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Summary

Model selection and assessment with incompletely data pose challenges in addition
to the ones encountered with complete data. There are two main reasons for this. First,
many models describe characteristics of the complete data, in spite of the fact that only
an incomplete subset is observed. Direct comparison between model and data is then
less than straightforward. Second, many commonly used models are more sensitive to
assumptions than in the complete data situation and some of their properties vanish
when they are fitted to incomplete, unbalanced data. These and other issues are brought
forward using two key examples, one of a continuous and one of a categorical nature. We
argue that model assessment ought to consist of two parts: (i) assessment of a model’s
fit to the observed data and (ii) assessing the sensitivity of inferences to unverifiable
assumptions, i.e., to how a model described the unobserved data given the observed
ones.
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1 Introduction

In many longitudinal and multivariate settings, not all measurements envisaged in the design stage

are taken in actual practice. It is important to reflect on the nature and implications of such

incompleteness, or missingness, and properly accommodate it in the modeling process. Early work on

missing values was largely concerned with algorithmic and computational solutions to the induced lack

of balance or deviations from the intended study design (Afifi and Elashoff 1966, Hartley and Hocking

1971). Nowadays, general algorithms such as expectation-maximization (EM) (Dempster, Laird,

and Rubin 1977), and data imputation and augmentation procedures (Rubin 1987), combined with

powerful computing resources and flexible implementations in standard software have largely resolved

the computational difficulties. There remains the difficult and important question of assessing the

impact of missing data on subsequent statistical inference.

When referring to the missing-value, or non-response, process we will use terminology of Little and

Rubin (2002, Chapter 6). A non-response process is said to be missing completely at random (MCAR)

if the missingness is independent of both unobserved and observed data and missing at random (MAR)

if, conditional on the observed data, the missingness is independent of the unobserved measurements.

A process that is neither MCAR nor MAR is termed non-random (MNAR).

Given MAR, a valid analysis that ignores the missing value mechanism can be obtained, within

a likelihood or Bayesian framework, provided the parameters describing the measurement process

are functionally independent of the parameters describing the missingness process, the so-called

parameter distinctness condition. This situation is termed ignorable by Rubin (1976) and Little

and Rubin (2002) and leads to considerable simplification in the analysis (Diggle 1989, Verbeke

and Molenberghs 2000). There is a strong trend, nowadays, to prefer this kind of analyses, in the

likelihood context also termed direct-likelihood analysis, over ad hoc methods such as last observation

carried forward (LOCF), complete case analysis (CC), or simple forms of imputation (Molenberghs

et al 2004, Mallinckrodt et al 2003ab, Jansen et al 2006a). Practically, it means conventional tools

for longitudinal and multivariate data, such as the linear and generalized linear mixed-effects models
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(Verbeke and Molenberghs 2000, Molenberghs and Verbeke 2005) can be used in exactly the same

way as with complete data. Such software tools as the SAS procedures MIXED, NLMIXED, and

GLIMMIX facilitate this paradigm shift.

One should be aware that, in spite of the flexibility and elegance a direct-likelihood method brings,

there are fundamental issues when selecting a model and assessing its fit to the observed data, which

do not occur with complete data. Such issues are the central theme of this paper; already in the

MAR case, but they are compounded further under MNAR.

Indeed, one can never fully rule out MNAR, in which case the missingness mechanism needs to

be modeled alongside the mechanism generating the responses. In the light of this, one approach

could be to estimate from the available data the parameters of a model representing a MNAR

mechanism. It is typically difficult to justify the particular choice of missingness model, and the data

do not necessarily contain information on the parameters of the particular model chosen (Jansen

et al 2006b). For example, different MNAR models may fit the observed data equally well, but

have quite different implications for the unobserved measurements, and hence for the conclusions

to be drawn from the respective analyses. Without additional information one can only distinguish

between such models using their fit to the observed data, and so goodness-of-fit tools alone do not

provide a relevant means of choosing between such models. This implies the necessity of sensitivity

analysis when assessing the quality of inferences from incomplete data, defined, in a broad way,

as an instrument to assess the impact on statistical inferences from varying the, often untestable,

assumptions in an MNAR model. Overviews may be found in Verbeke and Molenberghs (2000),

Molenberghs and Verbeke (2005) and Molenberghs and Kenward (2007).

The ideas will be developed by means of two running examples, which are introduced in Section 2,

along with the model families to be used. Initial analyses are presented as well. A number of issues

arising when analyzing such incomplete data, under MAR as well as MNAR, are enlisted in Section 3.

Ways of tackling the problems are the subject of Section 4.
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2 Running Examples and Their Initial Analyses

In Section 2.1, the orthodontic growth data are introduced, together with the linear mixed models

used for their analysis. Similarly, Section 2.2 is devoted to the introduction of the Slovenian Public

Opinion Survey, along with the model family of Baker, Rosenberger, and DerSimonian (1992).

2.1 The Orthodontic Growth Data

These data, introduced by Pothoff and Roy (1964), contain growth measurements for 11 girls and

16 boys. For each subject, the distance from the center of the pituitary to the maxillary fissure

was recorded at ages 8, 10, 12, and 14. The data were used by Jennrich and Schluchter (1986) to

illustrate estimation methods for unbalanced data, where unbalancedness is now to be interpreted in

the sense of an unequal number of boys and girls. Individual profiles and sex group by age means

are plotted in Figure 1.

Little and Rubin (2002) deleted 9 of the [(11+16)×4] observations, thereby producing 9 incomplete

subjects with a missing measurement at age 10. Their missingness generating mechanism was such

that subjects with a low value at age 8 are more likely to have a missing value at age 10. The data

are presented in Table 1. The measurements that were deleted are marked with an asterisk. We first

focuss on the analysis of the original complete data set.

Jennrich and Schluchter (1986), Little and Rubin (2002), and Verbeke and Molenberghs (1997,

2000) each fitted the same eight models, which can be expressed within the general linear mixed

models family (Verbeke and Molenberghs 2000):

Y i = Xiβ + Zibi + εi, (1)

where

bi ∼ N(0,D),

εi ∼ N(0,Σi),

and bi and εi are statistically independent. Here, Y i is the (4 × 1) response vector, Xi is a (4 × p)
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design matrix for the fixed effects, β is a vector of unknown fixed regression coefficients, Zi is a

(4 × q) design matrix for the random effects, bi is a (q × 1) vector of normally distributed random

parameters, with covariance matrix D, and εi is a normally distributed (4 × 1) random error vector,

with covariance matrix Σ. Estimation and inference is traditionally obtained from likelihood principles

based on the marginal distribution Y i ∼ N(Xiβ, ZiDZ
′
i + Σi).

In our example, every subject contributes exactly four measurements at exactly the same time points.

