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SUMMARY. This work aims at investigating marginal correlation within and between lon-

gitudinal data sequences. Useful and intuitive approximate expressions are derived based on

generalized linear mixed models. Data from four double-blind randomized clinical trials are

used to estimate the intra-class coefficient of reliability for a binary response parameter. Addi-

tionally, the correlation between such a binary response and a continuous response is derived

to evaluate the criterion validity of the binary response variable and the established continuous

response variable.
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1 Introduction

In applied sciences, one is often confronted with the collection of hierarchical data. For example,

longitudinal data arise from measuring subjects repeatedly over time, while clustered data arise

from measuring a characteristic in different but correlated subjects, such as siblings or foetuses

stemming from the same dam. We will broadly refer to such settings as repeated measures.

Methods for continuous longitudinal data form the best-developed and most advanced body of

research, with a very prominent place taken by the linear mixed effects model (LMM, Laird and

Ware, 1982; Verbeke and Molenberghs, 2000); the same is true for software implementation.

This is natural, since the special status and the elegant properties of the normal distribution

simplify model building and ease software development. In particular, the LMM allows one

to obtain marginal characteristics, such as marginal means, marginal covariate effects, and

marginal correlation coefficients, in a very straightforward way. This is because the natural

parameters in an LMM have a hierarchical and a marginal interpretation at the same time. For

example, deriving the intraclass correlation (ICC) from a random-intercept LMM is particularly

straightforward and coincides with the correlation from a compound-symmetric structure. This

is because the latter model is the marginalization of the former. For this reason, the LMM is

a flexible tool to study psychometric reliability based on longitudinal data, as was shown by

Vangeneugden et al (2004).

However, also non-Gaussian outcomes are very prominent in repeated measures studies. In this

more general setting, model formulation is less straightforward than in the normal case. One

distinguishes between marginal and random-effects model families and, unlike in the Gaussian

situation, there is no easy relationship between both. An example of the marginal family

is generalized estimating equations (GEE, Liang and Zeger, 1986), whereas the generalized

linear mixed model (GLMM, Breslow and Clayton, 1993) is a well-known random-effects model.
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Detailed accounts can be found in Fahrmeir and Tutz (2001) and Molenberghs and Verbeke

(2005). Whereas GEE is convenient and frequently used, it models the marginal regression

function, treating the second and higher-order moments as nuisance. When the correlation is

of primary scientific interest, e.g., when determining the ICC or studying reliability, a non-

likelihood method like GEE has clear limitations. The GLMM has a full likelihood basis, but

fails to produce the marginal correlations in an easy fashion. This is due to the presence of

a non-linear link function, as well as the mean-variance link (Molenberghs and Verbeke, 2005,

Chapter 16).

Nevertheless, due to the flexibility of the GLMM, it is a viable modeling candidate, even when

the marginal correlation is of interest. We will show that the derivation of such correlations

is generally feasible. As an application, we will derive the intra-class correlation coefficient of

reliability of a derived binary response variable and we investigate correlation of this binary

response variable with an established continuous, interval scaled variable to investigate the

criterion validity of the derived response variable and the continuous response variable.

Indeed, reliability is an important aspect of any clinical parameter measured in a clinical trial.

As stated by Fleiss (1986): ‘The most elegant design of a clinical study will not overcome

the damage by unreliable or imprecise measurement’. In clinical trials, one typically wants

to differentiate among treatments. If reliability is low, the ability to differentiate between

the different subjects in the different treatment arm decreases. Fleiss describes a number of

consequences of unreliability. He brings up attenuation of correlation in studies designed to

estimate correlation between variables with poor reliability, biased sample selection in clinical

studies where patients are selected with a minimum level of a certain measurement with low

reliability, and last but not least, an increased sample size for trials with a primary parameter

with low reliability. For the latter, one can easily show that for a paired t-test, the required
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sample size becomes n = n∗/R where R denotes the reliability coefficient and n∗ is the required

sample size for the true score, i.e., the required sample size when responses are measured without

error. It is very clear that a high reliability is important to the clinical trialist. Investigators

in the mental disorders traditionally have been more concerned with the reliability of their

measures than have their colleagues in other medical specialties.

When the biostatistician and clinician are designing a new clinical study, they should have

good information on the reliability of the measurements that are planned to be used in clinical

studies. Most often, the strategy is to use a scale which has been validated before and for which

intra-rater (test-retest), and inter-rater reliability and internal consistency are established. The

validation is usually done on a selected small sample from the population for which the scale

is intended. If the population of the trial is different (e.g., when a scale is used in adolescents

while scale validation was done in adults), a new battery of reliability and validity testing might

be warranted.

