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Abstract

Generalized linear mixed models have become a frequently used tool for the analysis of
non-Gaussian longitudinal data. Estimation is often based on maximum likelihood theory,
which assumes that the underlying probability model is correctly specified. Recent research
is showing that the results obtained from these models are not always resistant against
departures from the assumptions on which these models are based. Therefore, diagnostic
tools for the detection of model misspecifications are of the utmost importance. In this
paper, we propose a diagnostic test that provides an alternative to the Information-Matrix
Test (IMT) proposed by White (1982). However, unlike the IMT, the new test does not
involve third order partial derivatives of the log-likelihood, making it easy implementation-
wise and diminishing its computational complexity. We study the power and type I error rate
of the new test to detect random-effects misspecification via simulations. In the context of
linear mixed models, the new proposal performs as good as the IMT. The new test enjoys
good performance for generalized linear mixed models, which is important since the IMT is
very difficult to apply in this context, owing to the lack of a closed form for the likelihood.

Keywords: Linear mixed model; Generalized linear mixed model; Information-matrix
test; Power; Type I error.
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1. INTRODUCTION

Over the last fifteen years, hierarchical models have become a frequently used tool in statistical

analysis. Their implementation in popular statistical packages like, e.g., the SAS procedures

MIXED, NLMIXED, and GLIMMIX, or the R functions lme and nlme, have substantially con-

tributed to their wide spread. Often, the model parameters are estimated using maximum like-

lihood (ML), hence resting on the assumption that the model is correctly specified. Therefore,

violations of some model assumption can affect our inferences. One of the basic assumptions

underlying hierarchical models concerns the distribution of the random effects. Also to improve

mathematical tractability and numerical performance, random effects are commonly assumed to

be normally distributed. Unfortunately, since random effects are not observed, the validity of this

assumption is difficult to verify. So, naturally, we are interested in the impact of misspecifying

the random-effects distribution on the maximum likelihood estimators and other inferential pro-

cedures, as well as in the development of diagnostic tools that can help us to detect this type of

misspecification.

In linear mixed models (LMM), Verbeke and Lesaffre (1997) showed that the maximum likelihood

estimators for fixed effects and variance components, obtained under the assumption of normal

random effects, are consistent and asymptotically normally distributed, even when the random-

effects distribution is not normal. Nevertheless, recent research suggests that this does not hold

for generalized linear mixed models (GLMM). For example, Neuhaus, Hauck, and Kalbfleisch

(1992) showed that the maximum likelihood estimators of a random-intercept logistic model with

misspecified random-effects distribution are inconsistent, but that the magnitude of the bias is

typically small. Simulations by Chen, Zhang, and Davidian (2002) also indicate that the estima-

tion of the regression coefficients may be subject to negligible bias only, under misspecification

of the random-effects distribution. According to Agresti, Caffo, and Ohman-Strickland (2004),

the choice of the random-effects distribution seems to have, in most situations, little effect on

the maximum likelihood estimators. However, when there is a severe polarization of subjects,

e.g., by omitting an influential binary covariate, this can affect the predictive qualities of char-
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acteristics involving the random effects as well as the fixed effects. Litière et al. (2006) found,

using simulations with a random-intercept logistic model and a wide range of distributions for

the random effect, that the estimates of the variance components are always subject to consider-

able bias when the random-effects distribution is misspecified. Litière, Alonso, and Molenberghs

(2007) established that type I error and power can be severly impacted when misspecifying the

random-effects distribution. On the other hand, the bias induced in the estimates of the mean

structure parameters appears to depend on the magnitude of the variance components, whereby

large bias is associated with large random-effects variances. Clearly, in a practical situation, the

bias present in the variance component estimators, under misspecification, will make it hard to

distinguish between the two scenarios, i.e., small or larger variance components. Therefore, it

can be difficult to determine how severe the impact on the mean parameters can be.

Note that the severe bias observed in the variance components can have an important impact

in studies where the variance components are of main interest. This is the case, for instance, in

fields like surrogate marker validation, reliability of rating scales, or studies of the criterion and

predictive validity of psychiatric scales.

Evidently, in these circumstances, the development of diagnostic tools is of great importance.

White (1982) already proposed a general test for model misspecification. Unfortunately, his test

requires third-order partial derivatives of the likelihood function. Even though the calculation of

higher order derivatives might not be an issue in cases where the likelihood is available in a closed

form, as in LMM, it can become an important problem when such a closed form does not exist

like, for example, in GLMM.

