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Summary

A common objective in longitudinal studies is the investigation of the association struc-

ture between a longitudinal response process and the time to an event of interest. An

attractive paradigm for the joint modelling of longitudinal and survival processes is the

shared parameter framework where a set of random-effects is assumed to induce their

interdependence. In this work, we propose an alternative parameterization for shared pa-

rameter models and investigate the effect of misspecifying the random-effects distribution

in the parameter estimates and their standard errors.

Some key words: Copula functions; Joint modelling; Random-effects misspecification; Shared

parameter models.

1. Introduction

In follow-up studies it is common that each subject provides both a sequence of lon-

gitudinal response measurements as well as the time to an event of interest. In such
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studies, the main scientific interest may focus on three distinct aspects, i.e., on either

the longitudinal process in which the event occurrence causes informative dropout, on

the survival process in which the longitudinal measurements are considered as a time-

dependent covariate measured with error, or on the association structure between the two

processes. Typical examples in this setting include HIV studies, in which longitudinal

measurements of CD4 cell counts or the estimated viral load are predictive for the time

to onset of clinical AIDS or death, as well as kidney disease studies where longitudinal

glomerular filtration rate measurements are predictive for the time to kidney failure.

Shared parameter models (SPMs) (Wu & Carroll, 1988; Wulfsohn & Tsiatis, 1997;

Tsiatis & Davidian, 2004) offer an appealing framework for the joint modelling of sur-

vival and longitudinal processes. In particular, in SPMs it is assumed that a latent

process, expressed by a set of time-invariant random-effects, induces the dependence be-

tween the two explicitly observed processes. These random-effects are usually assumed

to be normally distributed, even though this choice is not made on the grounds of com-

putational simplicity. Some authors have questioned the Gaussian assumption, in the

sense that the resulting inferences can be sensitive to assumptions that cannot easily be

checked from the available data (see e.g., discussion to Scharfstein et al., 1999). To this

end, some approaches have been proposed that either relax the distributional assump-

tions (Song et al., 2002) or make no parametric assumptions (Tsiatis & Davidian, 2001)

at all about the random-effects distribution. However, the main empirical result from

these approaches is that the parameter estimates are rather robust to random-effects

misspecification. Huang et al. (2006) have explored a similar behaviour in structural

measurement error models.

In this paper, we consider the SPMs framework and formally investigate the effect
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of misspecifying the random-effects distribution using two possible parameterizations.

In particular, we show that, as the number of repeated longitudinal measurements per

individual grows, the effect of random-effects misspecification vanishes for certain para-

meters. The intuitive justification for this claim is based on two arguments. First, as the

number of repeated measurements per individual increases, the dominating part in the

SPMs factorization is the longitudinal measurement model and thus any erroneous as-

sumption about the random-effects distribution is alleviated. Second, as it will be shown,

SPMs assume in general a restrictive association structure for the joint distribution of the

two processes and this partially explains robustness with respect to the random-effects

distribution. Two types of random-effects structure parameterizations are considered,

namely either a common set or different sets of random-effects for the two processes.

For the second type we propose a copula representation of the random-effects distribu-

tion. This parameterization allows for different types of dependence structure between

the underlying measurement and survival processes, thus allowing for sensitivity analysis

regarding the association structure.

The remainder of the paper is organized as follows. In § 2 we present the shared

parameter model factorization, discuss some of its features, and show the two possible

parameterizations. In § 3, we formally investigate the effect of random-effects misspeci-

fication as a function of the number of repeated measurements per individual. In § 4 we

describe the results of a simulation study and § 5 considers a real data application.

2. Shared Parameter Models Framework

2·1 Model Specification

Let T ∗
i denote the true event time for the ith subject and consider a random sample

of n subjects (i = 1, . . . , n). Letting Ci denote the underlying potential censoring for
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subject i, one observes Ti = min(T ∗
i , Ci) and δi = I(T ∗

i ≤ Ci), where I(·) is the indicator

function. Moreover, let yi(tij) denote the longitudinal measurement for subject i taken

at time tij, j = 1, . . . , ni. Clearly, yi(tij) is observed whenever tij ≤ Ti, and in most

occasions yi(Ti) is not available. Let Yi = {yi(u) : 0 ≤ u ≤ Ti} denote the observed

longitudinal process for the ith subject. Finally, set bi to be time-independent random-

effects that underly both the longitudinal measurement and survival processes. Under

this setting the shared parameter model is defined as follows

p(Yi, Ti; θ) =

∫
p(Yi | bi; θy) p(Ti | bi; θt) p(bi; θb) dbi, (1)

where θ> = (θ>y , θ>t , θ>b ) is the vector containing the parameters of each one of the

sub-models and p(·) denotes the appropriate probability density functions. Here p(Ti |

bi; θt) = p(Ti | bi; θt)
δiS(Ti | bi; θt)

