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Abstract

The evaluation of surrogate endpoints is thought to be first studied by Prentice (1989), who
presented a definition of a surrogate as well as a set of criteria. Freedman et al (2001) supple-
mented these criteria with the so-called proportion explained after notifying some drawbacks in
Prentice’s approach. Buyse et al (2000) framed the evaluation exercise within a meta-analytic
setting, thereby overcoming difficulties that necessarily surround evaluation efforts based on a
single trial. In this paper, we briefly review the meta-analytic approach for continuous outcomes.
Advantages and problems are highlighted by means of two case studies, one in schizophrenia
and one in ophthalmology, and a simulation study.

One of the critical issues for the broad adoption of methodology like the one presented here is
the availability of flexible implementations in standard statistical software. We have developed
generically applicable SAS macros and R functions, at the reader’s disposal.

Some Key Words: Adjusted association; Hierarchical model; Meta-analysis; Proportion ex-
plained; Random-effects model; Relative effect; Surrogate endpoint.

1 Introduction

Surrogate endpoints come into play in a number of contexts in place of the endpoint of interest,

referred commonly to as the true or main endpoint. The use of surrogate endpoints is potentially

beneficial, when these endpoints can be measured earlier, leading to a rapid approval of experimental

drugs, or can be administered conveniently, which can be equated to less burden on the side of both

the experimenter and the patients (Buyse and Molenberghs 1998).

The use of surrogate endpoints in clinical practice is increasing. There are several cases in which

there is a need for an accelerated approval of an experimental drug so that its benefit can be

witnessed in a shorter time span. This is especially true in the case of chronic diseases with high

societal cost.
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Ideally, there should be guidelines to declare a marker a useful surrogate for a clinical endpoint.

Two possible views are possible when evaluating a marker. The first deals with the individual

patient level and is connected with the biological pathway from the surrogate to the true endpoint.

This, however, does not necessarily mean a marker is useful to capture the treatment effect in the

setting of a clinical trial. Therefore, a second view, focusing on the treatment effect is necessary

and possible (Fleming and DeMets 1996). Precisely, this level quantifies the association between

the treatment effects on the marker and the clinical endpoint. Buyse et al (2000) and Burzykowsky

et al (2004), among others, have presented a meta-analytic modeling framework, within which both

forms of validation can be undertaken. A key stumbling block for the practical use is the availability

of flexible implementations within standard and commonly used software packages.

The purpose of this paper is to review the validation framework, to exemplify the methodology

in two clinical trial settings, and to present a generic R function and SAS macro. Computational

issues, that can be sources of concern, and of which the practitioner should be at current, are

discussed in detail and illustrated through a simulation study. These issues center around the

choice of unit of analysis, treatment coding schemes and problems with non-positive definite and

ill-conditioned matrices.

The rest of this paper is organized as follows. An introduction to the motivating studies is given

in Section 2. The different validation methods are outlined in Section 3 with the methods that are

based on the meta-analytic approach reviewed first followed by number of simplified computational

strategies. Computational issues, arising when using the meta-analytic approach, are discussed in

Section 4. Section 5 contains the results of the case studies performed on the datasets introduced

in Section 2.

2 Motivating Case Studies

We will present a case study in schizophrenia, followed by one in ophthalmology.
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2.1 A Meta-analysis of Five clinical Trials in Schizophernia

The data come from a meta-analysis of five double-blind randomized clinical trials, comparing the

effects of risperidone to conventional antipsychotic agents for the treatment of chronic schizophre-

nia. The treatment indicator for risperidone versus conventional treatment will be denoted by Z.

Schizophrenia has long been recognized as a heterogeneous disorder with patients suffering from

both ‘negative’ and ‘positive’ symptoms. Negative symptoms are characterized by deficits in cogni-

tive, affective and social functions for example poverty of speech, apathy and emotional withdrawal.

Positive symptoms entail more florid symptoms such as delusions, hallucinations and disorganized

thinking, which are superimposed on mental status (Kay, Fiszbein, and Opler 1987). Several mea-

sures can be considered to asses a patient’s global condition. Clinician’s Global impression (CGI)

is generally accepted as an admittedly subjective clinical measure of change. Here, the change of

CGI from baseline will be considered as the true endpoint, denoted by T . It is scored on a 7-grade

scale used by the treating physician to characterize how well a subject has improved since baseline.

