Not only the coefficients, but also the fractional polynomial powers, denoted by subscripted p’s,

are allowed to differ across compound-dose combinations. For example, for the minutes spent in Active

Wake in time period k for subject j in compound-dose combination i the fractional polynomial mixed

model, obtained using the model-selection guidelines of Royston and Altman (1994), laid out in Verbeke

and Molenberghs (2000), and applied by Wouters et al (2006), becomes

(AW min)ijk =[
(β0i + b0ij) + (β1i + b1ij)

tp1i`

k − E[tp1i` ]√
Var[tp1i` ]

+ (β2i + b2ij)
tp2i`

k − E[tp2i` ]√
Var[tp2i` ]

]
I(tk) +

[
(γ0i + c0ij) + (γ1i + c1ij)

tp1id

k − E[tp1id ]√
Var[tp1id ]

+ (γ2i + c2ij)
tp2id

k − E[tp2id ]√
Var[tp2id ]

]
(1− I(tk))

+εijk,

where (AW min)ijk is the number of minutes spent in AW for rat j in compound-dose combination i

during the kth time period (i = 1, . . . , 64; j = 1, . . . , 8; k = 1, . . . , 32). The index ` refers to the light

period, d to the dark period. We standardized the vectors tp1 and tp2 , where t is the vector of all time

periods, t = (1, . . . , 32)′. The vectors βi = (β0i, β1i, β2i) and γi = (γ0i, γ1i, γ2i) are the compound-dose

specific regression coefficients for the light and the dark periods, respectively, while bij = (b0ij , b1ij , b2ij)

and cij = (c0ij , c1ij , c2ij) are the random effects or rat-specific coefficients. The random effects bij and

cij are assumed to be independent with distributions N(0,Db
i ) and N(0, Dc

i ), respectively, where Db
i and

Dc
i are unstructured 3 × 3 matrices. The residual components εi are also independent with distribution

N(0, σ2
i ). The function I(t) is an indicator function specified as

I(t) =
{

1 if t ≤ 20,
0 otherwise.

This modelling approach allows for an abrupt but natural transition between the light and dark periods,

as well as for a difference in model shape, in agreement with the biology of the experiment.

Given that the drugs are administered at the beginning of the light period and based on experts’

belief that the action may be quite different during the initial period, it is sensible to allow for a different,

perhaps more pronounced action of the drug during the first three hours after administration. Therefore,
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we allow for a separate model for the first three hours:

(AW min)ijk = (δ0i + d0ij) + (δ1i + d1ij)
t
p1if

k − E[tp1if ]√
Var[tp1if ]

+ (δ2i + d2ij)
t
p2if

k − E[tp2if ]√
Var[tp2if ]

+ εijk.

Let us now turn to the second stage.

3.2 Stage II: Hierarchical Supervised Learning Analysis

The continuation of the classification procedure necessitates informative summaries of the highly variable

longitudinal profile available for each rat. To this end, the parameters of the models in the first stage, i.e.,

the collection made up of β0i + b0ij , β1i + b1ij , β2i + b2ij , p1il, p2il, γ0i + c0ij , γ1i + c1ij , γ2i + c2ij , p1id, p2id,

δ0i + d0ij , δ1i + d1ij , δ2i + d2ij , p1if , and p2id, will be used as input in the supervised learning procedure.

To establish and optimize a flexible classification rule, we proceed in a stepwise, hierarchical way.

In a first step we discriminate, for example, stimulants from the other psychotropic classes, using the

parameters describing the longitudinal profile pertaining to some of the sleep-waking stages for the three

different periods considered (first 3 hours, light period, and dark period). Then, focus shifts to the remaining

five classes. This process continues until a complete decision tree, or classification tree, has been built.

Various supervised learning techniques can be used at this stage, three of which will be considered

here: linear (LDA), flexible (FDA), and mixture (MDA) discriminant analysis. A graphical display of the

doubly hierarchical supervised learning analysis, when either LDA, FDA, or MDA are used, is presented

in Figure 2.

Figure 2, About Here.

We will now briefly outline each of the three choices in turn.

3.2.1 Linear Discriminant Analysis

In linear discriminant analysis (Hastie, Tibshirani and Friedman, 2001), each class is assumed to follow a

multivariate normal distribution with common variance-covariance matrix, leading to a linear decision rule.