When the trials are finished and reported, it is astonishing how little attention is given to

the observed reliability of a certain scale. The focus is on estimating treatment effects and

their significance. Rarely is there any reflection on how reliable the scale was or how large

the observed measurement error was. In this paper, we propose a framework to study trial-

or population-specific reliability. As shown by Vangeneugden et al (2004, 2005), clinical trial

data can be used to make progress when studying reliability as well as generalizability in case

of interval scaled data, provided one is willing to make a number of modeling assumptions,

enabling one to ‘translate’ biomedical data to a parallel measurements setting. Clearly, the

softer an endpoint is, or the less it has been calibrated, the more crucial psychometric validation

becomes. Such analyses focus on variance components rather than treatment differences and

can provide more insight regarding scale behavior in (sub)populations: trial-population specific
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reliability coefficient can be produced and via generalizability testing, sources of variation and

their impact on reliability can be studied. Here, a general formula will be derived to handle

broad classes of data, and an application will be provided for a binary response variable. The

goal is to use clinical trial data at hand and to evaluate reliability of the binary response. The

intention is not to replace up-front validity and reliability testing but to stimulate post hoc

evaluation on the performance of the scale or any other measurement. The advantage is that

clinical trialists can learn before embarking on new trials in a similar population whether they

feel comfortable using the same scale or response parameter again. These methods can also

deliver a population-trial specific measure for reliability in case there is a need to confirm earlier

reliability testing results; regulatory authorities might question reliability of the scale in the

specific trial population.

The validity of a questionnaire is defined as the degree to which the questionnaire measures

what it purports to measure. This can be performed through the analysis of content, construct ,

and criterion validity. Content validity can be defined as the extent to which the instrument

assesses all the relevant or important content or domains. Also the term face validity is used

to indicate whether the instrument appears to be assessing the desired qualities at face. This

form of validity consists of a judgment by experts in the field. Construct validity refers to a

wide range of approaches which are used when what we are trying to measure is a “hypothetical

construct” (e.g., anxiety, irritable bowel syndrome, . . . ) rather than something that can be

readily observed. The most commonly used methods to explore construct validity are: extreme

groups (apply instrument for example to cases and non-cases), convergent and discriminant

validity testing (correlate with other measures of this construct and not correlate with dissimilar

or unrelated constructs) and the multitrait-multimethod matrix. Criterion validity can be

divided into two types: concurrent validity and predictive validity. With concurrent validity we

correlate the measurement with a criterion measure (gold standard), both of which are given
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at the same time. In predictive validity, the criterion will not be available until some time in

the future. This also clearly links validity testing to surrogate marker validation as shown in

Alonso et al (2002). The most commonly used method to assess the validity is by calculation

of the Pearson correlation coefficient.

Thus, using concepts of Vangeneugden et al (2004, 2005), we will show how correlations can be

derived by means of a GLMM, with particular attention to the ICC and reliability functions.

And correlation between concurrently measured response variables will be derived via fitting

a joint, bivariate GLMM. Our framework allows for derivation of a correlation coefficient be-

tween two response variables of any kind. As an example, the correlation between a binary

response and an interval scaled response parameter will be derived to investigate criterion valid-

ity between the derived binary response parameter and the more standard continuous response

parameter.

In Section 2, the motivating case study is introduced, while methodology is described in Sec-

tion 3. In Section 4, we will apply the derived formulae to the data introduced above to

estimate reliability of a binary response variable. In Section 5, we will extend the methodology

to calculate correlation between concurrently measured response parameters to study criterion

validity.

2 Motivating Study

In this section, we introduce individual patient data from four double-blind randomized clin-

ical trials, comparing the effects of risperidone to conventional anti psychotic agents for the

treatment of chronic schizophrenia. Schizophrenia has long been recognized as a heterogeneous

disorder with patients suffering from both “negative” and “positive” symptoms. Negative
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symptoms are characterized by deficits in social functions such as poverty of speech, apathy

and emotional withdrawal. Positive symptoms entail more florid symptoms such as delusions

and hallucinations, which are superimposed on the mental status. Several measures can be

considered to assess a patient’s global condition. The Positive and Negative Syndrome Scale

(PANSS) consists of 30 items that provide an operationalized, drug-sensitive instrument, which

is highly useful for both typological and dimensional assessment of schizophrenia (Kay, Fiszbein,

and Opler 1987). Classical reliability of the PANSS has been studied previously (Kay, Opler,

and Lindenmayer, 1988; Bell et al , 1992; Peralta and Cuesta, 1994). The Clinical Global Im-

pression (CGI) of overall change versus baseline is a 7-grade scale used by the treating physician

to characterize how well a subject has improved since baseline. The levels are: “very much im-

proved”, “much improved”, “minimally improved”, “no change”, “minimally worse”, “much

worse”, “very much worse”. Clinical response is often defined as a CGI score of “very much

improved” or “much improved”. Since the label in most countries recommend doses ranging

from 4-6 mg/day, we include in our analysis only patients who received either these doses of

risperidone or an active control (haloperidol, perphenazine, or zuclopenthixol). Depending on

the trial, treatment was administered for a duration of 6-8 weeks. For example, in the interna-

tional trials by Peuskens et al (1995), Marder and Meibach (1994), and Hoyberg et al (1993)

patients received treatment for 8 weeks; while in the study by Huttunen et al (1995) patients

were treated over a period of 6 weeks. The sample sizes were 453, 176, 74, and 71, respectively.