In the present work, we propose an alternative diagnostic tool along the ideas of the Information-

Matrix Test, introduced by White (1982), but without the need for third-order partial derivatives

of the likelihood. The motivating case study will be introduced in Section 2. A brief overview of

the Information-Matrix Test is given in Section 3, followed by the introduction of the new test in

Section 4. Next, in Section 5, the performance of our proposal is evaluated via simulations and
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under both LMM and GLMM. Finally, the case study is analyzed in Section 6.

2. CASE STUDY

The case study consists of individual patient data from a randomized clinical trial, comparing the

effect of risperidone to conventional antipsychotic agents for the treatment of chronic schizophre-

nia (Alonso et al. 2004). Several measures can be used to assess a patient’s global condition.

The Clinical Global Impression (CGI) is generally accepted as a subjective clinical measure of

change. It is a 7-grade scale used to characterize a subject’s mental condition. Our binary re-

sponse variable Y is a dichotomous version of this scale which equals 1 for patients classified as

normal to mildly ill, and 0 for patients classified as moderately to severely ill. Since it has been

established that risperidone is most effective at doses ranging from 4 to 6 mg/day, we included

only those patients receiving either these doses of risperidone, i.e., the treatment group zi = 1,

or an active control, i.e., the control group zi = 0 for patient i = 1, . . . , N . Treatment was

administered for 8 weeks and the outcome was measured at 6 fixed time points tij = tj, taking

values 0, 1, 2, 4, 6, and 8 weeks and corresponding to occasion indicator j = 1, . . . , ni = n = 6.

One hundred twenty-eight patients were included into the trial, implying N = 128.

Previous data analysis has shown that an adequate model for these data is given by (Litière et

al. 2006):

logit{P (yij = 1|bi)} = β0 + b0i + β1zi + β2tj, (1)

where i and j denote the patient and the measurement occasion, respectively, and b0i is a

random effect, assumed to follow a normal distribution. The maximum likelihood estimates of

the fixed effects are given in Table 1, and the variance of the random effect was estimated as

21.01 (s.e. 6.81). Note that a large random-effects variance such as this one is thus not rare

in clinical trials where, for example little variability in the response is expected in the placebo

group and considerably more variability in the treated group. In such a scenario, the mean

parameters, including the treatment-effect parameters, could be subject to serious bias under
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misspecification. Given this and the discussion in the previous section, one would like to test

for possible misspecification of the random-effects distribution in particular, or any other possible

misspecification of the model in general. In the following sections, we will describe two such

tools.

3. THE INFORMATION-MATRIX TEST

Let us consider a random variable y with density function g, and a parametric family of density

functions F = {f(y; ξ) : ξ ∈ Γ}. If there exists a ξ0 ∈ Γ such that g(y) = f(y, ξ0), then

the maximum likelihood estimator ξ̂n of ξ0 is consistent and asymptotically normal. However,

since in practice g is unknown, it is difficult to check whether g belongs to F or not. Fortunately,

White (1982) found that, under general regularity conditions, the maximum likelihood estimator

ξ̂n will (strongly) converge to the value of ξ, denoted by ξ∗, which minimizes the so-called

Kullback-Leibler Information Criterion (KLIC):

I(g : f, ξ) = E
{

log
g(y)

f(y, ξ)

}
, (2)

where the expectation is taken with respect to the true distribution.

Note that if the model for y is correctly specified, then the information criterion attains its unique

minimum at ξ∗ = ξ0. In such a case, ξ̂n is a consistent estimator for ξ0 and the inverse of the

Fisher Information-Matrix can be used to obtain standard errors for ξ̂n. However, this matrix

does not yield valid results when the model is misspecified, thence appropriate standard errors can

be obtained by replacing the asymptotic covariance matrix by the so-called sandwich estimator.

To this end, we introduce the following additional notation

A(ξ) = E
{∂2 log f(yt, ξ)

∂ξk∂ξ`

}
,

B(ξ) = E
{∂ log f(yt, ξ)

∂ξk

· ∂ log f(yt, ξ)

∂ξ`

}
,

An(ξ) =
{ 1

n

n∑

t=1

∂2 log f(yt, ξ)

∂ξk∂ξ`

}
,
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Bn(ξ) =
{ 1

n

n∑

t=1

∂ log f(yt, ξ)

∂ξk

· ∂ log f(yt, ξ)

∂ξ`

}
,

for k, ` = 1, . . . , p, where p refers to the number of parameters in the model. Further, let us

define V(ξ) = A−1(ξ)B(ξ)A−1(ξ). White (1982) proved that, in general, ξ̂n ∼ N(ξ∗,V(ξ∗)).