It is therefore possible to drop the subscript i from the error covariance matrix Σi unless, for example,

sex is thought to influence the residual covariance structure. The random error εi encompasses both

within-subject variability and serial correlation. The mean Xiβ will be a function of age, sex, and/or

the interaction between both.

Table 2 summarizes model fitting and comparison for the eight models originally considered by Jen-

nrich and Schluchter (1987). The initial Model 1 assumes an unstructured group by time model,

producing eight mean parameters. In addition, the variance-covariance matrix is left unstructured,

yielding an additional ten parameters. First, the mean structure is simplified, followed by the covari-

ance structure. Models 2 and 3 consider the mean profiles to be non-parallel and parallel straight

lines, respectively. While the second model fits adequately, the third one does not, based on conven-

tional likelihood ratio tests. Thus, the crossing lines will be retained. Models 4 and 5 assume the

variance-covariance structure to be of a banded (Toeplitz) and first-order auto-regressive (AR(1))

type, respectively. Model 6 assumes the covariance structure to arise from correlated random inter-

cepts and random slopes. In Model 7, a compound-symmetry structure is assumed, which can be

seen as the marginalization of a random-intercepts model. Finally, Model 8 assumes uncorrelated

measurements. Of these, Models 4, 6, and 7 are well-fitting. Model 7, being the most parsimonious

one, will be retained.

Let us now fit the same eight models to the trimmed, incomplete, version of the dataset, as presented

by Little and Rubin (2002), using direct-likelihood methods. This implies the same models are fitted

with the same software tools, but now to a reduced set of data. The results are summarized in

Table 2 as well. Note that the same Model 7 is selected. A quite different picture would emerge,
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were simple, ad hoc, methods used (Molenberghs and Kenward, 2007). Table 3 presents finally

selected models based on a complete case (CC) analysis, on last observation carried forward (LOCF),

as well as on unconditional and conditional mean imputation. A complete case analysis completely

ignores the children with not all 4 observations measured. Under LOCF, the missing observations are

imputed with the last observed measurement, i.e., the observation measured at age 8. Conditional

and unconditional mean imputation replace the missing observations by the gender-specific average,

or the predicted value conditionally on the observed outcomes, respectively. Note that none of these

approaches recover Model 7, even though CC and unconditional mean imputation lead to a slight

modification of this model. In contract, LOCF and conditional mean imputation produce a much

more complicated and therefore cumbersome final model. This illustrates the point that simple

methods such as CC and LOCF, as well as other simple imputation methods, can be quite distorting,

whereas direct likelihood retains its validity under MAR. One might argue that the price to pay is

the need to fit a model to the entire longitudinal sequence, even in circumstances where scientific

interest focuses on the last planned measurement occasion. For continuous data, an obvious choice

for such a full longitudinal model is the linear mixed model. However, for balanced longitudinal data,

where the number of subjects is sufficiently large compared to the number of times, a full multivariate

normal, such as our Model 1, can often be considered, not making assumptions beyond the ones

made by, say, multivariate analysis of variance (MANOVA), ANOVA per time point or, equivalently,

a t test per time point. This is illustrated in Table 4, using Model 1 fitted to the complete and

trimmed growth data. Means for boys at the ages 8 and 10 are displayed. Whenever the data are

balanced, the means are the same regardless of which estimation method is used. Standard errors

are asymptotically the same and even in a small sample like the one considered here, differences

are negligible. Note that CC overestimates the means since the subjects removed from analysis

have lower means than average, and LOCF underestimates the mean at age 10, since the age 8

measurement is carried forward.

When the observed data are analyzed, it is clear that the results from the direct likelihood analyses,

valid under MAR, diverge from the frequentist MANOVA and ANOVA analyses, which are valid only
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under MCAR. MANOVA effectively reduces to CC, due to its inability to take incomplete sequences

into account. ANOVA produces correct inferences only at measurement occasions with complete

data.

2.2 The Slovenian Public Opinion Survey

In 1991 Slovenians voted for independence from former Yugoslavia in a plebiscite. To prepare for

this result, the Slovenian government collected data in the Slovenian Public Opinion Survey (SPO),

a month prior to the plebiscite. Rubin, Stern, and Vehovar (1995) studied the three fundamental

questions added to the SPO and, in comparing it to the plebiscite’s outcome, drew conclusions about

the missing data process.

The three questions added were: (1) Are you in favour of Slovenian independence? (2) Are you

in favour of Slovenia’s secession from Yugoslavia? (3) Will you attend the plebiscite? In spite of

their apparent equivalence, questions (1) and (2) are different since independence would have been

possible in confederal form as well and therefore the secession question is added. Question (3) is

highly relevant since the political decision was taken that not attending was treated as an effective NO

to question (1). Thus, the primary estimand is the proportion θ of people that will be considered as

voting YES, which is the fraction of people answering yes to both the attendance and independence

question. The raw data are presented in Table 5.

The data were used by Molenberghs, Kenward, and Goetghebeur (2001) to illustrate their sensitivity

analysis tool, the interval of ignorance. Molenberghs et al (2006) used the data to exemplify results

about the relationship between MAR and MNAR models. An overview of various analyses can be

found in Molenberghs and Kenward (2007). These authors used the model proposed by Baker,

Rosenberger, and DerSimonian (1992) for the setting of two-way contingency tables subject to non-

monotone missingness. Such data take the form of counts Zr1,r2,jk, where j, k = 0, 1 reference

the two categories and r1, r2 = 0, 1 are the missingness indicators for each. The corresponding
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probabilities are νr1,r2,jk, describing a four-way classification, and modeled as:

ν10,jk = ν11,jkβjk,

ν01,jk = ν11,jkαjk, (2)

ν00,jk = ν11,jkαjkβjkγ.

The α (β) parameters describe missingness in the independence (attendance) question, and γ cap-

tures the interaction between both. The subscripts are missing from γ since Baker, Rosenberger, and

DerSimonian (1992) have shown that this quantity is independent of j and k in every identifiable

model. These authors considered nine models, based on setting αjk and βjk constant in one or more

indices:
BRD1 : (α, β) BRD4 : (α, βk) BRD7 : (αk, βk)

BRD2 : (α, βj) BRD5 : (αj , β) BRD8 : (αj , βk)

BRD3 : (αk, β) BRD6 : (αj , βj) BRD9 : (αk, βj).

Interpretation is straightforward, for example, BRD1 is MCAR, and in BRD4 missingness in the first

variable is constant, while missingness in the second variable depends on its value. BRD6–BRD9

saturate the observed data degrees of freedom, while the lower numbered ones do not, leaving room

for a non-trivial model fit to the observed data.

Rubin, Stern, and Vehovar (1995) conducted several analyses of the data. Their main emphasis

was in determining the proportion θ of the population that would attend the plebiscite and vote

for independence. The three other combinations of these two binary outcomes would be treated as

voting “no”. Their estimates are reproduced in Table 6.