Measurements were taken at Week 1, 2, 4, 6, and 8.

7



3 Methodology

First, we derive the intra-class correlation coefficient (ICC) of reliability for the classical linear

mixed-effects model. Then we introduce the generalized linear mixed model and subsequently

we derive an approximate formula for the variance-covariance matrix based on a GLMM. The

latter will be the basis for general correlation coefficient computations.

3.1 ICC for a Linear Mixed-effects Models

A linear mixed-effects model with serial correlation can be written as (Verbeke and Molenberghs,

2000; Diggle et al 2002):

Y i = Xiβ + Zibi + W i + εi, (1)

where Y i is the ni dimensional response vector for subject i, 1 ≤ i ≤ N , N is the number of

subjects, Xi and Zi are (ni×p) and (ni×q) known design matrices, β is the p dimensional vector

containing the fixed effects, bi ∼ N(0, D) is the q dimensional vector containing the random

effects, εi ∼ N(0, σ2Ini
) is a ni dimensional vector of measurement error components, and b1,

. . . , bN , ε1, . . . , εN are assumed to be independent. Serial correlation is captured by the

realization of a Gaussian stochastic process, W i, which is assumed to follow a N(0, τ 2Hi) law.

The serial correlation matrix Hi only depends on i through the number ni of observations and

through the time points tij at which measurements are taken. The structure of the matrix Hi

is determined through the autocorrelation function ρ(tij − tik). A first simplifying assumption

is that it depends only on the time interval between two measurements Yij and Yik, i.e., ρ(tij −
tik) = ρ(|tij − tik|), where u = |tij − tik| denotes time lag. This function decreases such that

ρ(0) = 1 and ρ(+∞) = 0. Finally, D is a general (q × q) covariance matrix with (i, j) element

dij = dji.
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In this setting, it is easy to show that for subject i on time point j and k we have

Var(Yij) = zjDz′
j + τ 2 + σ2,

Var(Yik) = zkDz′
k + τ 2 + σ2,

Cov(Yij, Yik) = zjDz′
k + τ 2(Hi)jk, (2)

and therefore, the correlation between time point j and k, the ICC of reliability can be written

as:

ρjk = Corr(Yij , Yik) =
zjDz′

k + τ 2(Hi)jk√
zjDz′

k + τ 2 + σ2
√

zkDz′
k + τ 2 + σ2

. (3)

In case of a simple random-intercept model, Y i = Xiβ + bi + εi, with no serial correlation, (3)

simplifies to:

ρst = Corr(Yis, Yit) =
d

d+ σ2
, (4)

where d is the variance of the random intercept bi, i.e., the variance between patients, and

σ2 the measurement error. See Vangeneugden et al (2004) for the derivation of the ICC of

reliability for more complex linear models.

3.2 Generalized Linear Mixed Model

The generalized linear mixed model (GLMM, Breslow and Clayton, 1993) is the most frequently

used random effects model for discrete outcomes. As before, Yij is the jth outcome measured

for subjects i, i = 1, ..., N, j = 1, ..., ni and Y i is the ni-dimensional vector of all measurements

available for cluster i. This model assumes that, conditionally on q-dimensional random effects

bi, assumed to be drawn independent from the N(0, D), the outcomes Yij are independent with

densities of the form

fi(yij|bi,β, φ) = exp

[
yijθij − ψ(θij)

φ
+ c(yij, φ)

]
, (5)
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where the mean µij is modeled through a linear predictor containing fixed regression parameters

β as well as subject-specific parameters bi, i.e., g(µij) = g(E(Yij|bi)) = x′ijβ+z′ijbi for a known

link function g(.), with xij and zij p-dimensional and q-dimensional vectors of known covariate

values, with β a p-dimensional vector of unknown fixed regression coefficients, and with φ a

scale parameter. With a natural link function this becomes θij = x′ijβ + z′ijbi. The random

effects bi are assumed to be sampled from a (multivariate) normal distribution with mean 0

and covariance matrix D.