Another way to think about this method is by assuming one has observations with a qualitative response,
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G say, falling into one of C classes Ω = {1, . . . , C}, for which some features X are measured. Suppose now

that we dispose of a function assigning scores to the classes θ : Ω → R such that a linear regression on X

optimally predicts the class labels. For a sample of the form (gi, xi), i = 1, . . . , n, one then needs to solve

min
β,θ

n∑

i=1

(θ(gi)− xT
i β)2,

with restrictions imposed on θ to avoid a trivial solution.

More generally, we can find up to L ≤ C − 1 sets of independent scorings for each of the class

labels, θ1, . . . , θL. Scores θl and βl are then chosen to minimize the average squared residuals

ASR =
1
n

L∑

`=1

[
n∑

i=1

(θ`(gi)− xT
i β`)2

]
.

The scores are assumed to be mutually orthogonal and normalized, to prevent trivial zero solutions.

3.2.2 Flexible Discriminant Analysis

The linear discriminant analysis of the previous section can be regarded as a sequence of linear regression

followed by classification to the closest class centroid in the space of fits. The linear regression will now be

generalized to a more flexible one (Hastie, Tibshirani and Friedman, 2001). In this more general form, the

regression problems are defined via

ASR =
1
n

L∑

`=1

[
n∑

i=1

(θ`(gi)− f(xi))2 + λJ(f)

]
,

where J is a regularizing function, specific choices of which correspond to specific non-parametric regression

techniques.

In our particular case, we use Multivariate Adaptive Regression Splines (MARS) models (Friedman,

1991). The input space is partitioned into regions, each with its own linear regression equation. The MARS

equation is given by

f(x) = γ0 +
M∑

m=1

γmhm(x),

where M is the number of non-constant terms in the model and hm is a basis function in the collection

C = {(Xj − t)+, (t−Xj)+|t ∈ {x1j , x2j , . . . , xnj}, j = 1, 2, . . . , p} ,

with n is the number of observations.
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3.2.3 Mixture Discriminant Analysis

Mixture discriminant analysis (Hastie, Tibshirani and Friedman, 2001) is an extension of LDA, to be viewed

as a prototype classifier with each class represented by its centroid. We assign an observation to the closest

centroid using an appropriate distance measure. In many situations, a single prototype per class is not

sufficient, in which case mixture models can be used. Assume classes have several prototypes, thence a

Gaussian mixture model for the kth class could be considered. The corresponding density is

P (X|C = k) =
Rk∑
r=1

πkrφ(X; µkr, Σ),

where the mixing proportions satisfy
∑Rk

r=1 πkr = 1, Rk is the prototype for the kth class and Σ the

covariance matrix used as a metric throughout. For class k with a priori probabilities Πk, we estimate the

parameters by maximizing the joint log-likelihood:

K∑

k=1

∑

gi=k

log

[
Rk∑
r=1

πkrφ(X; µkr, Σ)Πk

]
.

The expectation-maximization (EM) algorithm is a convenient mode to obtain maximum likelihood esti-

mates. In order to obtain the maximum likelihood estimates, we use the EM algorithm (Dempster, Laird,

and Rubin, 1977). The algorithm consists of iterating between the expectation (E) and maximization (M)

steps, until convergence. In our situation, they take the following forms.

E-step: Given the current values for the parameters, compute the weights associated with the subclasses

ckr:

W (ckr|xi, gi) =
πkrφ(xi; µkr, Σ)∑Rk

l=1 πklφ(xi; µkl,Σ)
. (1)

M-Step: Compute weighted MLEs for the parameters of each of the component Gaussian densities, within

each of the classes, using the weights obtained from (1).

3.3 Selection Procedure

We consider two different selection procedures, both based on 10-fold cross-validation, a technique to be

described next, inspired by the fact that the dataset can be divided randomly at each of two different

hierarchical levels.
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In the first approach (Selection Procedure I), we use rats as the unit of analysis. The 512 rats

comprising the dataset are then randomly divided into ten groups. For every parameter combination

obtained from the fractional polynomial models and for each sleep-waking stage, one of the 10 samples is

used as a test dataset, while the remaining 9 samples are assigned the role of training sets. For the test

dataset, both the misclassification error and the posterior probabilities are calculated. The combination

of sleep-waking stages performing best in terms of posterior probabilities and misclassification error is

retained. This is repeated for every step in the DHSLA.