Another useful and sufficiently sensitive assessment scales is the Positive and Negative Syndrome

Scale (PANSS) (Kay, Opler, and Lindenmayer 1988). The PANSS consists of 30 items that pro-

vide an operationalized, drug-sensitive instrument, which is highly useful for both typological and

dimensional assessment of schizophrenia (Kay, Opler, and Lindenmayer 1988). We will use the

change from baseline in PANSS as our surrogate endpoint, denoted by S. The data contains five

trials and in all trials, information is available on the investigators that treated the patients. This

information is helpful to define group of patients that will become units of analysis.

2.2 Age-related Macular Degeneration Study (ARMD)

This is a clinical trial involving patients with age-related macular degeneration, a condition in

which patients progressively lose vision. Overall, 190 patients from 42 centers participated in the

trial. Patients’ visual acuity was assessed using standardized vision charts displaying lines of five

letters of decreasing size, which patients had to read from top to bottom. The visual acuity was

measured by the number of letters correctly read. The binary indicator for treatment is set to

Z = −1 for placebo and Z = 1 for interferon-α. The surrogate endpoint S is the change in visual

acuity 6 months after starting treatment while the true endpoint T is the change in visual acuity
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at 1 year. In the analysis, the centers in which patients were treated will be considered as units

of analysis. Six out of 42 centers participating in the trial enrolled patients only to one of the two

treatment arms. These centers were excluded from considerations. A total of 36 centers were thus

available for analysis, with a number of individual patients per center ranging from 2 to 18 (183

patients overall).

3 Validation Methods

First, we review the meta-analytic framework and since the fitting of models within this framework

can be demanding, a number of simplified strategies, as presented by Tibaldi et al (2003) will be

presented in second instance.

3.1 Review of the Meta-Analytic Approach

Although the single trial based methods are relatively easy in terms of implementation, they are

surrounded with difficulty as there evidently is replication at the patient level, but not at the level

of the treatment effect. Therefore, several authors, such as Daniels and Hughes (1997), Buyse et al

(2000), and Gail et al (2000), have introduced a meta-analytic approach.

The meta-analytic approach has been formulated originally for two continuous, normally distributed

outcomes, and extended in the meantime to a large set of outcome types, ranging from continuous,

binary, ordinal, time-to-event, and longitudinally measured outcomes. A review can be found in

Burzykowski, Molenberghs, and Buyse (2005). Here, for simplicity, we focus on the continuous

case, where the surrogate and true endpoints are jointly normally distributed.

The meta-analytic approach is based on a hierarchical two-level model. Both a fixed-effects and

a random-effects view can be taken. Let Tij and Sij be the random variables denoting the true

and surrogate endpoint for the jth subject in the ith trial, and let Zij be the indicator variable for

treatment. First, consider the following fixed-effects models:

Sij = µSi + αiZij + εSij, (1)

Tij = µT i + βiZij + εT ij , (2)
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where µSi and µT i are trial-specific intercepts, αi and βi are trial-specific effects of treatment Zij on

the endpoints in trial i, εSi and εT i are correlated error terms, assumed to be zero-mean normally

distributed with covariance matrix

Σ =

(
σSS σST

σTT

)
. (3)

A classical hierarchical, random-effects modeling strategy can also be adopted in the following

manner:

Sij = µS + mSi + αZij + aiZij + εSij , (4)

Tij = µT + mT i + βZij + biZij + εT ij. (5)

Here, µS and µT are fixed intercepts, α and β are fixed treatment effects, mSi and mT i are random

intercepts, and ai and bi are random treatment effects in trial i for the surrogate and true end-

points, respectively. The random effects (mSi, mT i ,ai , bi) are assumed to be mean-zero normally

distributed with covariance matrix

D =




dSS dST dSa dSb

dT T dTa dTb

daa dab

dbb




. (6)

The error terms εSij and εT ij follow the same assumptions as in the fixed effects models. In addition,

following the fixed-effect models (1) and (2), we can specificy



µSi

µT i

αi

βi




=




µS

µT

α

β




+




mSi

mT i

ai

bi




, (7)

where the second term on the right hand side of (7) is assumed to follow a zero-mean normal

distribution with covariance matrix (6).