1−δi , i.e., equals either the density for the true event

times or the survival function for censored observations. We also set A> to denote the

transpose of A. An implicit assumption in factorization (1) is that both the censoring

and the visiting processes are noninformative, i.e., independent of bi, and can be ignored

in the modelling procedure. Although such an assumption might be questionable in

certain situations, we adhere to it here and revisit it in § 6.

SPMs are built under the so-called conditional independence assumption, where the

survival and longitudinal processes are assumed independent given the random-effects

bi. It is customary to assume bi to follow a Normal distribution, even though this

does not usually lead to a tractable form for the integral in (1) and hence numerical

integration remains a requirement to evaluate the associated likelihood. According to

(1), distributional assumptions for the random-effects allegedly play an important role

in the SPM’s factorization since the bi’s link the two processes of interest. However,

empirical results (Wang & Taylor, 2001; Song et al., 2002; Tsiatis & Davidian, 2004)
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show that misspecification of the random-effects distribution does not have a great impact

on the parameter estimates, except for extreme cases such as discrete distributions. We

investigate this phenomenon in more detail in § 3.

2·2 Two Parameterizations

The usual SPMs assume that the longitudinal and event processes share a common

set of random-effects. In particular, the linear predictors ηyi and ηti of the conditional

sub-models for Yi and Ti, respectively, have the form

ηyi = Xyiβ + Zyibi and ηti = x>tiγ + (Zyibi)
>α, (2)

where Xyi and Zyi are known fixed- and random-effects design matrices for the longitudi-

nal process, β is a vector of unknown fixed-effects parameters, xti is a vector of covariates

for the event process with an associated parameter vector γ, and α denotes a vector of

association parameters linking the survival process with the random-effects structure of

the measurement process. If α = 0, then the two processes are unrelated implying that

joint modelling is not required.

An implicit feature of parameterization (2) is that it assumes perfect linear correla-

tion between the latent structures of the two processes since the same random-effects are

shared. This could be regarded as rather a restrictive assumption that may not be desir-

able, especially in settings in which the association structure between the measurement

and event processes is of interest. Therefore, we propose a more flexible parameterization

that considers two separate sets of random effects for the two processes, linking them

using a copula function. Copulas (Nelsen, 1999) are multivariate cumulative distribution

functions with uniform marginals, which provide a natural approach to construct joint

distributions and explore dependence. The consideration of two separate random-effects
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is in the spirit of the approach proposed by Henderson et al. (2000) who postulate a

bivariate Gaussian latent processes shared by the two processes. In particular, we assume

ηyi = Xyiβ + Zyibyi and ηti = x>tiγ + bti, (3)

p(byi, bti) = c{Fy(byi), Ft(bti); α} p(byi) p(bti), (4)

where byi are random-effects for the measurement process and bti is a frailty term for

the survival process. The frailty term is assumed to represent an unobserved covariate

explaining heterogeneity (Keiding et al., 1997). For the joint density {byi, bti} given

by (4) we assume a copula representation, where c(·) denotes the density of a copula

function C(·), and Fy(·) and Ft(·) are the marginal cumulative distributions functions

for byi and bti, respectively. In case of multivariate byi we assume that the copula behind

Fy(·) is directly compatible with C(·) (Nelsen, 1999, pp. 85–86). It is important to

note that under (3) the association parameter, still denoted by α, is a parameter of the

random-effects model and specifically of the copula function, in contrast to (2) where α

is a parameter of the event process model. The main advantage of parameterization (3)

is the flexibility in considering different dependence structures between the two processes

by using different copula functions while keeping all other aspects of the model fixed.