Selection Procedure II uses 10-fold cross-validation at the compound-dose combination level. We

randomly divide the 64 such combinations into ten groups and then proceed in the same way it was

described above.

The posterior probabilities of belonging to each of the six drug classes are determined in an iterative

way. At the first split of the agents into two subclasses, posterior probabilities are calculated for each of

them. Generally, given that k splits have been made, the values of the posterior probabilities at split k + 1

are multiplied with the posterior probabilities of not being classified at the previous steps in the class we

were interested to discriminate from the rest Wouters et al (2006).

For each selection procedure, the error count is calculated at both levels, i.e., rat and compound-

dose combination. The first is computed as the average of the percentage of misclassified rats in each class

(errorrat), while the second uses the percentages of compound-dose combinations that are misclassified in

a particular class (errorc-d).

4 Results

Upon building a fractional polynomial mixed model for the light and dark periods, as well as for the first

three hour period, separately for each of the compound-dose combinations observed, the parameters of all

these models are used in a stepwise discriminant analysis.

In all three discriminant procedures, the order in which the classes are separated is the same, but

the sleeping stages used in every step are allowed to differ. We sequentially discriminate stimulants, then
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anxiolytics, antipsychotics, antidepressants; finally hypnotics are separated from placebo. The sleeping

stages used in each step of Stage II are obtained by means of both selection procedures described in

Section 3.3. Because the first three hour period is part of the light period, the first three hours are

excluded from the latter to avoid double use.

In what follows, the results obtained with linear discriminant analysis, flexible discriminant analysis

built on MARS, and mixture discriminant analysis with 2 subclasses per group are compared with respect

to the sleeping stages used in each step and the performance with 10-fold cross-validation at the rat level

as well as at the compound-dose level.

4.1 Linear Discriminant Analysis

In Table 1, the sleeping stages retained per step for the linear discriminant analyses, obtained with 10-fold

cross-validation on the rat level and the compound-dose combination level are shown.

Table 1, About Here.

The number of sleeping stages needed in each step is similar for the two selection procedures.

Some sleeping stages are selected by both selection procedures for some steps. For example, to discrimi-

nate stimulants, Active Wake during the first 3 hours and light sleep in the dark period are selected by both

analyzes. This lines up with expectation because a stimulant generally increases Active Wake and reduces

Light Sleep and Deep Sleep. For the other classes, we observe some further similarities between the two

selection procedures. For anxiolytics, Active Wake, Quiet Wake, and Light Sleep are selected either from

the light period, or from the first three hours. Quiet Wake, Deep Sleep, and Intermediate Stage Sleep in

the light period,together with Active Wake in the dark period are always selected for the classification of

antipsychotics. For antidepressants, Active Wake and Light Sleep in the first three hour period, Intermedi-

ate Stage Sleep, and REM Sleep in the light period are selected by both procedures. Finally for hypnotics,

Light, Deep, and REM Sleep in the light period or in the first three hours are retained by both selection

procedures.
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Table 2 shows the classification results obtained with DHSLA when fractional polynomials and

linear discriminant analysis are used in each of the two stages and for both selection procedures. For every

psychotropic class, the adjusted posterior probabilities for the six classes are given. The observed adjusted

posterior probabilities obtained without cross-validation are presented parenthetically.

Table 2, About Here.

As expected, the adjusted posterior probabilities, obtained with Selection Procedure I, are higher

than those coming from Selection Procedure II. Leaving out one tenth of the rats will rarely result in

leaving out a whole compound-dose combination, hence there is still information on all compound-dose

combinations in the training dataset, leading to better classification. This is different when applying

Selection Procedure II, when good results are obtained only when a representative sample of the compound-

dose combination population is taken for the training of the procedure.

The adjusted posterior probabilities for correct classification obtained with Selection Procedure

I are all very high and above 90%. The error count for this selection procedure is only 0.01 at the rat

level and 0.00 at the level of the compound-dose combinations. For Selection Procedure II, the adjusted

posterior probabilities for placebo, antidepressants, and stimulants remain high (above 80%). The ones for

antipsychotics, anxiolytics, and hypnotics are somewhat lower (around 60%). For anxiolytics and hypnotics

this can be explained by the low number of compound-doses in this class, 2 and 5, respectively. Leaving

out one or more of these compound-dose combinations will lead to limited amounts of information about

the class in the training dataset. The error counts for this selection procedure are 0.18 and 0.07 at the rat

and compound-dose levels, respectively.