Additionally, he showed that, under a correctly specified model, B(ξ0)+A(ξ0) = 0, and therefore,

V(ξ0) = −A−1(ξ0), (3)

i.e., we then recover the inverse of the Fisher Information-Matrix.

The Information-Matrix Test (IMT), introduced by White (1982), is based on the elements of

B(ξ) + A(ξ), which can be estimated using Bn(ξ̂n) + An(ξ̂n). As discussed by this author, it

may be prohibitive to base the test on all elements of this matrix. So, for simplicity reasons, we

will focus on the diagonal elements.

Following the notation of White (1982), let d(y, ξ) represent the p × 1 vector with elements

dk(y, ξ) =
{∂ log f(y, ξ)

∂ξk

}2

+
∂2 log f(yt, ξ)

(∂ξk)
2

,

k = 1, . . . , p. Then, dn(ξ̂n) = n−1
∑n

t=1 d(yt, ξ̂n) represents the p × 1 vector containing the

diagonal elements of Bn(ξ̂n) + An(ξ̂n). Further, let

∇dn(ξk) =
{ 1

n

n∑

t=1

∂d(yt, ξ)

∂ξk

}
, (4)

(k = 1, . . . , p) and define

Cn(ξ̂n) =
1

n

n∑

t=1

[d(yt, ξ̂n) −∇dn(ξ̂n)A−1
n (ξ̂n)∇ log f(yt, ξ̂n)]

×[d(yt, ξ̂n) −∇dn(ξ̂n)A−1
n (ξ̂n)∇ log f(yt, ξ̂n)]T .

Using these elements, the Information-Matrix Test statistic is defined as

=n = ndT
n (ξ̂n)Cn(ξ̂n)−1dn(ξ̂n)

and follows, under a correctly specified model, a χ2 distribution with p degrees of freedom (White,

1982).
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As can be seen from (4), the calculation of =n requires the third order partial derivatives of the log-

likelihood. Since in GLMM the likelihood is not available in closed form, these derivatives cannot

be obtained analytically and hence one has to resort to numerical approximations, which can be

burdensome and less than straightforward to carry out using conventional statistical packages,

even when GLMM models exist (Molenberghs and Verbeke, 2005). This further underscores the

need for sensible diagnostic tools that perform equally well as the available misspecification test,

but at the same time avoid higher order partial derivatives. In the following section, such an

alternative is proposed.

4. THE SANDWICH-ESTIMATOR TEST

Let us recall that, under a correctly specified model, (3) holds and hence deviations from the

model assumptions are expected to distort this equality. Our proposal focuses on the difference

between V(ξ) and −A−1(ξ) as a potential indicator of misspecification. Similarly as before, we

will consider the diagonal elements only, i.e., diag[V(ξ) + A−1(ξ)].

First, let us define Vn(ξ) = A−1(ξ)Bn(ξ)A−1(ξ), and let vn(ξ) = diag[Vn(ξ) + A−1(ξ)]. Note

that vn(ξ) can also be written as ∆vec[Vn(ξ)+A−1(ξ)], where ∆ is the p× p2 matrix specified

as

∆ =

{
1 for k = 1, . . . , p and ` = (k − 1)p + i,

0 otherwise.
(5)

An estimator for the covariance Cv(ξ) of vn(ξ) is therefore given by

Cv(ξ) = cov{∆vec[Vn(ξ) + A−1(ξ)]} = ∆cov{vec[Vn(ξ)]}∆T . (6)

Using some properties of the Kronecker product and the vec operator, it is possible to show that

vec[Vn(ξ)] = [A−1(ξ) ⊗ A−1(ξ)]vec[Bn(ξ)]

and therefore

cov{vec[Vn(ξ)]} = [A−1(ξ) ⊗ A−1(ξ)]cov{vec[Bn(ξ)]}[A−1(ξ) ⊗ A−1(ξ)]T .
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This implies that the problem of finding an estimator for the covariance of vn(ξ) reduces to

finding an estimator for the covariance of vec[Bn(ξ)]. Let us now write

pt(ξ) = vec

(
∂ log f(yt, ξ)

∂ξk

· ∂ log f(yt, ξ)

∂ξ`

)
,

and let P(ξ) and T(ξ) represent the mean and the covariance of pt(ξ), respectively. An unbiased

estimator for P(ξ) is given by p̄(ξ) = 1
n

∑n
t=1 pt(ξ) and T(ξ) can be estimated using the empirical

covariance estimator

T̂(ξ) =
1

n − 1

n∑

t=1

[pt(ξ) − p̄(ξ)][pt(ξ) − p̄(ξ)]T .