For instance, under the usual normality assumption for bi, parameterization (2) is a

special case of (3) with C(·) being the Gaussian copula with a restricted correlation

matrix assuming corr(byi, bti) = ±1 depending on the sign of α under (2), and Gaussian

marginals Fy(·) and Ft(·). In this example bti = αbyi, that is α2 is merely a rescaling

factor for the variance of byi.

However, even though the latter parameterization offers increased flexibility for the

association structure between the two processes, we should note that SPMs, in general,

imply a restrictive representation of the marginal joint distribution {Yi, Ti}. To see
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this, consider the following simple but instructive example. Assume no censoring and

moreover that all processes involved, namely Yi | byi, log Ti | bti and {byi, bti} follow a

Normal distribution. Then the covariance for the marginal distribution {Yi, log Ti} is

of the form V = Z̃DZ̃> + Σ, where Z̃ = diag{Zy, 1}, D is the covariance matrix for

the joint distribution of {byi, bti}, and Σ is the residuals covariance matrix for the joint

distribution of {Yi, log Ti | byi, bti} = {Yi | byi} {log Ti | bti}. Clearly, V is of a specific

form assuming positive correlation and not a general variance-covariance matrix. This

feature of SPMs also intuitively justifies the small impact of the assumptions regarding

the random-effects distribution in the parameter estimates.

3. Random-Effects Misspecification

In this section, we investigate the effect of misspecifying the random-effects distribution

in parameter estimates and standard errors under the SPMs framework. Unless explicitly

stated, we will denote by bi the set of random-effects under both parameterizations (2)

and (3); in the latter case b>i = (b>yi, bti). In particular, we assume that the true random-

effects probability density function is p(bi), whereas the fitted one is f(bi; θb). Moreover,

we assume that there is no θb ∈ Θb such that f(bi; θb) = p(bi), where Θb is the parameter

space of θb. Finally, the conditional models for the longitudinal measurement and event

processes, p(Yi | bi; θy) and p(Ti | bi; θt), respectively, are assumed correctly specified.

3·1 Parameter estimates

Let θ̃ and θ̂ denote the parameter estimates obtained by maximizing the log-likelihood

of the SPM using f(bi; θb) and p(bi), respectively. Under regularity conditions (Cox &

Hinkley, 1974, pp. 281), θ̂ is a consistent estimator of the true θ∗. We will distinguish

between two sets of parameters, namely θ>yt = (θ>y , θ>t ) and θb. The effect of using f(bi; θb)

instead of the true p(bi) in the parameter estimates is described in the following theorem.
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Theorem 1. As the number ni of repeated measurements per individual in the longitudi-

nal process {Yi : 0 ≤ t ≤ Ti} increases, then (i) θ̃yt converges to θ̂yt, and (ii) θ̃b converges

to a value that minimizes the Kullback-Leibler distance between p(bi) and f(bi; θb).

The proof can be found in the Appendix. The key argument behind Theorem 1 lies in

the fact that, as ni grows the longitudinal measurement model becomes the dominating

part in SPM factorization (1), in the sense that the posterior distribution of the random-

effects becomes analogous to p(Yi|bi) as function of bi.

Two remarks based on the above theorem are worth making. First, in many clinical

examples the main interest lies in the degree of the association between the longitudinal

measurements and the survival process. As we noted in § 2·2, in the common parameteri-

zation (2) the association parameter α is a parameter of the survival model. Thus, under

Theorem 1, α will be minimally affected by misspecification of the random-effects distri-

bution, which, in fact, explains the empirical results reported by other authors (Wang &

Taylor, 2001; Song et al., 2002; Tsiatis & Davidian, 2004). However, under parameteri-

zation (3) α is a parameter of the copula function which is a part of the random-effects

model. Thus, even for large ni we may observe some sensitivity in the estimation of α

under different choices for C(·). Second, a straightforward extension of Theorem 1 shows

that θy will be unbiasedly estimated, even if the event process model is misspecified.