4.2 Flexible Discriminant Analysis

The sleeping stages selected per step when flexible discriminant analysis is used in the DHSLA for the

selection procedures described in Section 3.3 are shown in Table 3. Similar to the case when the linear

discriminant analysis is used in the DHSLA, we see that the number of sleeping stages retained does not

differ much for both selection procedures. Also, we note that for some classes both selection procedures
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arrive at selecting the same sleeping stages, indicating association between the class and its effect on a

particular sleeping stage. For example, for stimulants, we retain Light and Deep Sleep in the light period,

and Passive Wake in the dark period, with either selection procedure. For anxiolytics, REM Sleep during

the first three hours and Light Sleep in the dark period are common to both selection procedures. Active

Wake and Deep Sleep in the dark period are retained for antipsychotics and Active Wake, Deep Sleep,

Intermediate Stage Sleep, and REM Sleep in the light period for antidepressants. Finally, for hypnotics,

Deep Sleep in the light period is selected with both selection procedures.

Table 3, About Here.

Table 4, About Here.

Regarding the adjusted posterior probability, Table 4 displays very high posterior probabilities

for the correct classification with flexible discriminant analysis, obtained with Selection Procedure I. For

Selection Procedure II, high posterior probabilities for placebo, antidepressants, and stimulants are obtained

too, while those for antipsychotics and hypnotics are somewhat lower but still acceptable. More problematic

are the anxiolytic compounds where we get an adjusted posterior probability of only 28%. However, this

does not come too much as a surprise since the dataset only contains two compound-dose combinations in

this class.

4.3 Mixture Discriminant Analysis

The corresponding results for mixture discriminant analysis are presented in Tables 5 and 6, respectively.

Table 5, About Here.

Similar conclusions can be drawn with respect to the sleeping stages retained at each step. Fur-

thermore, the number of stages retained is similar for both selection procedures, and some are selected by

both. For example, for stimulants, Deep Sleep in the light period, REM Sleep in the first three hours, and

Active Wake and Light Sleep in the dark period, are chosen irrespective of the selection procedure used.

Similar conclusions can be drawn for the other classes in the hierarchical procedure.
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Table 6, About Here.

For the adjusted posterior probabilities, we observe, once more, very promising results for Selection

Procedure I. All posterior probabilities for the correct classes are above 90%. For Selection Procedure II,

most adjusted posterior probabilities are above 75%, except for anxiolytics and hypnotics. The error count

for this procedure amounts to 15%.

5 Discussion

In this paper, we presented a method for classifying potentially active compounds into a predefined set of

psychotropic classes. Sleep and wake EEG data, longitudinally collected in rats, are used to this effect.

The method proceeds by first analyzing the longitudinal profiles, using the flexible fractional polynomial

regression linear mixed model, and then continuing in a second stage with one of three forms of discriminant

analysis in a second stage: linear, flexible, and mixture discriminant analysis. The second stage is an

instance of supervised learning. Selection of compounds is done using either the individual rat or the

compound by dose combination as unit of analysis.

The number of sleeping stages used by the method at each step is very stable across the three

discriminant techniques for both selection procedures. Some sleeping stages are retained in all analyzes

irrespective of the discriminant analysis or the selection procedure.

It appears that the level on which the cross-validation is performed plays an important role in

the selection of the sleeping stages. In the second step, Deep Sleep is selected in the dark period for all

three discriminant techniques for Selection Procedure II, but does not show up in any of the analyses when

Selection Procedure I is applied. The same is observed for Active Wake in the light period and Passive

Wake in the dark period, for the third step. On the other hand, we have some sleeping stages that are

needed in all three discriminant analyses when using Selection Procedure I, but not at all when Selection

Procedure II is used, such as Deep Sleep in the dark period in the fourth step. For the last step, the same

combination of sleeping stages is retained when Selection Procedure II is combined with linear, flexible,

and mixture discriminant analysis.
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Variables that appear in a certain step for all three discriminant analyses, regardless of the selection

procedure, can be seen as important variables for the discrimination of that particular class from the rest.