Note further that vec[Bn(ξ)] = p̄(ξ) and therefore cov{vec[Bn(ξ)]} = n−1T̂(ξ). From the

previous expressions, we obtain

cov{vec[Vn(ξ)]} =
1

n
[A−1(ξ) ⊗ A−1(ξ)]T̂(ξ)[A−1(ξ) ⊗ A−1(ξ)].

Finally, the following theorem defines the test statistic and establishes its distribution under the

null hypothesis.

Theorem 1 Under general regularity conditions when the model is correctly specified

vn(ξ0) ∼ Np(0,Cv(ξ0)),

and therefore

δn = vT
n (ξ0)[C(ξ0)]

−1vn(ξ0) ∼ χ2
p. (7)

When Theorem 1 is applied in a practical situation, ξ0 and A−1(ξ0) in (7) can be substituted by

their consistent estimators under the null, given by ξ̂n and A−1(ξ̂n) respectively. This test can be

implemented in a comparatively easy way using standard statistical software, like the procedures

NLMIXED and IML in SAS. A SAS macro that performs all of the necessary calculations is

available on the authors’ web pages.

Clearly, substituting ξ0 and A−1(ξ0) by consistent estimators in (7) introduces a certain amount

of extra variability not taken into account by the test; the price to pay for the gain in simplicity.

We will assess these and other issues by way of a simulation study, to be reported next.
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5. SIMULATION STUDY

To explore the impact of the aforementioned substitutions, as well as the small sample size

behavior of the test, we designed a simulation study to compare the performance of both tests,

IMT and SET, within the LMM framework with misspecified random-effects distribution. This

is feasible since for LMM a closed-form likelihood is available and all the derivatives involved in

the IMT can be calculated analytically. Additionally, a second simulation study was designed

to explore empirically the power and type I error rate of the new test in GLMM, where IMT is

difficult to apply, under random-effects misspecification.

5.1 Linear Mixed Models

The data were generated using a linear random-intercept model

yij = β0 + b0i + β1zi + β2tj + εij, (8)

including an intercept, a binary covariate zi taking values 0 and 1, a within-cluster covariate

tj taking values 0, 1, 2, 4, 6, and 8, measurement error εij sampled from a standard normal

distribution N(0, 1), and a random intercept b0i sampled from 5 distinct mean-zero distributions,

each with variances σ2
b = 4 and 32: the normal, power function, and lognormal distributions, as

well as a discrete distribution with equal probability at two support points, and an asymmetric

mixture of two normal densities. Note that σ2
b = 32 is of the same order of magnitude as the

estimate obtained from the case study, whereas σ2
b = 4 is used to analyze the performance of the

tests in less extreme scenarios.

The parameters in the mean structure were fixed at β0 = −8, β1 = 2 and β2 = 1, also

in accordance with the values estimated from the case study. Six different sample sizes were

considered, namely 50, 100, 200, 350, 500, and 1000. For each setting, 500 data sets were

generated and Model (8) was fitted to these data under the assumption of normally distributed

random effects. We then determined the proportion of cases in which a result significant at the
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5% significance level was detected, using both =n and δn. When the random effects are generated

from a normal distribution, this proportion corresponds to the type I error; in the other settings,

it represents the power of the tests. The results of these simulations are shown in the first panel

of Table 2.

Clearly, the IMT and the newly proposed test have a very similar performance in all settings

considered. This suggests that using ξ̂n and A−1(ξ̂n) in (7) does not have a big impact on the

asymptotic behavior of the SET, at least relative to the IMT, which does take into account all

sources of variability. Combined with its computational advantage, this is a strong point for the

SET.

In general, both tests show a good power and type I error rate for reasonable sample sizes

(n = 350). The only exception to the previous behavior is observed when the true distribution

of the random effects is an asymmetric mixture with small variance. Nevertheless, it should be

noted that for small variances this asymmetric mixture can be reasonably well approximated by

a normal density. As a consequence, both tests need a relatively large sample size to detect the

heterogeneity.

Finally, we should like to point out that, even though Verbeke and Lesaffre (1997) showed that

maximum likelihood estimators in LMM are still consistent and asymptotically normal when the

random-effects distribution is misspecified, this asymptotic convergency can be either fast or

slow, depending on the severity of the departure from normality. It would therefore be practically

relevant to use diagnostic tools like the IMT or SET in this scenario as well. Let us now turn to

the GLMM case.