3.3 ICC Based on GLMM

In the GLMM setting introduced above, we can write the general model as follows:

Yi = µi + εi, (6)

where the mean (systematic part) can be written as

µi = µi(ηi) = h(Xiβ + Zibi), (7)

Xi and Zi are known design matrices, β are fixed-effect parameters, bi are random effects, and

h is a known link function. Finally, εi is the random component. We will now derive a general

formula for the variance-covariance matrix of Yi without any restriction on the distribution of

the outcome variable nor on the complexity of the model, e.g., allowing for serial correlation or

not. The variance covariance matrix can be derived as follows:

Vi = Var(Yi) = Var(µi + εi)

= Var(µi) + Var(εi) + 2Cov(µi, εi). (8)

It is easy to show that Cov(µi, εi) = Cov[E(µi|bi),E(εi|bi)) + E(Cov(µi, εi|bi)] = 0 since the

first term is 0 and the second term equals E[E(µi −E(µi))(εi)|bi] = 0 as µi is a constant when
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conditioning on bi. For the first term in (8) we have:

Var(µi) = Var(µi(ηi)) = Var(µi(Xiβ + Zibi)) (9)

∼=
(
∂µi

∂bi

∣∣∣∣
bi=0

)
Var(bi)

(
∂µi

∂bi

∣∣∣∣
bi=0

)′

∼=
(
∂µi

∂ηi

∂ηi

∂bi

∣∣∣∣
bi=0

)
D

(
∂µi

∂ηi

∂ηi

∂bi

∣∣∣∣
bi=0

)′

∼= ∆iZiDZ
′
i∆

′
i, (10)

where ∆i =
∂µi
∂ηi

∣∣∣∣
bi=0

.

For the second term in (8), we have:

Var(εi) = Var[E(εi|bi)] + E[Var(εi|bi)] = E[Var(εi|bi)] = Φ
1
2 ΣΦ

1
2 , (11)

where Φ is a diagonal matrix with the overdispersion parameters along the diagonal. In case

there are no overdispersion parameters, Φ is set equal to the identity matrix. We can express

the variance function Σi so that

Var(εi) = Φ
1
2 Ai

1
2 RiAi

1
2 Φ

1
2 , (12)

where Ri is the correlation matrix and Ai is a diagonal matrix containing the variances following

from the generalized linear model specification of Y ij given the random effects bi = 0, i.e., with

diagonal elements v(µij|bi = 0).

Using (10) and (12), we have the following expression for the variance-covariance matrix (8):

Vi
∼= ∆iZiDZ

′
i∆

′
i + Φ

1
2 Ai

1
2 RiAi

1
2 Φ

1
2 . (13)

If the canonical link is used, we have Ai = ∆i and (13) can be written as:

Vi
∼= ∆iZiDZ

′
i∆

′
i + Φ

1
2 ∆

1
2
i Ri∆

1
2
i Φ

1
2 . (14)
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If in addition, conditional independence (no serial correlation) is assumed, then (13) simplifies

to:

Vi
∼= ∆iZiDZ

′
i∆

′
i + Φ

1
2 ∆iΦ

1
2 . (15)

Further, if we reduce the random-effects part to a random-intercept model, i.e., Zi = 1 and

D = d, and (13) then reduces to

Vi
∼= ∆i(dJ)∆′

i + Φ
1
2 ∆iΦ

1
2 . (16)

Note that if we have a normal distribution with the canonical identity link, ∆i reduces to the

identity matrix I and Φ = σ2I, in which case it follows that (16) reduces to dJ + σ2I which

is consistent with (4). Moreover, when we have a normal distribution with a general random-

effects structure but without serial correlation, it is easy to show that Vi
∼= ZiDZ

′
i + σ2I and

that subsequently ρ equals (3) when we leave out the serial correlation (τ). This shows that

(13) can be seen as a generalization of (3). In the following section we will derive the marginal

correlation in case of binary data when applying a random intercept model.

3.4 ICC for a Random-intercept Model for Binary Data

In this section, we will derive the formula for the ICC in case of a random intercept model for

binomial data with a logit link and assuming no overdispersion. In this case (16) reduces to

Vi
∼= ∆i(dJ)∆′

i + ∆i = ∆i(dJ + ∆−1
i )∆′

i. Furthermore, ∆i is a diagonal matrix with Vij(0) as

diagonal elements, where the variance function Vij(0) = µij

∣∣
bi=0

(1 − µij

∣∣
bi=0

), and therefore

Vi
∼= diag(Vij(0))[dJ + diag(Vij(0))−1]diag(Vij(0)). (17)
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In other words, the variance-covariance matrix for subject i is specified by the matrix with

elements:

vijj = Vij(0)[1 + Vij(0)d] (18)

vijk = dVij(0)Vik(0), (j �= k). (19)

Based on (18) and (19), we can determine a first-order approximation of the marginal correlation

between time point j and k, which is the intra class correlation coefficient of reliability:

ρijk = Corr(Yij, Yik) =
Vij(0)Vik(0)d√{Vij(0)[1 + Vij(0)d]}{Vik(0)[1 + Vik(0)d]} . (20)

This expression allows us to make a few simple but important observations. For any value of