Upon fitting the above models, the surrogate marker evaluation is captured by means of two

quantities, the trial-level and individual-level R2, respectively. The former quantifies the association

between the treatment effects on the true and surrogate endpoints at the trial level. The latter
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measures the association at the level of the individual patient and after adjustment for the treatment

effect. The former is given by:

R2
trial = R2

bi|mSi,ai
=

(
dSb

dab

)T (
dSS dSa

dSa daa

)−1(
dSb

dab

)

dbb
.

The above quantity is unitless and, at the condition that the corresponding variance-covariance

matrix is positive definite, lies within the unit interval.

The models (1) and (2) can be referred to as the full fixed effects models and it is possible to

simplify them. The reduced versions of these models are obtained by replacing the fixed trial-

specific intercepts, one for each endpoint, common to all trials. The reduced mixed effect models

result from removing the random trial-specific intercepts mSi and mT i from models (4) and (5).

The R2 for the reduced models is then calculated as follows:

R2
trial(r) = R2

bi|ai
=

d2
ab

daadbb
.

A surrogate could thus be adopted when R2
trial is sufficiently large. Arguably, rather than using

a fixed cutoff above which a surrogate would be adopted, there always will be clinical and other

judgment involved in the decision process.

The R2
indiv is based on (3) and takes the following form:

R2
indiv = R2

εTi|εSi
=

σ2
ST

σSSσTT

(8)

Note that, here, trial is considered as experimental unit which can be replaced by center, investigator

or any other suitable experimental unit, depending on the nature of the study conducted. The issue

of the unit of analysis is discussed in Section 4.1 and has been thoroughly studied by Cortiñas et al

(2004). Thus, while trial is the optimal unit of analysis from a substantive point of view, practical

considerations may render such a choice less than optimal. The need to turn to alternative units

may be alleviated by ensuring good access to the widest possible class of trials.

3.2 Review of Simplified Modeling Strategies

Though the above hierarchical modeling is elegant, it often poses a considerable computational

challenge (Burzykowski, Molenberghs, and Buyse 2005). To address this problem, Tibaldi et al
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(2003) suggested several simplifications of the above strategy, briefly outlined here. These authors

considered three possible dimensions along which simplifications can be undertaken.

3.2.1 Trial Dimension

This dimension provides a choice between treating the trial-specific effects as fixed or random. If

the trial-specific effects are chosen to be fixed, a two-stage approach is adopted. The first-stage

model will take the form (1)–(2) and at the second stage, the estimated treatment effect on the

true endpoint is regressed on the treatment effect on the surrogate and the intercept associated

with the surrogate endpoint as

β̂i = λ̂0 + λ̂1µ̂Si + λ̂2α̂i + εi. (9)

The trial-level R2
trial(f) then is the coefficient of determination obtained by regressing β̂i on µ̂Si and

α̂i, whereas R2
trial(r) is obtained from the coefficient of determination resulting from regressing β̂i on

α̂i only. The individual-level value is calculated as in (8) using the estimates from (3). Note that

here (r) and (f) indicate that the trial-level association is obtained based on either the reduced or

the full model, respectively.

The second option is to consider the trial-specific effects as random. Depending on the choice

made on the endpoint dimension, two directions can be followed. The first one involves a two-

stage approach with univariate models (4)–(5) at the first stage. A second stage model consists

of a normal regression with the random treatment effect on the true endpoint as response and the

random intercept and random treatment effect on the surrogate as covariates. The second direction

is based on a full random effects (hierarchical) model as discussed in Section 3.1.

3.2.2 Endpoint Dimension

Though natural to assume the two endpoints to be correlated, this can lead to computational

difficulties in fitting the models. The need for the bivariate nature of the outcome is associated

with R2
indiv, which is in some cases of secondary importance. In addition, there is also a possibility

to estimate it by making use of the correlation between the residuals from two separate univariate

models. Thus, further simplification can be achieved by fitting separate models for the true and
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surrogate endpoints, the so-called univariate approach.

If in the trial dimension, the trial-specific effects are considered to be fixed, then models (1)–(2)

are fitted separately. Similarly, if the trial-specific effects are considered random, then models (4)–

(5) are fitted separately, i.e., the corresponding error terms in the two models are assumed to be

independent.