This has a direct impact in the missing data context where SPMs are also used in order

to correct for nonignorable dropout (Follmann & Wu, 1995). In particular, if the infor-

mative censoring mechanism producing the missing data in the longitudinal process is

described by a SPM, then the effect of misspecifying both the survival and the random-

effects model will be minimal as the number of repeated longitudinal measurements per

individual increases.
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3·2 Standard Errors

The effect of misspecifying the random-effects distribution will be more prominent in

the estimation of standard errors. This becomes more transparent by examining the form

of the Hessian matrix under the SPM (1). In particular, following the notation introduced

in Appendix A1, the second order derivatives of the misspecified log-likelihood have the

form

∂Lf
i (θk)

∂θk′
=





Ef {∂h(·; θk)/∂θk′}+ Ef

[
h(·; θk)

{
h(·; θk)− Lf

i (θk)
}>]

, k′ = k

Ef

[
h(·; θk)

{
h(·; θk′)− Lf

i (θk′)
}>]

, k′ 6= k

(5)

where k, k′ = y, t, b and Ef{·} denotes expectation with respect to the posterior distri-

bution f(bi | Yi, Ti; θ). If we denote by Hf
kk′ = ∂Lf

i (θk)/∂θk′ the corresponding blocks

of the Hessian matrix, then misspecification mainly affects Hf
yb, Hf

tb and Hf
bb, since these

relate to the misspecified random-effects model. The other blocks will be minimally af-

fected, when ni → ∞, since these blocks only relate to f(bi | Yi, Ti; θ), which converges

to the true posterior as discussed in Appendix A1. To investigate the effect of using

f(bi; θb) instead of p(bi), we concentrate on the Hf
yb block, with the results for Hf

tb and

Hf
bb following similarly. For Hf

yb, (5) can be rewritten as

Hf
yb = Ef

[{
ni∑

j=1

∂

∂θy

log p(yi(tij)|bi; θy)

} {
∂

∂θb

log f(bi; θb)

}>]
−

{
Lf

i (θy)
} {

Lf
i (θb)

}>
,

i.e., the expected value of the outer product of the score vectors for the conditional

sub-models minus the outer product of the marginal score vectors. If we let ni grow

then Hf
yb will converge to Hp

yb, where in the respective expectations the true posterior

is used. However, note that both parts of Hp
yb still depend on the misspecified random-

effects model, since Lp
i (θb) =

∫ {∂ log f(bi; θb)/∂θb} p(bi | Yi, Ti; θ) dbi. Thus, even though
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asymptotic equivalence in the posteriors provides unbiasedness for certain elements of the

Hessian matrix as ni →∞, the standard errors of the parameters estimates will generally

be biasedly estimated when f(bi; θb) differs considerably from p(bi), since inversion of the

Hessian depends on the Hyb, Htb, and Hbb blocks.

4. A Simulation Study

A small simulation study was performed to empirically corroborate the arguments un-

folded in § 3. The study considers a two-group comparison with 200 subjects and in-

vestigates the effect of misspecifying both the random-effects and survival models, in

parameter estimates and standard errors. The set-up is as follows. For the longitu-

dinal model we assume a linear random-intercepts model with linear predictor ηyi =

(β0 + byi) + β1Ti + β2tij + β3t
2
ij + β4Titij + β5Tit

2
ij, where Ti is the treatment indica-

tor and (β0, . . . , β5)
> = (1, 0, 1·5, 2·5,−0·5,−1). The measurement error variance is

taken to be σ2
y = 0·52. For the survival model we use a Weibull model with a frailty

term and linear predictor ηti = (γ0 + bti) + γ1Ti, where (γ0, γ1)
> = (2, 1·5). The scale

parameter of the Weibull is taken to be σt = 0·5. The censoring mechanism follows

an Exponential distribution with mean 20, resulting in about 50% censoring and the

visiting times tij are random. For ni two cases are considered, the large ni case where

maxi{ni} = 15 with 10 measurements per subject on average, and the small ni case where

maxi{ni} = 4 with 2·5 measurements per subject on average. For the true random-effects

model {byi, bti} the following scenarios are considered: (i) a bimodal mixture distribu-

tion 0·45×N((−2,−2·1)>, Σ)+0·55×N((1·636, 1·718)>, Σ), with Σ = vech(1·52, 12, 0·5)