Vij(0) and Vik(0), ρijk = 0 whenever d = 0, while ρijk tends to 1 when d tends to +∞. Even

though this may seem obvious at first sight, especially because it is similar to the behavior

of the intraclass correlation in the classical linear model for continuous data, one must give

proper reflection to the impact of the binary nature of our outcomes, since certain correlation

coefficients in certain models are highly constrained. For example, the correlation coefficients

in the Bahadur (1961) model, being of the Pearson type, are highly constrained, a phenomenon

studied in detail by Declerck, Aerts, and Molenberghs (1998) and reported in Aerts et al

(2002). These authors showed that in some realistic settings only a tiny interval around zero

of allowable correlations remains. It is useful to realize such constraints already apply to the

Pearson correlation in a simple two by two contingency table (Diggle et al , 2002). A mild form

of the Bahadur constraints survives in generalized estimating equations, especially those of the

second order (Liang, Zeger, and Qaqish, 1992). The multivariate probit model (Ashford and

Sowden, 1970; Molenberghs and Verbeke, 2005), on the other hand, is constrained only by the

requirement that the tetrachoric correlations form a positive definite matrix. This advantage of

the probit model is counterbalanced by its heavy computational burden. Also, the beta-binomial

model (Skellam, 1948; Molenberghs and Verbeke, 2005) allows for all non-negative correlations
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as well as moderate negative values (see also Molenberghs and Verbeke, 2005). The problem

suffers from its inability to accommodate within-cluster covariates, such as time in longitudinal

studies. Thus, the proposed modeling framework is at the same time flexible, relatively easy

from a numerical point of view, and leaves the intraclass correlation unconstrained within the

unit interval.

One might wonder why no negative correlations are allowed. Also this aspect is similar to the

linear mixed model, where the random-intercepts model, when its full hierarchical interpretation

is adopted, does not allow for negative correlations. Once attention is restricted to the marginal

model, some negative correlation can occur as well. Indeed, the compound-symmetry model can

produce negative correlations, as long as the overall correlation matrix, of the form σ2I + dJ ,

remains positive-definite.

4 Data Analysis

Let us now apply the concepts described above to the pooled data described in Section 2. We

will calculate the ICC for response defined as obtaining either very much improved or much

improved on the CGI of overall change versus baseline. The focus of this analysis is not to

study treatment differences, but rather to investigate correlation between longitudinal binary

data. To do so, we will first describe the observed proportion of response and the correlation

between response in the data at hand via graphical displays. Subsequently, we will calculate

the ICC under different assumptions, with gradually increasing modeling complexity.
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4.1 Observed Response Rate and Correlation

Figure 1 displays the response rate of both treatment groups combined across time. We can

see that the observed response rate increases over time from 0.15 at Week 1 to 0.47 at Week

8. Also note that only 490 from the 774 subjects who started treatment have an observed CGI

score at Week 8 due to attrition.

Figure 2 illustrates the correlation of the different responses over time. Circles are drawn at

different response level combinations (no, yes) in this matrix plot, exhibiting the correlation

between the observed responses at different pairs of time points. The diameter of the circle is

proportional to the number of subjects at each response combination, e.g., the large circle for

response=No at Week 1 and response=No at Week 2 indicates that many subjects who did not

respond at Week 1 also did not respond at Week 2. The larger the diameter of the circles are

at the bisector line (y = x), the larger the correlation is between the same level of response at

time point s versus time point t. From the first 2 rows of the plot, we can see that correlation is

high if we compare Week 1 and 2, but that this correlation decreases slightly in time, when the

lag time between observations is increased. On the other hand, the correlation between Week 6

and 8 is noticeably higher, as the diameter of the circles on the bisector line (same response at

Week 6 and 8) are large and almost zero for circles not on the bisector line (different response

on Week 6 and 8). Alternatively, the area of the circles could be made proportional to the

sample size, rather than the diameter. Arguably, this is a matter of choice.

4.2 Analysis Without Covariates

In this first analysis we ignore time and treatment and include all observations. This will

generate an estimate of the overall ICC, which can be interpreted as an average ICC across all

15



time points. In this simplification, we have that X isβ = β is constant across all subjects i and

time points j. Then (20) simplifies to:

Vij(0) = V (0) =
exp(β)

(1 + exp(β))2
,

ρijk = ρ =
V (0)d

1 + V (0)d
. (21)

If we use the SAS procedure NLMIXED to fit this random-effects model, using adaptive

Gaussian quadrature, we have that β̂ = −1.61, d̂ = 6.57, V̂ (0) = 0.14 and subsequently

ρ̂ = 0.48. We also applied this simple model to investigate time and treatment effect by looking

at subgroups. Table 1 summarizes the results.