The pessimistic (optimistic) bounds are obtained by setting all incomplete data than can be considered

a yes (no), as yes (no). The complete case estimate for θ is based on the subjects answering all

three questions and the available case estimate is based on the subjects answering the two questions

of interest here. It is noteworthy that both estimates fall outside the pessimistic–optimistic interval

and should be disregarded, since these seemingly straightforward estimators do not take the decision

to treat absences as no’s into account and thus discard available information. This confirms that

care should be taken with the simple methods and a transition to MAR or more elaborate methods
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may be in place. Rubin, Stern, and Vehovar (1995) considered two MAR models, also reported in

Table 6, the first one based on the two questions of direct interest only, the second one using all

three. Finally, they considered a single MNAR model, based on the assumption that missingness on

a question depends on the answer to that question but not on the other questions. Rubin, Stern,

and Vehovar (1995) concluded, owing to the proximity of the MAR analysis to the plebiscite value,

that MAR in this and similar cases may be considered a plausible assumption.

Molenberghs, Kenward, and Goetghebeur (2001) and Molenberghs et al (2006) fitted the BRD

models and Table 7 summarizes the results. BRD1 produces θ̂ = 0.892, exactly the same as the first

MAR estimate obtained by Rubin, Stern, and Vehovar (1995). This does not come as a surprise,

since both models assume MAR and use information from the two main questions. A graphical

representation of the original analyses and the BRD models combined is given in Figure 2.

3 Complexity of Model Selection and Assessment With Incomplete

Data

Model selection and assessment are well established components of statistical analysis, whether in

cross-sectional or correlated settings, including multivariate, longitudinal, and clustered data. There

are several strands of intuition surrounding model selection and assessment. First, it is researchers’

common understanding that “observed'expected” for a well fitting model, which is usually under-

stood to imply that observed and fitted profiles ought to be sufficiently similar in a longitudinal study,

or observed and fitted counts in contingency tables, etc. Second, for the special case of samples

from univariate or multivariate distributions, the estimators for the mean vector and the variance-

covariance matrix are independent, both in a small-sample as well as in an asymptotic sense. Third,

in the same situation, the least squares and maximum likelihood estimators are identical as far as

mean parameters are concerned, and asymptotically equal for covariance parameters. Fourth, in a

likelihood-based context, deviances and related information criteria are considered useful and prac-

tical tools for model assessment. Fifth, saturated models are uniquely defined and at the top of the
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model hierarchy. For contingency tables, such a saturated model is one which exactly reproduces the

observed counts.

It is extremely important to realize that the five points of intuition are based on our experience with

well-balanced designs and complete sets of data. We will now illustrate each of them, grouped into

three categories, by means of the running examples and by general considerations.

3.1 The “observed'expected” Relationship

Figure 3 shows the observed and fitted mean structures for Models 1, 2, 3, and 7, fitted to the

complete version of the growth dataset, as reported in Section 2.1. Note that observed and fitted

means coincide for Model 1. This is in line with general theory, since the model saturates the

group by time mean structure and , in addition, the data are balanced. While, for the incomplete

version of the data, direct likelihood nicely recovers Model 7, observed and expected means do not

coincide anymore, not even under Model 1 where the group by age mean structure is saturated (see

Figure 4). It is important the discrepancy is seen for the mean at age 10, the only one for which

there is missingness.

3.2 The Mean–variance Relationship in a Normal Distribution

Let us consider Table 8 to obtain insight into the effect of the variance-covariance structure on the

mean structure. We retain an unstructured group by age mean structure, and pair it with three

covariance structures. Apart from an unstructured residual covariance matrix (Model 1), we also

consider a CS structure (Model 7b) and an independence structure (Model 8b).

When the data are complete, the choice of covariance structure is immaterial for the point estimates,

whereas the choice is crucial when data are incomplete. Next to the over-correction of Model 1 at

age 10, Model 7b exhibits quite acceptable behavior, but Model 8b coincides with and hence is as

bad as CC at age 10.

Figure 5 presents the mean fit associated with all three models, for both sexes. Whereas the models,
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fitted to the complete data, would all simply pass through the large bullets and diamonds, the

differences clearly emerge from the line profiles when the models are fitted to the incomplete data.

3.3 The Least Squares–Maximum Likelihood Difference

Let us now turn to the difference between ordinary least squares and maximum likelihood. This is a

different issue but, as we will see in what follows, it is closely related to the previous two issues.

In Table 4 we noticed that the maximum likelihood based estimates for the incomplete data differ

from the OLS estimates (MANOVA and ANOVA per time point). Thus, while least-squares regression

and normal distribution based regression produce the same point estimator and asymptotically the

same precision estimator for balanced and complete data, this is no longer true in the incomplete

data setting. The former method is frequentist in nature, the second one likelihood based. We will

illustrate this result for a simple, bivariate normal population with missingness in Section 3.3.1. An

analogous result for an incomplete contingency table will be derived in Section 3.3.2.

3.3.1 A Bivariate Normal Population

Consider a bivariate normal population:

 Yi1

Yi2


 ∼ N





 µ1

µ2


 ,


 σ2

1 σ12

σ12 σ2
2





 , (3)

out of which i = 1, . . . , N subjects are sampled, each of which are supposed to provide j = 1, 2

measurements. Assume further that d subjects complete the study and N − d drop out after the

first measurement occasion.

In a frequentist available case method, the parameters in (3) are estimated using the available

information (Little and Rubin 2002, Verbeke and Molenberghs 2000), i.e., least squares is used. This

implies µ1 and σ2
1 would be estimated using all N subjects, whereas only the remaining d contribute

to the other three parameters. For the mean parameters, this produces:

µ̂1 =
1
N

N∑

i=1

yi1, (4)
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µ̃2 =
1
d

d∑

i=1

yi2, (5)

To obtain an explicit expression for the likelihood-based estimators, along the lines of Little and

Rubin (2002), observe that the conditional density of the second outcome given the first one, based

on (3), can be written as:

Yi2|yi1 ∼ N(β0 + β1yi1, σ
2
2|1), (6)

where 



β1 = ρσ2
σ1
,

β0 = µ2 − β1µ1 = µ2 − ρσ2
σ1
µ1,

σ2
2|1 = σ2

2(1 − ρ2),

ρ = σ12
σ1σ2

.