3.2.3 Measurement Error Dimension

When the univariate approach from the endpoint dimension and/or the fixed effects approach from

the trial dimension are chosen, there is a need to adjust for the heterogeneity in information content

between trial-specific contributions. One way to do so is weighting the contributions according to

trial size. This gives rise to a weighted linear regression model (9) in the second stage.

4 Computational Considerations

In this section, we will address a number of computational issues and considerations, such as

the choice of the unit for analysis, the effect of treatment coding, the possible occurrence of ill-

conditioned and non-positive definite variance-covariance matrices, and the (lack of) availability of

standard software.

4.1 Unit of Analysis

A cornerstone of the meta-analytic method is the choice of the unit of analysis such as, for example,

trial, center, or investigator. This choice may depend on practical considerations, such as the

information available in the data set at hand, experts’ considerations about the most suitable unit

for a specific problem, the amount of replication at a potential unit’s level, and the number of

patients per unit. From a technical point of view, the most desirable situation is where the number

of units and the number of patients per unit is sufficiently large. This issue has been discussed by

Cortiñas et al (2004).
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4.2 Treatment Coding

Most of the work reported on in Burzykowski, Molenberghs, and Buyse (2005) is for a dichotomous

treatment indicator. Two choices need to be made at analysis time. First, the treatment variable

can be considered continuous or discrete (a class variable). Second, when a continuous route is

chosen, it is relevant to reflect on the actual coding, 0/1 and −1/ + 1 being the most commonly

encountered ones. For models with treatment occurring as fixed effect only, these choices are

essentially irrelevant, since all choices lead to an equivalent model fit, with parameters from one

situation to another connected by simple linear transformations. Note that this is not the case, of

course, for more than three treatment arms. However, of more importance for us here is the impact

the choices can have on the hierarchical model. Indeed, while the marginal model resulting from

(4)–(5) is invariant under such choices, this is not true for the hierarchical aspects of the model,

such as, for example, the R2 measures derived at the trial level. Indeed, a −1/ + 1 coding ensures

the same components of variability operate in both arms, whereas a 0/1 coding, for a positive

definite D matrix, forces the variability in the experimental arm to be greater than or equal to the

variability in the standard arm. To see this, for simplicity, assume that the random terms in the

model are independent from each other, then the total variance of the response is the sum of the

squared regression coefficients attached to the random terms, multiplied by the variance of these

random terms. Thus, for those subjects that have taken a placebo, the coefficient for the random

treatment effect is zero and hence their total variance will amount to the sum of the other terms. On

the other hand, the total variance of subjects in the treatment group will have an additional term

in the form of the variance of the random treatment effect, since here the corresponding parameter

equals one. Thus, the treatment coding implicitly makes assumptions about the ordering of the

total variability in the treated and placebo groups. Both situations may be relevant, and therefore it

is of importance to illicit views on this issue from the study’s investigators. While this may require

some explanation to the study investigator, this proposal is in line with the view that surrogate

marker validation cannot be carried out based solely on statistical grounds and there should be

substantive input as well.
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4.3 Ill-conditioned and Non-positive Definite Variance-covariance Matrix

When the full bivariate random effect is used, the R2
trial is computed from the variance-covariance

matrix (6). It is sometimes possible that this matrix be ill-conditioned and/or non-positive definite.

In such cases, the resulting quantities computed based on this matrix might not be trustworthy.

One way to asses the ill-conditioning of a matrix is by reporting its condition number, i.e., the

ratio of the largest over the smallest eigenvalue. A large condition number is an indication of ill-

condioning. The most pathological situation occurs when at least one eigenvalue is equal to zero.

This corresponds to a positive semi-definite matrix, which occurs, for example, when a boundary

solution is obtained. Thus, in the validation process, it is necessary to check the D matrix for

absence of presence of these issues.