One observes that the ICC is somewhat lager in the risperidone treatment group. Additionally,

we see that the ICC for observations measured at Week 1 and Week 8 is much smaller than

the ICC measured from observations at Week 6 and Week 8, as we could expect from Figure

2. Here we should note that the ICC between Week 6 and 8 can truly be interpreted as an

ICC of reliability in the psychometric sense. Indeed, the psychiatric condition of the patients

was rather stable and did not change between Week 6 and 8: the mean total PANSS was 69.2

at Week 6 and 68.8 at Week 8. It is in such stable conditions that test-retest reliability of

scale is evaluated, and often with a two-week time interval (Streiner and Norman, Chapter 8).

The same is not true when comparing Week 1 (mean PANSS of 80.8) and Week 8; that is,

the ICC between Week 1 and 8 cannot be interpreted as an ICC of reliability but merely a

correlation between two time points. As discussed in Vangeneugden et al (2004), appropriate

models can be used to model and extract time and treatment effects, which avoids the need to

assume that there is no change in a patient’s situation over time. Thus, by using an appropriate

model with well chosen covariate effects, a trial population is, in a broad sense, standardized

towards a general population. By correcting for covariates, it is assumed that the correlation
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structure of the residuals can be approximated by an exchangeable structure, captured via

a random intercept. While this may be perceived as somewhat more subjective than when a

dedicated reliability study is undertaken, the important advantage is that data already collected

can be used, which may have important practical, economic, and even ethical advantages. It

is important to note that, in case a random intercept is deemed insufficient to capture the

correlation structure, more versatile random-effects structures can be used, whilst maintaining

the idea behind the calculations for the marginal correlation coefficients. We will gradually

take account of this, by first extracting time and then subsequently treatment effects.

Of course, unlike in the continuous case, there are a wide variety of options to capture associ-

ation between binary measures (Agresti, 2002; Molenberghs and Verbeke, 2005). Thus, while

the correlation is certainly not a universally accepted measure of association, it is and remains

a useful one, even though there is an intricate relationship between marginal means and associ-

ation. This is unavoidable as soon as outcomes are non-Gaussian since, unlike in the Gaussian

case, means and variances are related through the so-called mean-variance relationship. A com-

monly encountered measure of agreement to assess reliability in case of binary outcome is the

kappa coefficient. Bloch and Kraemer (1989) showed that the ICC can also be interpreted as

an ICC in case of parallel measurements, i.e., when the two measurements on each subject are

interchangeable. When we calculate the kappa statistic for agreement between Week 6 and 8,

we obtained 0.72, which is somewhat lower than the ICC from Table 1, while the kappa statistic

for agreement between Weeks 1 and 8 was somewhat higher (0.20) than the ICCs of the table.

An advantage of our approach is that it can easily deal with sequences of repeated measures.

To date, there is no kappa-based alternative.
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4.3 Accounting for Time

If we adjust for time and ignore treatment, then ρ can be derived via (20) and it is easy to

show that

Vij(0) =
exp(βj)

(1 + exp(βj))2
,

where βj is the estimated coefficient of the indicator variable representing time j, when we

use a model without an intercept in the fixed effects. The variation of the random effect

was estimated to be d̂ = 10.04 and this time we had β̂W1 = −3.79, β̂W2 = −2.25, β̂W4 =

−1.50, β̂W6 = −3.79 and β̂W8 = −0.41. Table 2 provides the estimated intra-class correlation

coefficient matrix. This is in line with the well-known relationship between marginal and

random-effects regression parameters (Diggle et al 2002), the correlations are determined by the

random-intercept variance, together with the marginal probabilities factoring into the variance

function:

βj
∼=

√
1 + 0.346 d · logit(pj). (22)

Hence, these correlations are constant only in the simple case of a constant mean. Otherwise,

they are functions of the covariates. Note that, in case a random-intercepts model is deemed

too simple, a more elaborate random-effects structure can be assumed, whilst maintaining the

essence of the proposed calculations.

When exploring Table 2, correlations clearly vary considerably. This indicates that pairs of

measurements early in the sequence are less reliable for one another than pairs later in the

sequence. Indeed, one can realistically assume that measurements earlier in the sequence are

more prone to variability than later on, when subjects are more adapted to the study protocol

and/or learning effects have taken place.

If we repeat this for each treatment group separately, we consistently have a higher correlation
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coefficient in the risperidone treated subjects. Note that the ICC between observations from

Week 6 and Week 8 (ρ = 0.70) is lower as estimated in the previous section (ρ = 0.85). In the

latter, however, only the subgroup of subjects with Week 6 and 8 was used, and if we apply the

same model, accounting for time in this subgroup, then we have ρ = 0.80 instead of 0.70. Note

that the ICC (ρ = 0.70) between observations at Week 6 and 8 is close to the kappa coefficient

(0.72).

4.4 Accounting for Time and Treatment

Next, we will account for both time and treatment. This will yield a different ICC for each

treatment group separately and also for each pair of time points. We allowed for interactions

in the model. Table 3 summarizes the results.