Now, the MLE for the first mean coincides with (4), underscoring the fact that OLS and ML provide

the same point estimators, when the data are complete. For the second mean, however, we now

obtain:

µ̂2 =
1
N





d∑

i=1

yi2+
N∑

i=d+1

[
y2 + β̂1(yi1 − y1)

]


 . (7)

Here, y1 is the mean of the measurements at the first occasion among the completers. Several

observations can be made. First, under MCAR, the completers and dropouts have equal distributions

at the first occasion, and hence the correction term has expectation zero, rendering, again, the

frequentist (least squares) and likelihood methods equivalent, even though they do not produce

exactly the same point estimator. Second, when there is no correlation between the first and second

measurements, the regression coefficient β1 = 0, and hence there is no correction neither.

Let us assess the implications for the issues raised above, especially in the context of the orthodontic

growth data. The likelihood takes the expectation into account of the missing measurements, given

the observed ones. In our data, this only occurs at the age of 10. Comparing the small (all children)

with the large (remaining children) bullet and diamonds, it is clear that those remaining on study have

larger measurements than those removed. The direct-likelihood correction has produced estimates

at the age of 10 that are situated below the observed means. Obviously, the likelihood tends to
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over-correct in this case. The reason for this is that the estimated correlation between the ages

8 and 10 is substantially larger than the correlation between ages 10 and 12. Such variability is

not unexpected in relatively small samples. Hence, a careful reflection on the variance-covariance

structure is much more important here than when data are complete and balanced. We return to

these points in the next section. There are also important consequences for model checking, since the

difference between observed and expected quantities can be a function of relatively poor fit and the

adjustment of the estimates for missingness not of the MCAR type. We return to this in Section 4.

Additionally, the coefficient β1 depends on the variance components σ2
1 , σ12, and σ2

2 . This implies a

misspecified variance structure may lead to bias in µ̂2. Thus, the well-known independence between

the distributions of the estimators for µ and Σ in multivariate normal population holds, once again,

only when the data are balanced and complete.

The adequate performance of Model 7b owes to the fact that the expected mean of a missing age

10 measurements gives equal weight to all surrounding measurements, rather than overweighting the

age 8 measurement due to an accidentally high correlation. The zero correlations in Model 8b, do

not allow for such a correction and hence the information that the ages 8, 12, and 14 measurements

for the incomplete profiles are relatively low is wasted.

3.3.2 An Incomplete Contingency Table

Analogous to the incomplete bivariate normal sample of the previous section, it is insightful to

consider an incomplete 2 × 2 contingency table:

Z1,11 Z1,12

Z1,21 Z1,22

Z0,1

Z0,2

, (8)

where Zr,jk refers to the number of subjects in the completers (r = 1) and dropout (r = 0) groups,

respectively, with response profile (j, k). Since for the dropouts only the first outcome is observed,

only summaries Zr=0,j are observable. Using all available data, the probability of success at the first

time is estimated as:

π̂1 =
Z1,1+ + Z0,1+

N
, (9)
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where ’+’ instead of a subscript refers to summing over the corresponding subscript. When the

available cases only are used, the estimator for the success probability at the second time is:

π̃2 =
Z1,+1

d
. (10)

Once again, information from the incomplete subjects is not used. It is easy to show that the MLE

under MAR, i.e., ignorability, equals:

π̂2 =
Z1,+1 + Z0,1 · Z1,11

Z1,1+
+ Z0,2 · Z1,21

Z1,2+

N
. (11)

The second and third terms in (11) result from splitting the partially classified counts according to

the corresponding conditional distributions in the first table.

3.4 Deviances and Saturated Models

Revisiting Table 7, we observe that a deviance comparison between BRD1 and any of BRD2–5 and

of the latter with BRD6–9 shows the earlier models suffer from a poor fit. Thus, effectively, we are

left with BRD6–9 as candidate models for the SPO data. However, all four models produce exactly

the same likelihood at maximum. This is not surprising, since the models contain eight parameters,

equal to the number of degrees of freedom in the observed data. Nevertheless, the estimates for θ

differ between these four models. The reason is that θ is a function, not only of the model fit to the

observed data, but of the model’s prediction for the unobserved data, given what has been observed.

Thus, model fit and the concept of saturation can be seen either as relative to the observed data, or

relative to the complete data, observed and unobserved simultaneously. This, again, poses specific

challenges for model selection and assessment of model fit.

All models BRD6–9 being of the MNAR type, it is tempting to conclude that all evidence points

to MNAR as the most plausible missing data mechanism. Nothwithstanding this observation, one

cannot even so much as formally exclude MAR. Indeed, Molenberghs et al (2006) have shown that

for every MNAR model considered, there is an associated MAR “bodyguard”, a model reproducing

the same fit as the original MNAR model, but predicting the unobserved data given the observed ones
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consistent with MAR. Formal derivations are given in Molenberghs et al (2006). The corresponding

estimates for the proportion θ in favor of independence are presented in the last column of Table 7.

Let us informally study the relationship and its implications by means of models BRD1, BRD2, BRD7,

and BRD9, fitted to the SPO data. BRD1 assumes MCAR, all others MNAR. Only BRD7 and BRD9

saturate the observed-data degrees of freedom. The incomplete data as observed, as predicted by

each of the four models, and as predicted by these four models’ MAR counterparts, are displayed in

Table 9. The corresponding predictions of the hypothetical, complete data are presented in Table 10.

The fits of models BRD7, BRD9, and their MAR counterparts, coincide with the observed data. As

follows from Molenberghs et al (2006) every model produces exactly the same fit as does its MAR

counterpart; hence, this is seen for all four models. Since BRD1 is MCAR and hence MAR to begin

with, it is the only coinciding with its MAR counterpart, since indeed BRD1≡BRD1(MAR). Further,

while BRD7 and BRD9 produce a different fit to the complete data, BRD7(MAR) and BRD9(MAR)

coincide. This is because the fits of BRD7 and BRD9 coincide with respect to their fit to the observed

data; because they are saturated, they coincide as such with the incomplete, observed data.

An important observation for model assessment and selection is that the five models BRD6, BRD7,

BRD8, BRD9, and BRD6(MAR)≡BRD7(MAR)≡BRD8(MAR)≡BRD9 at the same time saturate

the observed data degrees of freedom and exhibit a dramatically different prediction of the full data.

Thus, five perfectly fitting models produce five different estimates for the proportion in favor of

independence: 0.741, 0.764, 0.867, 0.819, and 0.892.

This problem needs careful consideration and it is very clear that there are instances where a model

cannot be selected merely on classical model comparison and selection tools.

Additional problems can occur, such as predicted complete tables with negative counts, as reported

by Baker, Rosenberger, and DerSimonian (1992), Molenberghs et al (1999), and Molenberghs and

Kenward (2007).
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4 Model Selection and Assessment with Incomplete Data

The five issues laid out at the start of Section 3 and illustrated using both examples essentially

originate from the fact that, when fitting models to incomplete data, one needs to manage two

aspects rather than a single one, as schematically represented in Figure 6: the contrast between data

and model is supplemented with a second contrast between their complete and incomplete versions.

