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Summary

Recent research is showing that generalized linear mixed models (GLMM) may not always be robust against

certain model misspecifications. In this work we focus on misspecifying the random-effects distribution and

its impact on maximum likelihood estimation. We propose to deal with possible misspecification by way of

sensitivity analysis, considering several random-effects distributions. First, we analyze a case study using

the heterogeneity model, i.e., a GLMM where the normal random-effects distribution is replaced by a finite

mixture of normals. It is shown through simulations that this model performs slightly better in the presence

of misspecification. However, the model can be very unstableand convergence is sometimes hard to obtain.

We therefore complete the sensitivity analysis of the case study with a Bayesian approach, where we fit logit

models with different distributions for the random effects. Here the Deviance Information Criterion (DIC)

can be used as a criterion to select the most appropriate model.

Key words: Hierarchical models, Misspecification, Random-effects, Maximum likelihood, Heterogeneity

model, Bayesian modeling.

1 Introduction

When dealing with non-Gaussian longitudinal measurements, observations on a subject are unlikely to be

independent. This dependence can be taken into account using subject-specific parameters. A popular
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2 S. Litière, A. Alonso, and G. Molenberghs: GLMM with non-Gaussian RE

approach to handle this type of correlated data is the generalized linear mixed model (GLMM; Agresti,

2002; Diggle et al., 2002; Fahrmeir and Tutz, 2001; Molenberghs and Verbeke, 2005). This model has

been widely used in different areas like, e.g., toxicology (Molenberghs and Verbeke, 2005), epidemiology

(Kleinman, Lazarus and Platt, 2004), dairy science (Tempelman, 1998), etc., and is easy to apply using

software tools such as the SAS procedures NLMIXED and GLIMMIX. Conditional on the random effects

bi, the outcome variableYi for a subjecti follows a pre-specified distributionFi(yi|ϕ, bi), parameterized

through a vectorϕ of unknown parameters common to all subjects. The subject-specific effectsbi are

assumed to come from a distributionG(bi|δ), which may depend on a vectorδ of unknown parameters.

Estimation is usually based on maximum likelihood, assuming that the underlying probability model is

correctly specified.

A wide range of software tools are available for fitting thesemodels. However, the analysis is often

limited to the setting of Gaussian random effects. Since random effects are not observed, diagnostic tools

to study the random-effects distribution are not straightforward. Indeed, one should be careful in using

empirical Bayes estimates of the random effects to detect departures from normality. Even when the

random effects are coming from a normal distribution, the empirical Bayes estimates will usually not be

normally distributed. Therefore, it is relevant to assess the robustness of the parameter estimates with

respect to this type of model misspecification.

Verbeke and Lesaffre (1997) showed that the maximum likelihood estimators for fixed effects and vari-

ance components in linear mixed models, obtained under the assumption of normally distributed random

effects, are consistent and asymptotically normally distributed, even when the random-effects distribution

is not normal. Nevertheless, it could be argued that the workpresented by Verbeke and Lesaffre (1997)

provides only asymptotic results whereas in practice one has to deal with limited sample sizes, so the dis-

cussion of the properties of estimators under finite sample sizes is also a very important one. Relevant

results in this area include Pinheiro et al. (2001), which discusses an alternative robust approach by imple-

menting linear mixed models with multivariate t-distributions for the random-effects and the within-subject
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errors. Rosa, Gianola and Padovani (2004) extended this approach by using normal/independent distribu-

tions, such as the Student-t, the slash, and contaminated normal distributions, as robust alternatives to the

Gaussian assumption for both the residuals and the random effects. These authors adopted a Bayesian

framework with Markov chain Monte Carlo methods to carry outthe posterior analysis.