After adjusting for time and treatment, the ICC between observations at Week 1 and 8 increased

from 0.11 (1) to 0.40 in the risperidone group.

5 Extensions

So far, the application focused on correlation of repeated measures within a subject. As a

specific application, the ICC was derived to estimate reliability of a binary response parameter.

Often, one is confronted with the situation that multiple response variables are measured over

time, sometimes referred to as a family of responses. These different response variables can

but do not have to be of the same type. Sometimes, the goal is to estimate treatment effects

in a multivariate way, i.e., jointly estimate treatment effects on the binary and the continuous

responses. In that case, one not only needs to take account of the correlation within a subject
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for a specific single response, but also take account of the correlation between the different

responses for a specific subject. One application in the psychometric literature is the situation

where one wants to estimate the correlation of a certain response variable with a gold standard

to establish criterion validity. For instance, suppose we want to study the correlation between

a continuous interval scaled parameter Yi1 and a binary response Yi2, then (6) can be extended

too, as described in Molenberghs and Verbeke (2005):Yi1

Yi2

 =

 µ1 + λbi + α1Xi

exp[µ2 + bi + α2Xi]
1 + exp[µ2 + bi + α2Xi]

+

εi1

εi2

 .

Here, εi1 and εi2 are the error terms for the continuous and binary outcomes, respectively.

Obviously, the first one will be normally distributed while the second one follows a Bernoulli

distribution. We have included a scale parameter λ in the continuous component of an other-

wise random-intercept model, because the continuous and binary outcome are measured on a

different scale. In this case, we have

Zi =

λ
1

 ,∆i =

1 0

0 vi2(0)

 ,φ =

σ2 0

0 1

 ,

with vi2(0) = µi

∣∣
bi=0

(1−µi

∣∣
bi=0

). Note that Zi is not a design matrix in the strict sense, since

it contains an unknown parameter. Nevertheless, it is useful to consider this decomposition,

implying that (13) becomes

V i =

 λ2 vi2(0)λ

vi2(0)λ vi2(0)2

 τ 2 +

σ2 0

0 vi2(0)



=

λ2τ 2 + σ2 vi2(0)λτ 2

vi2(0)λτ 2 vi2(0)2τ 2 + vi2(0)

 .
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Here, τ 2 is the random-intercept variance. As a result, we have the following approximation

for the marginal correlation:

ρ(β) =
vi2λτ

2

√
λ2τ 2 + σ2

√
v2

i2τ
2 + vi2

. (23)

We can now apply (23) to the same data set to estimate the correlation at Week 8 between the

binary response variable defined above and the continuous response parameter defined as the

total PANSS, the sum of all 30 items of the PANSS. Table 4 summarizes the results. We can

conclude that there was a high correlation between the response variable defined by the CGI

and the total PANSS indicating criterion validity of the derived CGI response and the total

PANSS. This correlation was similar in both treatment groups. Note that the correlation (−0.75

in the risperidone group and −0.74 in the control group) is negative because higher PANSS

values indicate a more psychotic condition and response was coded 1 if the CGI was equal to

“very much improved” or “much improved”. In the classical approach, often the Pearson or

the Spearman correlation is calculated, including only data observed at Week 8 for both the

binary response and the continuous PANSS score. Here, this resulted in −0.59 and −0.61, for

Pearson’s and Spearman’s correlation, respectively.

While in this section we have considered two outcomes of a different type, hence restricting

attention to a cross-sectional setting, it is perfectly possible to combine the longitudinal ideas

of previous sections with the multivariate setting considered here, thus producing a flexible

method that can handle multivariate longitudinal data. One can then distinguish between

various types of correlations, e.g., within-sequence (referring to the reliability concept), between

two different measurements taken at the same time (of relevance in marker evaluation), and

even between different measurements at different times. Details on how such models can be

built and fitted are given in Molenberghs and Verbeke (2005, Ch. 24).
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6 Discussion

We proposed an approximation to calculate correlations from longitudinal data from generalized

linear mixed models. Whilst for continuous, interval scaled data, derivation of correlations, such

as the ICC of reliability is rather straightforward, it is more complex for other types of data.

A general formula was derived using the GLMM. This formula could be used for interval,

binary or other types of data, such as counts. For our case study, the reliability coefficient was

derived for a binary response parameter, using a random-intercepts model. We observed that

the correlation was higher between Week 6 and 8 as compared to Week 1 and Week 8. The

slightly decreasing correlation however from Week 1 and Week 2 to Week 1 and Week 8 was not

observed in the estimates. It should be noted that the random-effects model does also properly

account for missing values due to attrition, provided the missing data are missing at random

(Little and Rubin 2002), which is not the case for the conventional ad hoc analyses. In contrast,

classical methods such as the kappa statistics, can only include paired observations. Another

important advantage of the present method is that it becomes possible to estimate trial-specific

or population-specific reliability. This is especially true because, even in studies designed to

assess reliability, it is difficult to exclude fluctuations in the true scores and furthermore these

studies are often conducted with different populations and in different circumstances. After

extracting time and treatment effect and their interaction, clinical trial data can be used to

make progress when studying test-retest reliability as a function of time. Indeed, reliability

should not be perceived as a fixed quantity but changes with circumstances. Other covariates

can be incorporated into the model to study their effect on error variance and on reliability.