Ideally, we would want to consider the situation depicted in Figure 6(b), where the comparison is fully

made at the complete level. Since the complete data are, by definition, beyond reach, it is tempting

but dangerous to settle for the situation in Figure 6(c). This would happen when we would conclude

Model 1 fit poorly to the orthodontic growth data, as elucidated by Figure 4. Such a conclusion

would ignore that the model fit is at the complete-data level, accounting for 16 boys and 11 girls at

the age of 10, whereas the data only represent the remaining 11 boys and 7 girls at the age of 10.

Thus, a fair model assessment should be confined to the situations laid out in Figure 6(b) and (d)

only. We will start out by the simpler (d) and then return to (b).

Assessing whether Model 1 fits the incomplete version of the growth dataset well can be done by

comparing the observed means at the age of 10 to its prediction by the model. This implies we have

to confine model fit to those children actually observed at the age of 10.

Turning to the analysis of the Slovenian public opinion survey, the principle behind Figure 6(d)

would lead to the conclusion that the five models BRD6, BRD7, BRD8, BRD9, and BRD6(MAR)≡

BRD7(MAR)≡BRD8(MAR)≡BRD9 perfectly fit the observed data, as can be seen in Figure 9 (first

panel). As we stated earlier, though, the models are drastically different in their complete-data level

fit (Figure 10) and the corresponding estimates of the proportion in favor of independence, which

ranges over [0.74; 0.89]. This points to the need for supplementing model assessment, even when

done in the preferable situation Figure 6(d), with a form of sensitivity analysis.

In conclusion, there are two important aspects in selection and assessment when data are incomplete.

First, the model needs to fit the observed data well. This aspect alone is already quite a bit more

complicated than in the complete/balanced case as shown in Section 3. We will expand on this first
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aspect in Section 4.1. Second, sensitivity analysis is advisable to assess in how far the model selected

and conclusions reached are sensitive to the explicit or implicit assumptions a model makes about

the incomplete data given the observed ones because such assumptions typically have an impact on

the inferences of interest. This aspect is elaborated upon in Section 4.2.

4.1 Model Fit to Observed Data

As stated before, model fit to the observed data can be done by means of either what we will label

Scenario I, as laid out in Figure 6(b), or by means of Scenario II of Figure 6(d).

Under Scenario I, we conclude BRD6–9 or their MAR counterpart fit perfectly. There is nothing

wrong with such a conclusion, as long as we realize there is more than one model with this very

same property, while at the same time they lead to different substantive conclusions. If one would

have started with a single one from amongst these models without considering any of the others

there is a real danger when the conclusions are based on that particular model only. For example, if

one would so choose BRD9, the conclusion would be that θ̂ = 0.867 with 95% confidence interval

[0.851; 0, 884]. Ignoring the other perfectly fitting models does not make sense, unless there are very

strong substantive reasons to do so.

Turning to the orthodontic growth data, considering the fit of Model 1 to the data has some inter-

esting ramifications. When the OLS fit is considered, only valid under MCAR, one would conclude

there is a perfect fit to the observed means, also at the age of 10. The fit using ML would apparently

show a discrepancy, since the observed mean refers to a reduced sample size while the fitted mean,

similar to (7), is based on the entire design.

These considerations suggest that we consider the fit of a model to an incomplete set of data requires

caution and perhaps extension and/or modification of the classical model assessment paradigms. In

particular, it is of interest to consider assessment under Scenario II.

Gelman et al (2005) proposed a Scenario II method. The essence of their approach is as follows.

First, a model, saturated or non-saturated, is fitted to the observed data. Under the fitted model,
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and assuming ignorable missingness, datasets simulated from the fitted model should ‘look similar’ to

the actual data. Therefore, multiple sets of data are sampled from the fitted model, and compared to

the dataset at hand. Because what one actually observes consists of, not only the actually observed

outcome data, but also realizations of the missingness process, comparison with the simulated data

would also require simulation from, hence full specification of, the missingness process. This added

complexity is avoided by augmenting the observed outcomes with imputations drawn from the fitted

model, conditional on the observed responses, and by comparing the so-obtained completed dataset

with the multiple versions of simulated complete datasets. Such a comparison will usually be based on

relevant summary characteristics such as time-specific averages or standard deviations. As suggested

by Gelman et al (2005), this so-called data-augmentation step could be done multiple times, along

multiple-imputation ideas from Rubin (1987). However, in cases with a limited amount of missing

observations, the between-imputation variability will be far less important than the variability observed

between multiple simulated datasets. This is in contrast to other contexts to which the technique

of Gelman et al (2005) has been applied, e.g., situations where latent unobservable variables are

treated as ‘missing’.

Let us first apply the method to the orthodontic growth data. The first model considered as-

sumes a saturated mean structure, as in Model 1, with a compound-symmetric covariance structure

(Model 1a). Twenty datasets are simulated from the fitted model, and time-specific sample aver-

ages are compared to the averages obtained from augmenting the observed data based on the fitted

model. The results are shown in the top panel of Figure 7. The sample average at age 10, for the

girls, is relatively low compared to what would be expected under the fitted model. Since the mean

structure is saturated, this may indicate lack of fit of the covariance structure. We therefore extend

the model by allowing for sex-specific covariance structures (Model 1b). The results under this new

model are presented in the bottom panel of Figure 7. The observed data are now less extreme

compared to what is expected under the fitted model. Formal comparison of the two models, based

on a likelihood ratio test, indeed rejects the first model in favor of the second one (p = 0.0003),

with much more between-subject variability for the girls than for the boys, while the opposite is true
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for the within-subject variability.

Let us now turn to the SPO data. In such a contingency table case, the above approach can be

simplified to comparing the model fit to the complete data, such as presented in Table 9, with their

counterpart obtained from extending the observed, incomplete data to their complete counterpart

by means of the fitted model. Here, we have to distinguish between saturated and non-saturated

models. For saturated models, such as BRD6–9 and their MAR counterparts, this is simply the same

table as the model fit and again, all models are seen to fit perfectly. Of course, this statement needs

further qualification. It still merely means that these models fit the incomplete data perfectly, while

each one of them tells a different, unverifiable story about the unobserved data given the observed

ones. In contrast, for the non-saturated models, such as BRD1–5 and their MAR counterparts,

a so-completed table is different from the fitted one. To illustrate this, the completed tables are

presented in Table 11, for the same set of models as in Tables 9 and 10.