In the present work our main focus will be on the robustness ofgeneralized linear mixed models with

respect to the misspecification of the random-effects distribution. Some work has been done to study the

impact on the parameter estimates of these models. Neuhaus et al. (1992) examined the performance

of mixed-effects logistic regression models with misspecified random-effects distributions. They showed

that the maximum likelihood estimators of the model parameters are inconsistent but that the magnitude

of the bias is typically small. More recently, Heagerty and Kurland (2001) studied the impact of the

misspecification of the random-effects distribution on themaximum likelihood estimators of the regression

coefficients in logistic regression models for clustered binary response data. These authors found that the

marginal regression parameters are much less susceptible to the misspecification than the parameters of the

corresponding hierarchical model. In Agresti et al. (2004)the choice of the random-effects distribution

seems to have little effect on the maximum likelihood estimators. A similar message can be found in some

very well known texts for the analysis of categorical data like Agresti (2002), where it is stated that usually,

assuming normality does not hurt when the true distributionis not normal.

It should be noted that most of these studies used random-effect distributions with small variances. For

example, in Agresti et al. (2004) the largest random-effects variance used for simulations was equal to 1.

As we will illustrate with our case study in Section 2, these small values may not always be realistic. When

dealing with larger random-effects variances, Litière etal. (2005a) have found that misspecification of the

random-effects distribution can introduce a relative biasof up to 30% for the mean structure parameters

and up to 70% for the variance components. Additionally, these authors have shown that the type I and II

errors can be seriously affected, depending on the shape of the true random-effects distribution.

Copyright line will be provided by the publisher
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This overview illustrates the wide range of opinions that exist in the literature with respect to the im-

pact of misspecifying the random-effects distribution. Nevertheless, it becomes clear that more research

is needed to find models that are robust against this type of misspecification. Some alternative robust ap-

proaches have been suggested. Butler and Louis (1992) proposed to replace the normal random-effects

distribution by a non-parametric distribution. However, Agresti et al. (2004) reported that there can be

some loss of efficiency, when using a non-parametric approach, compared to a parametric assumption close

to the real distribution. Additionally, model comparison can be difficult as standard asymptotic theory does

not apply. Chen, Zhang and Davidian (2002) suggested a semi-parametric random-effects distribution, al-

lowing the random-effects density to be skewed, multi-modal, fat- or thin-tailed and including the normal

as a special case. These authors then used a Monte Carlo EM algorithm with a rejection sampling scheme

to obtain estimates of the model parameters and the semi-parametric random-effects distribution.

Furthermore, Kizilkaya et al. (2003) discussed a hierarchical threshold mixed model based on a cumu-

lative t-link specification for the analysis of ordinal data. Additionally, Kizilkaya and Tempelman (2005)

proposed a general Bayesian approach to model heteroskedastic error in GLMM, in which linked functions

of conditional means and residual variances were specified as separate linear combinations of fixed and ran-

dom effects. Finally, the heterogeneity model, where the normal random-effects distribution is replaced

by a finite mixture of normals, has been suggested as another plausible alternative (Fieuws, Spiessens and

Draney, 2004; Molenberghs and Verbeke, 2005). This allows one to cover a wide range of shapes for the

random-effects distribution. In the present work we will study the performance of this alternative using

both real and simulated data.

On the other hand, Bayesian models are very flexible in the choice of the random-effects distribution

and have been used in the past to deal with possible random-effects misspecification (Pinheiro et al., 2001;

Kizilkaya et al., 2003; Rosa et al., 2004). Therefore, in this case a Bayesian approach might be a good

alternative to the classic frequentist methods.
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We will start by analyzing in Section 2 the motivating case study using a GLMM with normal ran-

dom effects. In Section 3, we will introduce and apply the heterogeneity model to the example. Next, in

Section 4, various aspects of the parameter estimates resulting from the heterogeneity model are investi-

gated through extensive simulations. Finally, in Section 5, we will consider a Bayesian approach to fitting

GLMM with non-Gaussian random effects and perform a sensitivity analysis for our case study within the

Bayesian framework.

2 Case study: the schizophrenia data

The study consists of individual patient data from a randomized clinical trial, comparing the effect of

risperidone to conventional antipsychotic agents for the treatment of chronic schizophrenia (Alonso et al.,

2004). The response variableY is a dichotomous version of the Clinical Global Impression (CGI) scale

and equals 1 for patients classified as normal to mildly ill, and 0 for patients classified as moderately to

severely ill. The treatment variable,Z, is set to 0 for the control group and 1 for the risperidone group.