(where in vech(σ2
by, σ

2
bt, ρyt), we equal σ2

by to the variance of byi, σ2
bt to the variance of bti,

and ρyt to the correlation between byi and bti); (ii) a unimodal skewed mixture distribu-

tion 0·7 ×N((1·3, 0·9)>, Σ) + 0·3 ×N((−3·033, 2·1)>, Σ), with Σ = vech(1·62, 1·72, 0·7);
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and (iii) a normal distribution N(0, Σ), with Σ = vech(2·52, 2·22, 0·82). The parameter

values have been chosen such that the variances and the degree of association of the

random-effects are of the same magnitude for all scenarios. For each scenario and for

each ni case, 100 data-sets are simulated and each data-set is fitted under the SPM as-

suming the following 12 combinations of sub-models. For the survival model the correct

linear predictor is used assuming either the Weibull, the log-Normal or the log-Logistic

as survival time distributions. For the random-effects model four copulas are consid-

ered, namely the Frank, Gumbel, Normal and Student’s-t (df = 4) copulas, with Normal

marginals. Finally, the longitudinal measurement model is always correctly specified.

Under scenarios (i) and (ii) all fitted models are misspecified, whereas for scenario (iii)

the normal random-effects model combined with the Weibull survival model corresponds

to the true joint model.

The models are fitted using an EM algorithm in which the random-effects are treated

as missing values; more details can be found in Appendix A2. All computations have

been performed in R (R Development Core Team, 2006). As an informal sensitivity check

we calculated Kruskal-Wallis p-values for testing differences between the parameter esti-

mates under the different assumptions regarding the random-effects. In particular, under

the hypothesis of no misspecification effect, the distribution functions of the parameter

estimates should be statistically the same for the four copulas, yielding non significant

p-values. We present the simulation results only for the association parameter of the

copula functions and the intercepts β0 and γ0, since we expect these parameters to be

more affected by misspecification of the random-intercepts model. Moreover, since the

association parameter α has a different interpretation for each copula, the association

between byi and bti is expressed in terms of Kendall’s τ . Figures 1 and 2 show boxplots of
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the parameter estimates under the bimodal (i) and skewed (ii) scenarios, respectively.

[Figure 1 about here.]

[Figure 2 about here.]

In both cases we observe that the estimates of the association parameter show greater

sensitivity regarding the choice of C(·) and the survival model than the estimates of β0

and γ0. This is also supported by the Kruskal-Wallis p-values which suggest significant

differences for τ and non significant ones for the intercept terms. Similar results were

obtained for the other parameters as well, in which the copula choice played a more

prominent role mainly for the variance components of the random-effects (results not

shown). Furthermore, the small ni case yielded more sensitive results for all the parame-

ter estimates, which is in accordance with Theorem 1. Two interesting features are that

the Normal copula performed rather well under misspecification in most of the cases, and

that the estimates of τ seem to be affected by the choice of the survival distribution. The

first feature can be explained by the concept of local dependence introduced by Holland &

Wang (1987). The local dependence function equals ∂2 log p(byi, bti)/∂byi∂bti and is used

to quantify dependence when both the degree and the direction of the dependence is dif-

ferent in different regions of the plane (Jones, 1996). A numerical comparison between

the values of the local dependence function of the true random-effects densities under

scenarios (i) and (ii), and the corresponding values of the assumed copulas, reveals that

the Normal copula is on average closer to the true densities than the other copulas. This

is probably due to assuming mixtures of normals for the true densities. The second fea-

ture could probably be attributed to the fact that, for the finite realizations of ni’s in the

simulation study, the survival model contributes a non negligible amount of information

to the posterior distribution of the random-effects. This is also supported by the similar
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behaviour τ shows between the log-Normal and log-Logistic distributions, which have

similar shapes. For scenario (iii) and in order to illustrate the effect of misspecification

with regard to the correct model the mean square error is used. Table 1 presents the root

mean square error (RMSE) for each of the misspecified models relatively to the RMSE of

the correct model (i.e., normal random-effects and Weibull survival distribution); values

greater than one are indicative of less consistent estimates.

[Table 1 about here.]

Similar conclusions are drawn since Kendall’s τ is the parameter most affected by mis-

specification. Moreover, choosing the wrong copula does not greatly influence the RMSE

for β0 and γ0, for which the average differences in the RMSE are of the order 3.5% and

9.3%, respectively. Finally, the simulation results also validated the second remark given

in § 3·1, namely that the parameter estimates of the longitudinal model were minimally

affected by misspecification of both the random-effects and survival models. This is

particularly interesting since according to the study’s design on average 50% dropout

occurred.