The first three hours are part of the light period; therefore we will consider a variable as common when it

is used either in the light period or in the first three hours. In general, Light Sleep and Deep Sleep in either

the light period or the first three hours, and Deep Sleep in the dark period are showing up in the first

step, designed to discriminate stimulants from the rest. This agrees with expectation, because stimulants

generally decrease the time spent in light and deep sleep. For the second step, separating anxiolytics from

the rest, Light Sleep in the light period or the first three hours is selected by 5 out of 6 analyses performed.

Deep Sleep in the light or the first three hour period, Active Wake and Deep Sleep in the dark, appear in

all six analyses in the third step to classify antipsychotics. Active Wake, Light Sleep, Intermediate Stage

Sleep, and REM Sleep in the light or the first three hour period and Intermediate Stage Sleep in the dark

period, seem to be crucial to classify antidepressants. Finally, for hypnotics we see that Active Wake,

Light Sleep, Deep Sleep, and Intermediate Stage Sleep in either the light period or the first three hours are

retained in most of the analyses. The error counts in Selection Procedure I are lower than those obtained

with Selection Procedure II for all discriminant analyses. The error counts on the rat level are higher than

those on the compound-dose level for both selection procedures and in all the discriminant analyses. As

all three discriminant procedures produce comparable results in terms of posterior probabilities and error

counts, it would be fair to recommend the use of linear discriminant analysis in similar settings, also in

view of its simplicity.

For all three discriminant techniques, the adjusted posterior probabilities, obtained with Selection

Procedure I, are much higher than the ones obtained with Selection Procedure II. This was expected,

because leaving out one tenth of the rats at random rarely results in leaving out a whole compound-dose

combination. Therefore, all compound-dose combinations in a certain test dataset are still present in the

corresponding training dataset. This alleviates the classification of a rat in the test dataset.

In Selection Procedure II, we can see that all three discriminant techniques have some difficul-

ties when classifying anxiolytics. This is most pronounced for the flexible discriminant techniques. The

number of compound-dose combinations available for training in this class is playing a major role, only
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two compound-dose combinations is clearly not enough to be able to discriminate the group from the rest.

The same can be seen, although to a lesser extent for hypnotics, where we have only 5 compound-dose

combinations, and antipsychotics with 7 compound-dose combinations.

As a final remark, the methods developed here are tightly linked to the motivating problem,

coming from the wish to classify potentially active psychotropic compounds or, rather, compound-by-dose

combinations. It is evident that the methodology can be used in a variety of similar preclinical and clinical

settings, across the widest range of therapeutic areas.
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Figure 1: Diagram representing doubly hierarchical supervised learning.
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(MDA) are used in Stage II.
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Table 1: Linear Discriminant Analysis. Sleeping stages used in each step of the doubly hierarchical discriminant
analysis with linear discriminant analysis for both selection procedures.

LDA - Selection Procedure I

Step Light period Dark period First 3 hours

(1) Stimul PW SWS2 AW SWS1 RS AW SWS1
(2) Anxio PW SWS1 SWS2 IS RS AW SWS1
(3) Antipsy PW SWS2 IS AW PW SWS2 AW
(4) Antidep PW IS RS SWS1 IS AW SWS1
(5) Hypno AW SWS1 SWS2 IS RS

LDA - Selection Procedure II

Step Light period Dark period First 3 hours

(1) Stimul SWS1 SWS1 RS AW PW
(2) Anxio SWS1 IS PW SWS2 RS
(3) Antipsy PW SWS1 SWS2 IS AW SWS2
(4) Antidep IS RS PW SWS2 IS AW SWS1
(5) Hypno PW SWS2 AW PW SWS2 SWS1 RS

Table 2: Linear Discriminant Analysis. Adjusted posterior probabilities (observed adjusted posterior probabilities)
obtained when FPMM and linear discriminant analysis with Selection Procedure I (upper panel) and Selection
Procedure II (lower panel) are applied. The observed adjusted posterior probabilities obtained without cross-
validation are given in parenthesis.