A number of noteworthy observations can be made. First, BRD1≡BRD1(MAR) exhibit the poorest

fit (i.e., the largest discrepancies between this completed table and the model fit as presented in

Table 10), with an intermediate quality fit for a model with 7 degrees of freedom, such as BRD2, and

a perfect fit for BRD7, BRD9, and their MAR counterparts. Second, compare the data completed

using BRD1 (Table 11) to the fit of BRD1 (Table 10): the data for the group of completers is

evidently equal to the original data (Table 9) since here no completion is necessary; the complete

data for the subjects without observations is entirely equal to the model fit (Table 10), since here

there are no data to start from; the complete data for the two partially classified tables takes a

position in between and hence is not exactly equal to the model fit. Third, note that the above

statement is in need of amendment for BRD2 and BRD2(MAR). Now, the first subtable of partially

classified subjects exhibits an exact match between completed data and model fit, while this is not

true for the second subtable. The reason is that BRD2 allows missingness on the second question to

depend on the first one, leading to saturation of the first subtable, whereas missingness on the first

question is independent of one’s opinion on either question.

While the method is elegant and gives us a handle regarding the quality of the model fit to the
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incomplete data while contemplating the completed data and the full model fit, the method is

unable to distinguish between the saturated models BRD6–9 and the MAR counterpart, as any

method would. This phenomenon points to the need for sensitivity analysis, a topic taken up next.

4.2 Sensitivity Analysis

In the previous section, we have seen how one can proceed to assess model fit, either under Scenario I

or using Scenario II. It is important to reiterate this comprises the fit to the observed data only, and

strictly makes no statement about the model in as far as it describes, or predicts, the unobserved

given the observed data. To address the latter issue, a variety of sensitivity analysis routes have been

proposed. One could informally define a sensitivity analysis as a way of exploring the impact of a

model and/or selected observations on the inferences made when data are incomplete.

For example, Verbeke et al (2001), Thijs, Molenberghs, and Verbeke (2000), Molenberghs et al

(2001), Van Steen et al (2001), and Jansen et al (2003) advocated the use of local influence based

methods for sensitivity analysis purposes. The essence of the method is that (i) a subject-specific

perturbation is added to the model, e.g., by replacing the parameter describing MNAR missingness

in the model by Diggle and Kenward (1994) with a subject-specific perturbation:

logit[P(dropout at occasion j|yi,j−1, yi,j)] = ψ0 + ψ1yi,j−1 + ωiψ2yij (12)

(ii) then observing that ωi ≡ 0 corresponds to MAR, and (iii) finally studying the impact of small

perturbations of ωi around zero. (Indeed, a model like (12) is necessary, since for an MNAR model,

not only the measurements need to be modeled (e.g., using a linear mixed model), also the dropout

mechanism needs to be modeled as a function of the measurements and, in some cases, covariates.)

Technically, this is done using differential geometry methods. In a variety of examples, the above

authors showed that one or a few observations are sometimes able to drive the conclusions about

the missing data mechanism. Details can be found in the aforementioned references, as well as in

Verbeke and Molenberghs (2000) and Molenberghs and Verbeke (2005). We applied the method

to the orthodontic growth data, assuming either Model 1 or Model 7 of Table 2. The results are
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qualitatively the same and we present the Model 1 results only. Subjects #3 (girl), and #13, #23,

and #27 (boys) come out as very influential. In addition, some influence is seen for #6 and #9

(girls), and #16 (boy). As can be seen from Figure 8, all of these are incomplete, which is different

from other applications of the method. Of course, all but one of these are positioned relatively low,

and one cannot conclude definitively whether either their incompleteness status or the location of

their profile is determining their influence. The influence measure informally described above and

denoted by Ci is presented in Figure 9. Even though the Ci measure exhibits very high peaks,

removing the highly influential subjects does not alter the substantive conclusions.

Molenberghs, Kenward, and Goetghebeur (2001) and Kenward, Goetghebeur, and Molenberghs

(2001) suggested the use of so-called regions of ignorance, combining uncertainty owing to finite

sampling with uncertainty resulting from incompleteness. Broadly speaking, they consider overspeci-

fied models which then produce non-unique solutions of the likelihood equations. For a single (vector)

parameter, the resulting solution is called the interval (region) of ignorance. When uncertainty due

to finite sampling is added, a wider interval (region) of uncertainty is obtained. For the SPO data,

this comes down to considering models with nine or more degrees of freedom.

The estimated intervals of ignorance and intervals of uncertainty are shown in Table 12, while a

graphical representation of the YES votes is given in Figure 10. Model 10 is defined as (αk, βjk)

with

βjk = β0 + βj + βk, (13)

while Model 11 assumes (αjk, βj) and uses

αjk = α0 + αj + αk, (14)

Finally, Model 12 is defined as (αjk, βjk), a combination of both (13) and (14). Model 10 shows an

interval of ignorance which is very close to [0.741, 0.892], the range produced by the models BRD1–

BRD9, while Model 11 is somewhat sharper and just fails to cover the plebiscite value. However, it

should be noted that the corresponding intervals of uncertainty contain the true value.

Interestingly, Model 12 virtually coincides with the non-parametric range even though it does not
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saturate the complete data degrees of freedom. To do so, not 2 but in fact 7 sensitivity parameters

would have to be included. Thus, it appears that a relatively simple sensitivity analysis is sufficient

to increase the insight in the information provided by the incomplete data about the proportion of

valid YES votes.

5 Concluding Remarks

In this paper, we have illustrated the complexities arising when fitting models to incomplete data.

By means of two case studies, the continuous longitudinal orthodontic growth data and the discrete

Slovenian Public Opinion Survey data, five generic issues were brought to the forefront: (i) the

classical relationship between observed and expected features is convoluted since one observes the

data only partially while the model describes all data; (ii) the independence of mean and variance

parameters in a (multivariate) normal is lost, implying increased sensitivity, even under MAR; (iii)

also the well-known agreement between the (frequentist) OLS and maximum likelihood estimation

methods for normal models is lost, as soon as the missing data mechanism is not of the MCAR type,

with related results holding in the non-normal case; (iv) in a likelihood-based context, deviances and

related information criteria cannot be used in the same way as with complete data since they provide

no information about a model’s prediction of the unobserved data and, in particular, (v) several

models may saturate the observed-data degrees of freedom, while providing a different fit to the

complete data, i.e., they only coincide in as far as they describe the observed data; as a consequency,

different inferences may result from different saturated models.

Based on these considerations it is argued that model assessment should always proceed in two steps.

In the first step, the fit of a model to the observed data should be assessed carefully, while in the

second step the sensitivity of the conclusions to the unobserved data given the observed data should

be addressed. In the first step, one should ensure that the required assessment be done under one

of two allowable scenarios, as represented by Figures 6(b) and (d), thereby carefully avoiding the

scenario of Figure 6(c), where the model at the complete data level is compared to the incomplete
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data; apples and oranges as it were. The method proposed by Gelman et al (2005) offers a convenient

route to model assessment.
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Table 1: The Orthodontic Growth Data. Data for 11 girls and 16 boys. Measurements marked with

∗ were deleted by Little and Rubin (2002). Original source: Pothoff and Roy (1964), Jennrich and

Schluchter (1986).