5.2 Generalized Linear Mixed Models

In these simulations, binary responses were generated using the logistic random-intercept model

given by (1). The same random-effects distributions and parameter values as in the previous
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simulations were used. The results are reported on the right hand side of Table 2.

Here again, a good power and type I error rate is observed with a reasonable sample size (n = 350).

Clearly the test performs better when the variance of the random effects is large. This is however,

a desirable behavior given the results obtained by Litière et al. (2006) and presented in Section 1.

Like for LMM, the asymmetric mixture appears to be a misspecification difficult to detect. Not

surprisingly, in GLMM the power of SET is even lower in this case than in the corresponding

LMM situation, because a binary response conveys much less information than a continuous one.

Overall though, the SET can be considered a useful tool to evaluate the appropriateness of the

model.

6. ANALYSIS OF CASE STUDY

In this section we will apply the SET to assess the suitability of Model (1) with normal random

effects for the analysis of the case study. It follows that δn = 0.445 and compared to a χ2

distribution with 4 degrees of freedom, this leads to p = 0.979. This implies that the data

at hand do not give evidence against the assumption of normally distributed random effects.

However, it should also be noted that, according to our simulations, the sample size available

might not be enough to achieve a good level of power.

7. DISCUSSION

A commonly encountered perception among data analysts is that the choice of the random-effects

distribution in generalized linear mixed models is not crucial to the quality of the inferences

drawn. However, recent research is showing that the maximum likelihood estimators and the

inferential procedures can be affected. This emphasizes the need for diagnostic tools to detect

model misspecification. In this manuscript, we proposed the so-called Sandwich-Estimator Test

to detect random-effects misspecification in generalized linear mixed models. We compared, via
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simulations, the performance of the new test with the performance of the relatively well-known

Information-Matrix Test of White (1982), in the context of linear mixed models. We found that

both tests performed very similar. However, a strong advantage of our proposal is that it does not

require third order partial derivatives of the log-likelihood function, making it easy to implement in

models where the likelihood is not available in closed form, such as, importantly, in the generalized

linear mixed model. Encouragingly, simulations have shown that the SET performs very well in

situations where the random-effects misspecification can have a serious impact on the maximum

likelihood estimators.

Even though the test was initially developed to detect random-effects misspecification, we should

like to point out that this test is suitable to detect also other types of model misspecification like,

for example, the choice of the link function, the mean structure etc. Further research is required

to establish the SET’s performance to detect other types of model misspecification.
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Table 1: Parameter estimates (standard errors) and p-values for the fixed effects in the logistic

random-intercept Model (1), fitted to the schizophrenia data.

Effect Parameter Estimate (s.e.) p-value

Intercept β0 -7.37 (1.18) < 0.0001

Treatment effect β1 2.14 (1.08) 0.049

Time effect β2 0.65 (0.10) < 0.0001
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Table 2: Power and type I error for detecting a misspecified random-effects distribution, using

=n and δn in the setting of linear mixed models, and using δn in generalized linear mixed models.

LMM GLMM

σ2
b = 4 σ2

b = 32 σ2
b = 4 σ2

b = 32

Distribution n =n δn =n δn δn δn

Normal 50 0.266 0.298 0.232 0.284 0.278 0.234

100 0.208 0.204 0.190 0.172 0.192 0.122

200 0.106 0.088 0.116 0.090 0.098 0.072

350 0.084 0.058 0.096 0.060 0.046 0.038

500 0.048 0.034 0.078 0.064 0.044 0.040

1000 0.042 0.026 0.054 0.040 0.026 0.016

Power 50 0.372 0.458 0.368 0.482 0.242 0.264

function 100 0.432 0.490 0.460 0.516 0.172 0.288

200 0.640 0.636 0.676 0.686 0.092 0.406

350 0.778 0.780 0.848 0.848 0.086 0.650

500 0.876 0.864 0.888 0.886 0.096 0.812

1000 0.958 0.952 0.974 0.972 0.164 0.998

Discrete 50 1.000 1.000 1.000 1.000 0.304 0.710

100 1.000 1.000 1.000 1.000 0.306 0.830

200 1.000 1.000 1.000 1.000 0.430 0.948

350 1.000 1.000 1.000 1.000 0.688 0.996

500 1.000 1.000 1.000 1.000 0.848 1.000

1000 1.000 1.000 1.000 1.000 0.986 1.000

Asymmetric 50 0.136 0.228 0.562 0.660 0.230 0.242

mixture 100 0.156 0.182 0.562 0.592 0.146 0.172
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