4.4 Simulation Results

To asses the impact of using an incorrect treatment coding, a small simulation involving 12 different

combinations of trial size and number of individuals per trial has been performed. The data were

generated based on the following model:

Sij = 45 + mSi + (3 + ai)Zij + εSij, (10)

Tij = 50 + mT i + (5 + bi)Zij + εT ij . (11)

Here, ai and bi are random treatment effects in trial i for the surrogate and true endpoints, re-

spectively. The random effects (mSi,mT i, ai, bi) are assumed to be mean-zero normally distributed

with covariance matrix:

D =




3 2.4 0 0
2.4 3 0 0
0 0 3 2.7
0 0 2.7 3




. (12)

The error terms εSij and εT ij are assumed to be zero mean random variables with variance-

covariance matrix

Σ =

(
3 2.4

2.4 3

)
. (13)

The number of trials was fixed at either 10, 20, or 50, with each trial involving either 10, 20, 40,

or 60 subjects, jointly giving rise to 12 different scenarios. For each combination, 100 datasets
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were generated for both treatment codings. The datasets were then analyzed with the correct

treatment coding, i.e., the treatment coding with which the data were generated, as well as with

the opposite coding. For each case the median condition number and the percentage of positive

definite variance-covariance matrices are counted. The results of these simulations are displayed in

Tables 1 and 2.

The simulation has revealed that, for a small number of analysis units and/or a small number of

subjects per analysis unit, the wrong treatment coding could result in a high degree of uncertainty

in the resulting variance-covariance matrix. For the 0/1 coding, the effect is noticed even when the

correct coding was followed to do the analysis, i.e. there was high degree of uncertainty even when

the data were analyzed with the correct 0/1 coding for small sample sizes. The effect, however,

seems to vanish with increasing repetition of the unit of analysis and number of subjects per unit

of analysis. If we consider a median condition number of 100 as an arbitrary cutoff value, we

notice that we require a minimum of 20 trials to achieve a condition number less than 100 for

0/1 coding. This number, however, reduces to only 10 trials to reach a condition number less

than 100 for −1/ + 1 coding. With respect to the positive-definitness of the variance-covariance

matrix, the percentage of positive-definite matrices increases with increase in the sample size for

both treatment coding schemes. However, the −1/ + 1 produced relatively a higher percentage

of positive definite matrices even for small samples as compared to the 0/1 coding where the

percentage of positive definite matrices is low even for moderately higher sample sizes. Based on

the results of this simulation, it seems reasonable to consider the −1/ + 1 treatment coding and

chose a reasonable unit of analysis to avoid the numerical problems and achieve positive definiteness

in the variance-covariance matrix.

4.5 Software

R functions and SAS macros have been developed to implement the methods discussed in the

previous sections. In the appendix, we outline how both tools operate. Further, these tools can

be downloaded from http://www.censtat.be/research/software.asp. Turning the R functions

into a full-fledged R library is work in progress, which will be posted on the same web pages in due

course.
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Table 1: Simulation results for −1/1 treatment coding.

simulation median condition

strategy % positive-definite number
simulation # # trials # subjects correct incorrect correct incorrect

1 10 10 42 41 3.44E+16 3.71E+17
2 10 20 66 65 178.00 403.10
3 10 40 91 91 78.36 172.86
4 10 60 98 98 81.23 158.39
5 20 10 90 90 52.43 138.62
6 20 20 97 98 43.33 102.34
7 20 40 100 100 34.87 101.55
8 20 60 100 100 32.97 84.41
9 50 10 100 100 27.55 84.56
10 50 20 100 100 26.54 80.64
11 50 40 100 100 24.28 75.01
12 50 60 100 100 24.92 72.86

5 Application to the Case Studies

The two case studies, introduced in Section 2, are analyzed here. Let us start with the schizophrenia

study. Here, trial seems the natural unit of analysis. Unfortunately, the number of trials is not

sufficient to apply the full meta-analytic approach. The use of trial as unit of analysis for the

simplified methods might also entail problems. The second stage involves a regression model based

on only five points, which might give overly optimistic or at least unreliable R2 values. The other

possible unit of analysis for this study is ‘investigator’. There were 176 investigators who each

treated between 2 and 60 patients. The use of investigator as unit of analysis is also surrounded

with problems. Although a large number of investigators is convenient to explain the between

investigator variability, because there are few patients per investigators for some investigators, the

resulting within-unit variability might not be estimated correctly.