Age (in years) Age (in years)

Girl 8 10 12 14 Boy 8 10 12 14

1 21.0 20.0 21.5 23.0 1 26.0 25.0 29.0 31.0

2 21.0 21.5 24.0 25.5 2 21.5 22.5∗ 23.0 26.5

3 20.5 24.0∗ 24.5 26.0 3 23.0 22.5 24.0 27.5

4 23.5 24.5 25.0 26.5 4 25.5 27.5 26.5 27.0

5 21.5 23.0 22.5 23.5 5 20.0 23.5∗ 22.5 26.0

6 20.0 21.0∗ 21.0 22.5 6 24.5 25.5 27.0 28.5

7 21.5 22.5 23.0 25.0 7 22.0 22.0 24.5 26.5

8 23.0 23.0 23.5 24.0 8 24.0 21.5 24.5 25.5

9 20.0 21.0∗ 22.0 21.5 9 23.0 20.5 31.0 26.0

10 16.5 19.0∗ 19.0 19.5 10 27.5 28.0 31.0 31.5

11 24.5 25.0 28.0 28.0 11 23.0 23.0 23.5 25.0

12 21.5 23.5∗ 24.0 28.0

13 17.0 24.5∗ 26.0 29.5

14 22.5 25.5 25.5 26.0

15 23.0 24.5 26.0 30.0

16 22.0 21.5∗ 23.5 25.0
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Table 2: The Orthodontic Growth Data. Original and trimmed data set. Model fit summary. (‘#par’:

number of model parameters; −2`: minus twice log-likelihood; Ref: reference model for likelihood

ratio test).

Original data Trimmed data

Model Mean Covar. #par Ref −2` p-value −2` p-value

1 unstr. unstr. 18 416.5 386.96

2 6= slopes unstr. 14 1 419.5 0.563 393.29 0.176

3 = slopes unstr. 13 2 426.2 0.010 397.40 0.043

4 6= slopes Toepl. 8 2 424.6 0.523 398.03 0.577

5 6= slopes AR(1) 6 2 440.7 0.007 409.52 0.034

6 6= slopes RI+RS 8 2 427.8 0.215 400.45 0.306

7 6= slopes CS (RI) 6 6 428.6 0.510 401.31 0.502

8 6= slopes simple 5 7 478.2 <0.001 441.58 <0.001

Table 3: The Orthodontic Growth Data. Finally selected model under a number of simple missing

data handling mechanisms. (par: # parameters; a suffix ’a’ to a model number refers to a variation

to one of the models in Table 2)

Method Model Mean Covar par

Complete case 7a = slopes CS 5

LOCF 2a quadratic unstructured 16

Unconditional mean 7a = slopes CS 5

Conditional mean 1 unstructured unstructured 18



Model Selection With Missing Data 28

Table 4: The Orthodontic Growth Data. Likelihood, MANOVA, and ANOVA analyses for the original

data and the trimmed data (observed, CC, and LOCF). Means for boys at ages 8 and 10 are displayed.

Principle Method Boys at Age 8 Boys at Age 10

Original ML 22.88 (0.56) 23.81 (0.49)

REML ≡ MANOVA 22.88 (0.58) 23.81 (0.51)

ANOVA per time 22.88 (0.61) 23.81 (0.53)

Observed ML 22.88 (0.56) 23.17 (0.68)

REML 22.88 (0.58) 23.17 (0.71)

MANOVA 24.00 (0.48) 24.14 (0.66)

ANOVA per time 22.88 (0.61) 24.14 (0.74)

CC ML 24.00 (0.45) 24.14 (0.62)

REML ≡ MANOVA 24.00 (0.48) 24.14 (0.66)

ANOVA per time 24.00 (0.51) 24.14 (0.74)

LOCF ML 22.88 (0.56) 22.97 (0.65)

REML ≡ MANOVA 22.88 (0.58) 22.97 (0.68)

ANOVA per time 22.88 (0.61) 22.97 (0.72)
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Table 5: The Slovenian Public Opinion Survey. The Don’t Know category is indicated by ∗.

Independence

Secession Attendance Yes No ∗

Yes Yes 1191 8 21

No 8 0 4

∗ 107 3 9

No Yes 158 68 29

No 7 14 3

∗ 18 43 31

∗ Yes 90 2 109

No 1 2 25

∗ 19 8 96
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Table 6: The Slovenian Public Opinion Survey. Some estimates of the proportion θ attending

the plebiscite and voting for independence, as presented in Rubin, Stern, and Vehovar (1995) and

Molenberghs, Kenward, and Goetghebeur (2001).

Voting in favour

of independence

Estimation method θ̂

Pessimistic-optimistic bounds [0.694;0.905]

Complete cases 0.928

Available cases 0.929

MAR (2 questions) 0.892

MAR (3 questions) 0.883

MAR 0.782

Plebiscite 0.885
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Table 7: The Slovenian Public Opinion Survey. Analysis, restricted to the independence and atten-

dance questions. Summaries on each of the Models BRD1–BRD9 are presented.

Model Structure d.f. loglik θ̂ C.I. θ̂MAR

BRD1 (α, β) 6 -2495.29 0.892 [0.878;0.906] 0.8920

BRD2 (α, βj) 7 -2467.43 0.884 [0.869;0.900] 0.8915

BRD3 (αk, β) 7 -2463.10 0.881 [0.866;0.897] 0.8915

BRD4 (α, βk) 7 -2467.43 0.765 [0.674;0.856] 0.8915

BRD5 (αj , β) 7 -2463.10 0.844 [0.806;0.882] 0.8915

BRD6 (αj , βj) 8 -2431.06 0.819 [0.788;0.849] 0.8919

BRD7 (αk, βk) 8 -2431.06 0.764 [0.697;0.832] 0.8919

BRD8 (αj , βk) 8 -2431.06 0.741 [0.657;0.826] 0.8919

BRD9 (αk, βj) 8 -2431.06 0.867 [0.851;0.884] 0.8919
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Table 8: The Orthodontic Growth Data. Comparison of mean estimates for boys at ages 8 and

10, complete and incomplete data, using direct likelihood, an unstructured mean model, and various

covariance models.

Data Mean Covar Boys at Age 8 Boys at Age 10

Complete unstr. unstr. 22.88 23.81

unstr. CS 22.88 23.81

unstr. simple 22.88 23.81

Incomplete unstr. unstr. 22.88 23.17

unstr. CS 22.88 23.52

unstr. simple 22.88 24.14
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Table 9: The Slovenian Public Opinion Survey. Analysis restricted to the independence and atten-

dance questions. The observed data are shown, as well as the fit of models BRD1, BRD2, BRD7,

and BRD9, and their MAR counterparts, to the observed data.