LDA - Selection Procedure I (errorrat = 0.011 / errorc-d = 0.000)

Drugclass Placebo Antidep Antipsy Anxiolytic Hypnotic Stimulant

Placebo 0.96 (0.98) 0.02 (0.01) 0.02 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Antidepressant 0.00 (0.00) 0.97 (0.97) 0.03 (0.01) 0.00 (0.00) 0.05 (0.02) 0.00 (0.00)
Antipsychotic 0.01 (0.00) 0.05 (0.01) 0.93 (0.98) 0.00 (0.00) 0.00 (0.00) 0.02 (0.00)
Anxiolytic 0.02 (0.00) 0.00 (0.00) 0.02 (0.00) 0.96 (1.00) 0.00 (0.00) 0.00 (0.00)
Hypnotic 0.00 (0.00) 0.01 (0.01) 0.00 (0.01) 0.00 (0.00) 0.99 (0.98) 0.00 (0.00)
Stimulant 0.00 (0.00) 0.01 (0.00) 0.02 (0.00) 0.02 (0.00) 0.00 (0.00) 0.95 (1.00)

LDA - Selection Procedure II (errorrat = 0.176 / errorc-d = 0.069)

Drugclass Placebo Antidep Antipsy Anxiolytic Hypnotic Stimulant

Placebo 0.80 (0.93) 0.08 (0.01) 0.05 (0.01) 0.06 (0.00) 0.01 (0.00) 0.00 (0.04)
Antidepressant 0.05 (0.00) 0.81 (0.88) 0.10 (0.05) 0.00 (0.00) 0.02 (0.05) 0.02 (0.02)
Antipsychotic 0.01 (0.00) 0.19 (0.03) 0.64 (0.96) 0.10 (0.00) 0.00 (0.01) 0.06 (0.00)
Anxiolytic 0.12 (0.14) 0.01 (0.00) 0.09 (0.00) 0.60 (0.81) 0.18 (0.00) 0.00 (0.05)
Hypnotic 0.19 (0.01) 0.00 (0.02) 0.01 (0.04) 0.18 (0.03) 0.62 (0.90) 0.00 (0.00)
Stimulant 0.01 (0.02) 0.07 (0.02) 0.04 (0.00) 0.03 (0.01) 0.04 (0.00) 0.81 (0.96)
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Table 3: Flexible Discrimant Analysis. Sleeping stages used in each step of the doubly hierarchical discriminant
analysis with flexible discriminant analysis for both selection procedures.

FDA - Selection Procedure I

Step Light period Dark period First 3 hours

(1) Stimul SWS1 SWS2 PW SWS1 SWS2 PW
(2) Anxio SWS1 SWS2 IS AW SWS1 RS
(3) Antipsy AW SWS2 RS AW PW SWS2 IS
(4) Antidep AW PW SWS2 IS RS IS
(5) Hypno AW SWS1 SWS2 IS RS

FDA - Selection Procedure II

Step Light period Dark period First 3 hours

(1) Stimul SWS1 SWS2 RS AW PW
(2) Anxio SWS1 AW PW SWS1 PW IS RS
(3) Antipsy PW SWS1 IS AW SWS1 SWS2
(4) Antidep AW SWS1 SWS2 IS RS SWS2
(5) Hypno PW SWS2 AW PW SWS2 AW IS

Table 4: Flexible Discriminant Analysis. Adjusted posterior probabilities (observed adjusted posterior proba-
bilities) obtained when FPMM and flexible discriminant analysis with Selection Procedure I (upper panel) and
Selection Procedure II (lower panel) are applied. The observed adjusted posterior probabilities obtained without
cross-validation are given in parenthesis.

FDA - Selection Procedure I (errorrat = 0.006 / errorc-d = 0.000)

Drugclass Placebo Antidep Antipsy Anxiolytic Hypnotic Stimulant

Placebo 0.99 (0.99) 0.01 (0.00) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Antidepressant 0.00 (0.01) 0.96 (0.92) 0.03 (0.00) 0.00 (0.00) 0.01 (0.07) 0.00 (0.00)
Antipsychotic 0.00 (0.00) 0.02 (0.01) 0.97 (0.99) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00)
Anxiolytic 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.00 (1.00) 0.00 (0.00) 0.00 (0.00)
Hypnotic 0.00 (0.00) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.99 (0.99) 0.00 (0.00)
Stimulant 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.99 (1.00)

FDA - Selection Procedure II (errorrat = 0.167 / errorc-d = 0.090)