5. Application

In this section we present the analysis of a data set coming from a longitudinal study

on patients who received a kidney transplant. The main scientific focus lies in the time

a patient can maintain the new graft. In this case a good marker for the kidneys’

performance is the level of serum creatinine in blood. However, due to the fact that the

observed levels of this marker are directly influenced by a person’s muscle activity, the

glomerular filtration rate (GFR) is typically used which is an inverse function of serum

creatinine correcting also for sex, weight, and age.
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During the 10 year follow-up period GFR measurements are regularly taken and our

aim here is to explore the association structure between longitudinal GFR measurements

and the time to graft failure. Out of the 432 patients, 91 (21·1%) experienced the event;

moreover, patients made on average 72 visits (standard deviation 22·4 visits), resulting

in a total of 31,062 records. Based on descriptive measures and plots we adopted the

following models for the two processes. For the longitudinal process a linear random-

intercepts model is assumed with fixed-effects quadratic time trends for the first 6 months,

followed by linear time trends for the remaining follow-up period. For the survival process

we include the age, weight and sex as main effects, and a frailty term related to the

random intercept term of the measurement model.

To investigate the influence of parametric assumptions on the size of the association

between the two processes we performed a sensitivity analysis under different copula

functions and assuming Normal marginals for the joint distribution of the random-effects,

and different survival distributions. In particular, we considered the Frank, Gumbel,

Normal and Student’s-t (df = 4) copulas, and the Weibull, log-Normal and log-Logistic

as survival distributions. The estimates of Kendall’s τ for each scenario are presented in

Table 2.

[Table 2 about here.]

For the entire analysis we observed similar results as in § 4. In particular, the main

effects for both the linear mixed and survival models were minimally affected by different

assumptions regarding the random-effects, whereas the degree of the association between

the two processes was influenced to a much larger extent by the choice of the copula

function. The results suggest a moderate positive association between the underlying

latent processes, ranging from 0·56 to 0·86. However, note that this is far from the
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perfect correlation that the common parameterization (2) assumes.

6. Concluding Remarks

In this paper we investigated the effect of misspecifying the random-effects distribution

under the shared parameter model framework. In particular, we showed that as the

number ni of repeated longitudinal measurements per individual increases, the effect

of misspecification becomes minimal for certain parameter estimates. However, the esti-

mated standard errors will generally be affected as misspecification becomes more severe.

How large ni has to be depends on the type of longitudinal model used. In particular, for

linear mixed models, smaller ni’s suffice, as opposed to generalized linear mixed-models.

In addition, note that Theorem 1 requires all subjects to have a large number of repeated

measurements. This implies that in cases where the dropout subjects have fewer mea-

surements than the non-dropouts, choosing the correct random-effects distribution will

be important.

Moreover, the formulation of the SPM presented in § 2 assumed a noninformative

visiting process, which enabled an easier likelihood construction. However, in cases where

such an assumption is erroneous, ignoring the visiting process may significantly influence

results since each subject will have ni measurement occasions leading to a multivariate

model. Thus, the posterior distribution of the random-effects will then heavily depend

on both the longitudinal and visiting process models.

Finally, we have assumed that the parameter space of the survival model is of finite

dimension. This excludes the commonly used semiparametric framework in which the

baseline hazard is left unspecified. Extensions of the results presented here for this case

are under consideration.
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Appendix

Technical Details

A1. Proof of Theorem 1

First we note that the score vector of the SPM (1), under p(bi), takes the following form

Lp
n(θ) =

n∑
i=1

∂

∂θ
log

∫
p(Yi | bi; θy) p(Ti | bi; θt) p(bi) dbi

=
n∑

i=1

∫
h(·; θ) p(bi | Yi, Ti; θ) dbi, (A.1)

where h(·; θ) denotes the respective score vector of each one of the sub-models (e.g., for

the measurement process Lp
n(θy) requires h(·; θ) = ∂ log p(Yi | bi; θy)/∂θy). That is Lp

n(θ)

is the expected value of the score vector for each of the sub-models with respect to the

posterior distribution p(bi | Yi, Ti; θ). Analogously, the misspecified score vector has the

form

Lf
n(θ) =

n∑
i=1

∫
h(·; θ) f(bi | Yi, Ti; θ) dbi. (A.2)

(A.2) differs from (A.1) in that f(bi | Yi, Ti; θ) is the posterior under f(bi; θb), but also

that for Lf
n(θb), h(·; θ) = ∂ log f(bi; θb)/∂θb.