The basic meta-analytic approach and the corresponding simplified strategies have been applied

to this data set. The results are displayed in Table 3. Both investigator and trial were used as

unit of analysis. However, as there were only five trials, it became difficult to base the analysis on
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Table 2: Simulation results for 0/1 treatment coding.

simulation median condition

strategy % positive-definite number
simulation # # trials # subjects correct incorrect correct incorrect

1 10 10 10 10 5.44E+16 3.71E+17
2 10 20 25 25 4.09E+16 9.03E+16
3 10 40 57 58 304.05 1184.91
4 10 60 68 68 196.44 436.48
5 20 10 38 38 2.79E+16 6.6E+16
6 20 20 62 62 136.94 560.39
7 20 40 89 89 51.17 186.94
8 20 60 97 97 38.32 166.40
9 50 10 70 71 67.83 225.77
10 50 20 93 93 34.18 158.24
11 50 40 100 100 27.31 134.00
12 50 60 100 100 25.56 127.24

trial as unit of analysis in the case of the full bivariate random-effects approach. The results have

shown a remarkable difference in the two cases. Consistently, in all of the different simplifications,

the R2
trial values were found to be higher when trial was used as unit of analysis. This is to be

expected, since the second-stage model involved a simple linear regression based on only five data

points. Furthermore, note that, when investigator is used as unit of analysis, the R2
trial values are

higher when the reduced model is used as compared to the the case where the full model used.

This indicates that the investigator-specific intercept terms for the surrogate model does convey

information and generally the full model is to be preferred. The opposite result obtains when trials

are used as unit of analysis. This result can, and is, explained in the same fashion. The bivariate

full random effects model does not converge when trial is used as the unit of analysis. This might

be due to lack of sufficient information to compute all sources of variability. The reduced bivariate

random effects model converged for both cases, but the resulting variance-covariance matrices were

not positive-definite and were ill conditioned, as can be seen from the very large value of the

condition number.

Consequently, the results of the bivariate random effects model should be treated with caution as

13



there might be high uncertainty attached to the results obtained based upon these ill-conditioned

matrices. If we concentrate on the results based on investigator as unit of analysis, we observe

a low level of surrogacy of PANSS for CGI, with R2
trial ranging roughly between 0.5 and 0.68 for

the different simplified models. This result, however, has to be coupled with other findings based

on expert opinion to fully guarantee the validation of PANSS as possible surrogate for the CGI.

Turning to R2
indiv, it ranges between 0.4904 and 0.5230, depending on the method of analysis, which

is relatively low. To conclude, based on the investigators as unit of analysis, PANSS does not seem

a good surrogate for the CGI.

For the ARMD study, the only available unit of analysis was center. There were 36 centers which

treated between 2 and 18 patients. Note that these data has been analyzed by Buyse et al (2000)

with a treatment coding of 0 and 1 for the placebo and treatment arms, respectively. Here, the

−1/+1 coding was used and thus slightly different results obtain. The basic meta-analytic approach

and the corresponding simplified modeling strategies have also been applied to this dataset and the

results are displayed in Table 4 for the −1/ + 1 coding and in Table 5 for the 0/1 coding.

For the ARMD study, the R2
trial ranges roughly between 0.64 and 0.8, except for the full bivariate ran-

dom effects models where we find R̂2
trial = 0.9999. However, the corresponding variance-covariance

matrices were non-positive definite and have very large condition number, a sign of high uncertainty

surrounding the latter estimate. Hence, it cannot be trusted. Based on the findings, it is possible

to say that assessment of change in visual acuity at 6 months does not seem to be a very strong

surrogate for the same assessment at 1 year.

6 Discussion

In this paper we reviewed the meta-analytic strategy for validating a surrogate endpoint. The choice

of unit of analysis and corresponding computational issues that need to be given due attention have

also been adressed. The choice of unit of analysis in applying the meta-analytic approach is a very

important issue to be considered. There might be a large difference in the findings depending on

the unit of analysis chosen. The optimal unit of analysis is the one for which there is a sufficient

number of repetition and each unit has sufficiently large number of individuals within it. Ideally,

14



Table 3: Schizophrenia study. Results of the trial-level (R2
trial) surrogacy analysis.

Fixed effects Random effects

Unit of analysis Unweighted Weighted Unweighted Weighted
Full Model

Univariate approach

Investigator 0.5887 0.5608 0.5488 0.5447
Trial 0.9641 0.9636 0.9849 0.9909

Bivariate approach

Investigator 0.5887 0.5608 0.9898∗
Trial 0.9641 0.9636 —

Reduced Model

Univariate approach

Investigator 0.6707 0.5927 0.5392 0.5354
Trial 0.8910 0.8519 0.7778 0.8487

Bivariate approach

Investigator 0.6707 0.5927 0.9999∗
Trial 0.7418 0.8367 0.9999∗

∗: The variance-covariance matrix is ill-conditioned; in particular, at least one
eigenvalue is very close to zero.The condition numbers for the three models with ill-
condition matrices, from top to bottom are 3.415E+18, 2.384E+18 and 1.563E+18
respectively.

the choice of unit of analysis should be based on both statistical and subject-matter considerations.