Drugclass Placebo Antidep Antipsy Anxiolytic Hypnotic Stimulant

Placebo 0.83 (0.96) 0.08 (0.03) 0.04 (0.01) 0.01 (0.00) 0.04 (0.00) 0.00 (0.00)
Antidepressant 0.03 (0.00) 0.73 (0.79) 0.19 (0.08) 0.02 (0.03) 0.02 (0.06) 0.01 (0.04)
Antipsychotic 0.02 (0.00) 0.11 (0.05) 0.57 (0.95) 0.17 (0.00) 0.02 (0.00) 0.11 (0.00)
Anxiolytic 0.10 (0.00) 0.03 (0.01) 0.29 (0.00) 0.28 (0.99) 0.30 (0.00) 0.00 (0.00)
Hypnotic 0.00 (0.00) 0.26 (0.01) 0.03 (0.01) 0.10 (0.00) 0.60 (0.97) 0.01 (0.01)
Stimulant 0.00 (0.01) 0.04 (0.00) 0.04 (0.01) 0.04 (0.00) 0.00 (0.00) 0.88 (0.98)
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Table 5: Mixture Discriminant Analysis. Sleeping stages used in each step of the doubly hierarchical discriminant
analysis with mixture discriminant analysis for both selection procedures.

MDA - Selection Procedure I

Step Light period Dark period First 3 hours

(1) Stimul PW SWS2 AW SWS1 RS
(2) Anxio PW SWS2 SWS1 SWS2 IS
(3) Antipsy PW SWS2 IS AW PW SWS2 AW
(4) Antidep IS RS IS AW PW SWS1
(5) Hypno AW SWS1 SWS2 IS RS

MDA - Selection Procedure II

Step Light period Dark period First 3 hours

(1) Stimul SWS1 SWS2 AW SWS1 RS
(2) Anxio PW SWS2 RS
(3) Antipsy PW SWS2 IS RS AW SWS2
(4) Antidep IS RS QW SWS2 IS AW SWS1
(5) Hypno PW SWS1 SWS2 RS AW IS

Table 6: Mixture Discriminant Analysis. Adjusted posterior probabilities (observed adjusted posterior proba-
bilities) obtained when FPMM and MDA with Selection Procedure I (upper panel) and Selection Procedure II
(lower panel) are applied. The observed adjusted posterior probabilities obtained without cross-validation are
given in parenthesis.

MDA - Selection Procedure I (errorrat = 0.017 / errorc-d = 0.000)

Drugclass Placebo Antidep Antipsy Anxiolytic Hypnotic Stimulant

Placebo 0.98 (0.99) 0.01 (0.00) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Antidepressant 0.00 (0.00) 0.92 (1.00) 0.04 (0.00) 0.02 (0.00) 0.02 (0.00) 0.00 (0.00)
Antipsychotic 0.02 (0.00) 0.01 (0.00) 0.96 (0.99) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01)
Anxiolytic 0.01 (0.00) 0.02 (0.00) 0.00 (0.00) 0.95 (1.00) 0.02 (0.00) 0.00 (0.00)
Hypnotic 0.00 (0.00) 0.01 (0.00) 0.03 (0.00) 0.02 (0.00) 0.94 (1.00) 0.00 (0.00)
Stimulant 0.03 (0.00) 0.00 (0.00) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00) 0.95 (1.00)

MDA - Selection Procedure II (errorrat = 0.158 / errorc-d = 0.072)

Drugclass Placebo Antidep Antipsy Anxiolytic Hypnotic Stimulant

Placebo 0.78 (0.94) 0.06 (0.01) 0.04 (0.01) 0.04 (0.00) 0.08 (0.00) 0.00 (0.04)
Antidepressant 0.05 (0.02) 0.76 (0.85) 0.04 (0.05) 0.00 (0.00) 0.02 (0.03) 0.13 (0.05)
Antipsychotic 0.01 (0.00) 0.21 (0.01) 0.63 (0.99) 0.07 (0.00) 0.01 (0.00) 0.07 (0.00)
Anxiolytic 0.11 (0.00) 0.12 (0.00) 0.13 (0.00) 0.50 (1.00) 0.14 (0.00) 0.00 (0.00)
Hypnotic 0.04 (0.00) 0.01 (0.00) 0.00 (0.00) 0.20 (0.00) 0.75 (1.00) 0.00 (0.00)
Stimulant 0.00 (0.03) 0.04 (0.01) 0.02 (0.00) 0.01 (0.00) 0.00 (0.00) 0.93 (0.96)