A comparison between Lp
n(θyt) and Lf

n(θyt) shows that the effect of misspecification

stems only from the posterior f(bi | Yi, Ti; θ), since the models for the longitudinal

and event processes have been assumed correctly specified. In general, the posterior

distribution has the form

f(bi | Yi, Ti; θ) =
p(Yi | bi; θy) p(Ti | bi; θt) f(bi; θb)∫
p(Yi | bi; θy) p(Ti | bi; θt) f(bi; θb) dbi

∝ exp {log p(Yi | bi; θy) + log p(Ti | bi; θt) + log f(bi; θb)} . (A.3)

To define p(bi | Yi, Ti; θ), f(bi; θb) is just replaced by p(bi). From (A.3) we observe

that as ni → ∞, log p(Yi | bi; θy) =
∑ni

j=1 log p(yi(tij) | bi; θy) becomes the dominating
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part, since both log p(Ti | bi; θt) and log f(bi; θb) are univariate models independent of

ni. If both log p(bi) and log f(bi; θb) are bounded and smooth around the neighborhood

of the mode b̂i of log p(Yi | bi; θy) then the effect of the prior in (A.3) can be absorbed

in the normalizing constant (Cox & Hinkley, 1974, pp. 399–400). This implies that

fni
(bi | Yi, Ti; θ) is asymptotic to pni

(bi | Yi, Ti; θ), i.e., limni→∞ fni
(bi | Yi, Ti; θ)/pni

(bi |

Yi, Ti; θ) = 1. Based on this result and as ni grows, the ith contribution Lf
i (θyt)/ni

converges in probability to Epi
{Lp

i (θyt)}, where Epi
{·} denotes the expectation with

respect to p(Yi, Ti). This in turn provides that θ̃yt will be unbiased for θ∗yt. However, for

θb we can easily show that even for ni →∞,

Lf
n(θb)/n →

∫
∂

∂θb

log f(b; θb) p(b) db 6= Ep{Lp
n(θb)},

where Ep{·} denotes the expectation with respect to the true joint distribution p(Y , T ).

According to White (1982), θ̃b will converge to the value that minimizes the Kullback-

Leibler like distance d(p, f) =
∫

p(b) log{p(b)/f(b; θb)} db.

A2. EM Steps

The maximum likelihood estimates for the parameter vector θ are obtained using an

EM algorithm where byi and bti are treated as missing data. We assume the following

sub-models for the involved processes in the specification of the SPM:

Yi = Xyiβ + Zyibyi + εyi and log Ti = x>tiγ + bti + σ−1
t εti,

where εyi ∼ Nni
(0, Vi = σ2

yQi) with Qi being a correlation matrix with an associated

parameter vector κ, εti ∼ F where F denotes an appropriate distribution function with

corresponding survival function S and density function f , and σt is a scale parameter

(Kalbfleisch & Prentice, 2002, Ch. 3). Finally, the joint density of {byi, bti} follows



18 D. Rizopoulos, G. Verbeke and G. Molenberghs

(4), with copulas belonging to either the archimedean or elliptical classes and Gaussian

marginals.

For the E-step we set Ä to denote E {A(byi, bti) | Yi, Ti; θ}, where the required in-

tegrals are approximated using a Gauss-Hermite quadrature rule. For the parameters

with no closed-form solutions, we set `(·) to denote the score vector of the complete data

log-likelihood. The expected value ῭(·) of `(·), with respect to p(byi, bti | Yi, Ti; θ), is used

to numerically maximize the expected value of the complete data log-likelihood, based

on a quasi-Newton algorithm. In particular, the following expressions define the M-step.