The treatment coding also needs to be given serious consideration, in consultation with experts

who may be able to formulate an opinion on the possible variability of the two treatment arms. A

small simulation study and analysis of two real sets of data supported these points.

Absence of standard software has been one of the limiting factors hampering the use of the meta-

analytic approach. We have developed an R library and a SAS macro which can be used to conduct

these analyses for continuous outcomes. Efforts are under way to incorporate more R functions

and SAS macros for different types and combinations of endpoints.
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Table 4: ARMD data. Results of the trial-level (R2
trial) surrogacy analysis −1/ + 1 coding.

Fixed effects Random effects

Unit of analysis Unweighted Weighted Unweighted Weighted
Full Model

Univariate approach

Center 0.6922 0.6963 0.6605 0.7959

Bivariate approach

Center 0.6922 0.6963 0.9999∗
Reduced Model

Univariate approach

Center 0.6409 0.6562 0.6772 0.7929
Bivariate approach

Center 0.6409 0.6562 0.9999∗

∗: The variance-covariance matrix is ill-conditioned; in particular, at least one eigen-
value is very close to zero.The condition numbers for Full and Reduced Bivariate
random effects models are 1.109E+17 and 1.965E+18 respectively

A Implementations

In this appendix, we will briefly outline the use of our SAS macro and R function, respectively.

A.1 SAS Macro

The SURCONCON macro can be used to perform the above analysis involving surrogate marker

validation using the meta-analytic approach. The macrocan be invoked as follows:

%surconcon(yvar=,endpoint=,trial=,id=,data=,trt=,adj=,

red=,boot=,type=,bootnum=,dmat=,outf=,plot=,drive=,file=,solutionf=)

where

yvar: Name of the response variable.

endpoint: Name of the endpoint indicator (-1=surrogate endpoint, 1=true endpoint).
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Table 5: ARMD data. Results of the trial-level (R2
trial) surrogacy analysis 0/1 coding.

Fixed effects Random effects

Unit of analysis Unweighted Weighted Unweighted Weighted
Full Model

Univariate approach

Center 0.692 0.693 0.664 0.801

Bivariate approach

Center 0.692 0.693 —

Reduced Model

Univariate approach

Center 0.776 0.758 0.659 0.786
Bivariate approach

Center 0.776 0.758 —

trial: Name of the unit of analysis (center, trial,. . . )

id: Name of the variable indicating the unique subject identification number.

data: Name of input dataset. See the macro description on data formatting and layout.

trt: Name of the treatment indicator variable.

adj: A choice for using weighted (adj=1)or unweighted(adj=0) regression in the second stage.

red: A choice for using reduced (red=1) or full (red=0) model.

type: A choice for using the different modeling approaches (1–4).

1. Univariate fixed effect

2. Bivariate fixed effect

3. Univariate random effect

4. Bivariate random effect

boot: A choice for using different bootstrapping approaches(0-4).This option is required only when

“type” is set to 1 or 3.

0. Simple percentile confidence interval
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1. Improved normal confidence interval

2. The studentized confidence interval

3. The Basic confidence interval

4. Percentile confidence interval

bootnum: Number of bootstrap samples required.

dmat: A choice for printing the matrix of the random terms to the output file (1=yes,0=no).

solutionf: A choice for printing the solution for fixed effect to the output file (1=yes,0=no).

outf: A choice for printing the trial specific random(for type=3 or 4) or fixed (for type=1 or 2)

effects to the output file (1=yes,0=no).

plot: A choice for printing the plot of the raw outcomes, residuals and treatment effects of the

main endpoint against those of the surrogate endpoint (plot=1).

drive: The drive on your computer where you want to save the output file (like A, C, D).

file: The name of the output file containing the macro results.

rescale: The option to control the size of the bubble plots when the treatment effects on the true

endpoint are plotted against those of the surrogate endpoints. It can take integer values or

fractions depending on the size of the plots. It is important that the endpoint indicator be

coded as −1/ + 1, with 1 indicating the true endpoint.