Modeling other sources of variation, like for example country or rater, is therefore an interesting

topic for further research. In psychometric theory, this is referred to as generalizability theory.

Subgroup analyses using a simple model and more versatile models accounting for time and
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treatment and their interaction suggested a higher ICC among subjects in the risperidone group

than in subjects in the active control group, indicating that responses over time within the same

subject were more consistent within the risperidone treatment group than in the active control

group. The methodology can be used to derive population or trial-specific ICC of reliability

in case of binary data. In particular, it extends the random intercepts model proposed in

Vangeneugden et al (2004) to binary data.

This general framework cannot only be used to derive the intraclass correlation coefficient or in

general to study correlation of a single response variable of any type, but was also extended to

investigate correlation between concurrently measured longitudinal data. Also here, a general

framework was provided to deal with various possible situations. The correlation between the

binary response parameter derived from the CGI and the total PANSS was calculated and a

high correlation was found between these two clinical endpoints at Week 8. A large number

of general models, that can be fit using standard software, can be found in Molenberghs and

Verbeke (2005, Part V).

Clearly, the quality of the proposed method hinges upon the accuracy of the Taylor series

approximations employed. This not dissimilar to the well-known accuracy issues with Breslow

and Clayton’s (1993) PQL method. For a discussion, see Molenberghs and Verbeke (2005).

Arguably, our method will perform reasonably well for two reasons. First, the parameter

estimates plugged in are based on the accurate adaptive Gaussian quadrature, obtained with

the NLMIXED procedure, rather than with the expansion methods. Further, our method is a

second-order rather than a first-order approximation.
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Table 1: Summary of different subgroup analysis investigating time and treatment effect. Stan-

dard errors are calculated from the delta method.

Intraclass correlation ρ (s.e.)

time points included combined treatments risperidone active control

all time points 0.48 (0.026) 0.55 (0.038) 0.40 (0.035)

Week 1 and Week 8 0.11 (0.045) 0.11 (0.066) 0.10 (0.060)

Week 6 and Week 8 0.85 (0.026) 0.87 (0.032) 0.82 (0.043)

27



Table 2: Overall ICC (s.e.) matrix, marginal over treatment. Standard errors are calculated

from the delta method.

time

Week 1 2 4 6 8

1 1 0.29 (0.029) 0.33 (0.030) 0.35 (0.029) 0.35 (0.029)

2 1 0.53 (0.032) 0.57 (0.030) 0.57 (0.029)

4 1 0.64 (0.027) 0.65 (0.026)

6 1 0.70 (0.024)

8 1
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Table 3: Overall ICC of reliability (s.e.) matrix, accounting for treatment, time and their

interaction. Standard errors are calculated from the delta method.

Week 1 2 4 6 8

risperidone

1 1 0.36 (.045) 0.39 (.044) 0.40 (.042) 0.40 (.042)

2 1 0.62 (.036) 0.64 (.033) 0.64 (.032)

4 1 0.69 (.026) 0.69 (.026)

6 1 0.71 (.023)

8 1

active control

1 1 0.22 (.036) 0.27 (.038) 0.31 (.038) 0.31 (.038)

2 1 0.42 (.046) 0.48 (.043) 0.49 (.041)

4 1 0.57 (.039) 0.59 (.037)

6 1 0.67 (.029)

8 1
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Table 4: Parameter estimates (standard errors) for a bivariate joint GLMM analysis to estimate

criterion validity between response and total PANSS at Week 8. The SAS procedure NLMIXED

has been used. Standard errors are calculated using the delta method.

End point Effect Parameter Estimate (s.e.)

Total PANSS Intercept µ1 68.98 (1.59)

Treatment α1 -0.41 (2.06)

Standard deviation σ1 13.83 (0.43)

Variation σ2
1 191.37 (11.90)

Inflation λ -0.97 (0.61)

Response (CGI) Intercept µ2 -2.56 (3.25)

Treatment α2 0.96 (2.44)

Common parameters R.I. st.dev. τ 16.84 (10.73)

R.I. var. τ 2 283.74 (361.40)

Corr. (control) ρcont -0.74 (0.026)

Corr. (risperidone) ρris -0.75 (0.022)
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Figure 1: Graphical representation of observed response over time.
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Figure 2: Graphical representation of the correlation of observed response over time.
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