Longitudinal measurement model:

β =

{
n∑

i=1

X>
yiV

−1
i Xyi

}−1 {
n∑

i=1

X>
yiV

−1
i (yi − Zyib̈yi)

}

σ2
y =

1

N

n∑
i=1

µ>yiQ
−1
i (µyi − 2Zyib̈yi) + tr(Z>

yiQ
−1
i Zyiv̈byi) + b̈>yiZ

>
yiQ

−1
i Zyib̈yi

῭(κ) =
1

2

n∑
i=1

tr(−Q−1
i Wi) + µ>yiKi(µyi − 2Zyib̈yi) + tr(Miv̈byi) + b̈>yiMib̈yi,

where N =
∑n

i=1 ni, µyi = yi − Xyiβ, b̈yi = E(byi | Yi, Ti; θ), v̈byi = var(byi | Yi, Ti; θ),

Wi = ∂Qi/∂κ, Ki = Q−1
i WiQ

−1
i , Mi = Z>

yiKiZyi.

Event process model:

`(γ) = σ−1
t

n∑
i=1

xtiai and `(σt) = σ−1
t

n∑
i=1

ωiai − δi,

where ai = −δi{∂ log f(ωi)/∂ωi} − (1 − δi){∂ log S(ωi)/∂ωi}, and ωi = (log Ti − x>tiγ −

bti)/σt.

Random-effects model: We distinguish the following cases. First, the Normal copula com-

bined with Gaussian marginals results in a multivariate Normal distribution with known

derivatives for the variance components. Second, the Student’s-t copula involves the in-

verse distribution function of the Student’s-t distribution and thus numerical derivatives

are used. Finally, for archimedean copulas `(α) is derived for each particular copula
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separately, whereas for the parameters θby and θbt of the marginal models for byi and bti,

the following general formula is used

`(θby) =
n∑

i=1

[{
g(3)(C(ui, vi))
g(2)(C(ui, vi))

− 3
g(2)(C(ui, vi))
g(1)(C(ui, vi))

}
cu(vi) +

g(2)(ui)
g(1)(ui)

]
∂u

∂θby
+

∂ log p(byi; θby)
∂θby

,

where g(·) is the generator function of the archimedean copula with g(l)(·) denoting its lth

derivative, cu(v) = ∂C(u, v)/∂u, u and v are the distribution functions of the marginal

Gaussian distributions for byi and bti, respectively, and `(θbt) is derived analogously.
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Fig. 1: Results under the bimodal scenario (i) for the 3 survival models and 4 copulas; for each
combination the left boxplot (white) corresponds to the large ni case and the right boxplot (light
grey) to the small one. The dashed line denotes the true value and ‘KW’, in the title, denotes
the p-values of the Kruskal-Wallis test for the large (left) and small (right) ni’s, respectively.
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Fig. 2: Results under the skewed scenario (ii) for the 3 survival models and 4 copulas; for each
combination the left boxplot (white) corresponds to the large ni case and the right boxplot (light
grey) to the small one. The dashed line denotes the true value and ‘KW’, in the title, denotes
the p-values of the Kruskal-Wallis test for the large (left) and small (right) ni’s, respectively.
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Table 1. The ratio of the RMSE of the misspecified models versus the RMSE of the
correct model, i.e., normal random-effects and Weibull survival distribution. The first
three lines correspond to the large ni case, whereas the last three lines to the small one.

Weibull log-Normal log-Logistic

Frank Gumb t Frank Gumb Norm t Frank Gumb Norm t

τ 2·234 2·469 1·835 3·357 3·603 1·255 3·214 3·436 3·762 1·628 2·619

β0 1·005 1·007 1·007 1·014 1·029 1·014 1·019 1·008 1·034 1·004 1·013

γ0 0·992 1·022 1·036 1·083 1·206 1·086 1·143 1·085 1·245 1·098 1·152

τ 2·245 2·409 1·805 4·507 4·616 1·596 4·592 5·544 4·628 2·267 4·325

β0 1·106 1·044 1·003 1·101 1·103 1·008 1·007 1·087 1·089 1·027 1·041

γ0 1·012 0·981 0·976 1·032 1·258 1·314 1·145 1·010 0·994 1·195 1·047
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Table 2. Estimated Kendall’s tau (standard error) for the association between time to
graft failure and GFR longitudinal measurements under different copulas and survival

models.

Frank Gumbel Normal Student’s-t

Weibull 0·569 (0·062) 0·803 (0·021) 0·855 (0·011) 0·657 (0·030)

log-Normal 0·564 (0·064) 0·802 (0·022) 0·629 (0·019) 0·747 (0·026)

log-Logistic 0·566 (0·066) 0·802 (0·022) 0·747 (0·040) 0·591 (0·031)