Example: Consider part of the data arranged as the format in Table 6. Once the data are arranged

in this format and saved as a SAS dataset, the macro can be invoked as

%surconcon(yvar=outcome,endpoint=endpoint,trial=trial,id=subject,

data=data,trt=treatment,adj=1,red=0,boot=2,type=1,bootnum=1000,

plot=1,drive=c, file=output1,solutionf=1)

This call produces the following results:
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Table 6: Data layout for surrogacy analysis.

subject trial outcome endpoint treatment

1 1 0 1 1
1 1 -10 -1 1
2 1 -3 1 -1
2 1 1 -1 -1
3 2 -6 1 1
3 2 -17 -1 1
. . . . .
. . . . .
. . . . .

• A full (red=0) univariate fixed effect (type=1) model with a weighted regression (adj=1) in

the second stage.

• The standard error of the individual-level R-square is computed based on 1000 bootstrap

samples(bootnum=1000).

• The confidence interval for the individual-level R-square will be computed using “the studen-

tized confidence interval” (boot=2).

• The out put will be saved on the c-drive (drive=c) with a pdf file output1.pdf (file=output1).

• The output contains the trial and individual level R-square (default), the plot of the outcome,

treatment effect and residual of the true endpoint against those of the surrogate endpoint

(plot=1).

• The solution for the fixed effects will be printed (solutionf=1).

A.2 R functions

bivs is an R function that performs surrogate endpoint evaluation through the full hierarchical

models; both the two-stage (fixed) and full random effect models can be considered. unis is an R

function that performs surrogate endpoint evaluation through the univariate approach, by fitting

univariate fixed and mixed effects models based on the simplified strategies of Tibaldi et al (2003).

19



The calls are

bivs(outcomes, endpoints, treatment, trialunit, subject,

mixed=FALSE, method=1, reduced=FALSE, weighted=FALSE)

unis(outcomes, endpoints, treatment, trial.unit, mixed=TRUE,

reduced=FALSE, weighted=FALSE, alpha=0.05, Type=2, sample.size=1000)

The arguments are as follows:

alpha: Significant level used to construct bootstrap confidence intervals for individual level R-

square. The default value is 0.05.

endpoints: Endpoint indicator, which should be coded as: Surrogate endpoint= −1 and True

endpoint= 1.

mixed: If TRUE univariate linear mixed effects models are used for both the endpoints. If FALSE

univarite fixed effect models are used. Default is TRUE.

outcomes: The response variable holding the values for both the True endpoint and the Surrogate

endpoint, for each case/subject in the data. It should be preferably be sorted by endpoints

(see below).

reduced: Logical value indicating whether a reduced(=TRUE) or a full (=FALSE) model is fitted.

Default is FALSE.

sample.size: Integer value specifying the number of bootstrap samples.

subjects: Variable holding the identification of the various subjects/patients in the data.

treatment: Treatment indicator, should be coded as: Standard treatment is coded as −1 and new

treatment as 1.

trial.unit: The unit of analysis, e.g., trial, center, investigator,. . .

type: Indicates the type of bootstrap confidence interval to estimate for R2
indiv:
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1. Normal confidence interval

2. Improved normal confidence interval

3. Basic bootstrap confidence interval

4. Percentile confidence interval

5. Studentized interval

weighted: If TRUE weighted normal regression is performed for the estimation of trial level R-

square. If FALSE, normal regression is performed. Default is FALSE.

Details: It is necessary that treatment and endpoint be coded as 1 and −1. A consequence of the

0/1 coding is that the group coded as 0 is assumed to have smaller variance than the group

coded as 1. On the other hand the −1/ + 1 coding leads to equal variance in both groups.

Value: An object of class bivs or unis representing the surrogate endpoint evaluation through the

hierarchical approach or univariate approach, respectively. Generic functions such as print,

plot and summary have methods to show the results of the fit. The functions residuals and

coef can be used to extract some of the fitted objects components.

The implementation example performed in the description of the SAS macro section can also be

done using the unis function in R as follows. Arrange the data as given in Table 6 and then run

the function as:

unis(outcome, endpoint, treatment, trial, mixed=FALSE,

reduced=FALSE, weighted=TRUE, alpha=0.05, Type=5, sample.size=1000)
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