Observed data &

fit of BRD7, BRD7(MAR), BRD9, and BRD9(MAR) to incomplete data

1439 78

16 16

159

32
144 54 136

Fit of BRD1 and BRD1(MAR) to incomplete data

1381.6 101.7

24.2 41.4

182.9

8.1
179.7 18.3 136.0

Fit of BRD2 and BRD2(MAR) to incomplete data

1402.2 108.9

15.6 22.3

159.0

32.0
181.2 16.8 136.0
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Table 10: The Slovenian Public Opinion Survey. Analysis restricted to the independence and atten-

dance questions. The fit of models BRD1, BRD2, BRD7, and BRD9, and their MAR counterparts,

to the hypothetical complete data is shown.

Fit of BRD1 and BRD1(MAR) to complete data

1381.6 101.7

24.2 41.4

170.4 12.5

3.0 5.1

176.6 13.0

3.1 5.3

121.3 9.0

2.1 3.6

Fit of BRD2 to complete data

1402.2 108.9

15.6 22.3

147.5 11.5

13.2 18.8

179.2 13.9

2.0 2.9

105.0 8.2

9.4 13.4

Fit of BRD2(MAR) to complete data

1402.2 108.9

15.6 22.3

147.7 11.3

13.3 18.7

177.9 12.5

3.3 4.3

121.2 9.3

2.3 3.2

Fit of BRD7 to complete data

1439 78

16 16

3.2 155.8

0.0 32.0

142.4 44.8

1.6 9.2

0.4 112.5

0.0 23.1

Fit of BRD9 to complete data

1439 78

16 16

150.8 8.2

16.0 16.0

142.4 44.8

1.6 9.2

66.8 21.0

7.1 41.1

Fit of BRD7(MAR) and BRD9(MAR) to complete data

1439 78

16 18

148.1 10.9

11.8 20.2

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6
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Table 11: The Slovenian Public Opinion Survey. Analysis restricted to the independence and atten-

dance questions. Completed versions of the observed data, using the fit of the modelsBRD1, BRD2,

BRD7, and BRD9, and their MAR counterparts.

Completed data using BRD1≡BRD1(MAR) fit

1439 78

16 16

148.1 10.9

11.9 20.1

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6

Completed data using BRD2 fit

1439 78

16 16

147.5 11.5

13.2 18.8

142.4 44.7

1.6 9.3

105.0 8.2

9.4 13.4

Completed data using BRD2(MAR) fit

1439 78

16 16

147.7 11.3

13.3 18.7

141.4 40.2

2.6 13.8

121.2 9.3

2.3 3.2

Completed data using BRD7 fit

1439 78

16 16

3.2 155.8

0.0 32.0

142.4 44.8

1.6 9.2

0.4 112.5

0.0 23.1

Completed data using BRD9 fit

1439 78

16 16

150.8 8.2

16.0 16.0

142.4 44.8

1.6 9.2

66.8 21.0

7.1 41.1

Completed data using BRD7(MAR)≡BRD9(MAR) fit

1439 78

16 18

148.1 10.9

11.8 20.2

141.5 38.4

2.5 15.6

121.3 9.0

2.1 3.6
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Table 12: The Slovenian Public Opinion Survey. Intervals of ignorance and intervals of uncertainty

for the proportion θ (confidence interval) attending the plebiscite following from fitting.

θ̂

Model d.f. loglik II IU

Model 10 9 -2431.06 [0.762;0.893] [0.744;0.907]

Model 11 9 -2431.06 [0.766;0.883] [0.715;0.920]

Model 12 10 -2431.06 [0.694;0.905]
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Figure 1: The Orthodontic Growth Data. Observed profiles and group by age means. Solid lines and

diamonds are for girls, dashed lines and bullets are for boys.

Figure 2: The Slovenian Public Opinion Survey. Relative position for the estimates of “proportion

of YES votes”, based on the models considered in Rubin, Stern, and Vehovar (1995) and on the

Baker, Rosenberger, and DerSimonian (1992) models. The vertical lines indicate the non-parametric

pessimistic–optimistic bounds. (Pess: pessimistic boundary; Opt: optimistic boundary; MAR: Rubin

et al’s MAR model; NI: Rubin et al’s MNAR model; AC: available cases; CC: complete cases; Pleb:

plebiscite outcome. Numbers refer to the BRD models.)
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Figure 3: The Orthodontic Growth Data. Profiles for the complete data, for a selected set of models.
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Figure 4: The Orthodontic Growth Data. Profiles for the growth data set, from a selected set of

models. MAR analysis. (The small symbols at age 10 are the observed group means for the complete

data set.)
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Figure 5: The Orthodontic Growth Data. Fitted mean profiles to the incomplete data, using max-

imum likelihood, an unstructured mean model and unstructured (Model 1), CS (Model 7b), and

independence (Model 8b) covariance structure.
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(a) model

complete incomplete

raw complete

data incomplete

(b) model

complete incomplete

raw complete ∗

data incomplete

(c) model

complete incomplete

raw complete

data incomplete ∗

(d) model

complete incomplete

raw complete

data incomplete ∗

Figure 6: Model assessment when data are incomplete. (a) Two dimensions in model (assessment)

exercise when data are incomplete. (b) Ideal situation. (c) Dangerous situation, bound to happen

in practice. (d) Comparison of data and model at coarsened, observable level.
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(a) Model 1a: Equal covariance structure

(b) Model 1b: Gender-specific covariance structure

Figure 7: The Orthodontic Growth Data. Sample averages for the augmented data (bold line type),

compared to sample averages from 20 simulated datasets, based on the method of Gelman et al

(2005). Both models assume a saturated mean structure and compound symmetric covariance.

Model 1a assumes the same covariance structure for boys and girls, while Model 1b allows gender-

specific covariances.
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Figure 8: The Orthodontic Growth Data. Individual profiles of the incomplete version of the data,

with highly and moderately influential subjects highlighted by more and less boldface line type,

respectively.
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Figure 9: The Orthodontic Growth Data. Local influence measures.
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Figure 10: The Slovenian Public Opinion Survey. Relative position for the estimates of “proportion

of YES votes”, based on the models considered in Rubin, Stern, and Vehovar (1995), and on the

BRD Models. The vertical lines indicate the nonparametric pessimistic-optimistic Bounds. (Pess:

pessimistic boundary; Opt: optimistic boundary; MAR: Rubin et al. ’s MAR model; NI: Rubin et al.

’s MNAR model; AC: available cases; CC: complete cases; Pleb: plebiscite outcome. Numbers refer

to the BRD models. Intervals of ignorance (Models 10–12) are represented by horizontal bars.)