Treatment was administered for 8 weeks and the outcome was measured at 6 fixed time points: at the

beginning of the study and after 1, 2, 4, 6 and 8 weeks. One hundred twenty-eight patients were included

in the study.

The following random-intercept logistic model was fitted, using maximum likelihood:

logit{P (Yij = 1|bi)} = β0 + β1Zi + β2tj + bi, (1)

whereYij denotes the response for thei-th patient at timetj andbi denotes a random intercept assumed to

follow a mean zero normal distribution with varianceσ2

b . The results are shown in Table 1 and they give

evidence of certain treatment effect.

Taking into account the problems described in Section 1, it becomes clear that these results can be in-

fluenced by possible model misspecifications, like the choice of the random-effects distribution. Naturally,

we are concerned with the impact of such model violations on the parameter estimates. Let us first note that
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6 S. Litière, A. Alonso, and G. Molenberghs: GLMM with non-Gaussian RE

Table 1 Estimates and standard errors for the parameters in Model (1). The SAS procedure NLMIXED with adaptive

Gaussian quadrature and 20 quadrature points was used.

Parameter Estimate S.E. p-value

Regression Coefficients β0 -7.369 1.177 < 0.0001

β1 2.144 1.079 0.0490

β2 0.650 0.096 < 0.0001

Variance Component σ2

b 21.01 6.808

in Litière, Alonso and Molenberghs (2005b) a theoretical result was introduced which states the conditions

under which the type I error is robust to misspecification of the random-effects distribution. Applied to

our case study, this theorem implies that the type I error corresponding to the treatment effect will not be

affected by the choice of the random-effects distribution.Therefore, we can be fairly confident about the

presence of a (borderline) significant treatment effect. However, we should be careful when interpreting

the estimated size of the effect due to the bias that can be introduced by misspecification.

A plausible alternative approach to the GLMM could consist in replacing the Gaussian random-effects

distribution by a finite mixture of normals. Note that mixtures of normal distributions are a very flexible

class of distributions as they can cover unimodal as well as multimodal, and symmetric as well as very

skewed distributions. Additionally, mixtures can be used to model unobserved heterogeneity that can

appear when an important categorical variable has been leftout of the model. In the next section we will

study the heterogeneity model in more detail.
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3 The heterogeneity model

In the homogeneity model considered so far, the random-effectsbi were assumed to be sampled from a

normal distribution. The heterogeneity model is an extension of this model, obtained by sampling the

random effects from a mixture ofk normal distributions with mean vectorsµr and covariance matrix

D, i.e., bi ∼ ∑k

r=1
πrN(µr, D). The probability for a subject to belong to componentr is πr, with

∑k

r=1
πr = 1. Note that each component has the same covariance matrixD. This constraint is necessary

to avoid unbounded likelihoods (Böhning, 1999).

Let π′ = (π1, ..., πk) andγ be the vector containing the remaining parameters, i.e., the vectorϕ of

unknown parameters common to all subjects, as well as all parameters inµr andD. The joint density

function ofyi can then be written asfi(yi) =
∑k

r=1
πrfir(yi|γ) where

fir(yi|γ) =

∫

fi(yi|ϕ, bi)φr(bi)dbi. (2)

Note thatφr(bi) refers to the multivariate normal with meanµr and covariance matrixD. Estimation is

now based on the maximization of

ℓ(θ|y) =
N

∑

i=1

ln

{

k
∑

r=1

πrfir(yi|γ)

}

, (3)

whereθ′ = (γ′, π′), using the Expectation-Maximization (EM) algorithm described in Laird (1978).

Initially, the EM algorithm was developed for missing data problems. It has however also been used a lot

for estimation in the linear mixed models. For our purpose, the algorithm is very useful if we treat the

component membership indicatorzir, defined as

zir =















1 if bi is sampled from therth component in the mixture

0 otherwise,

(4)

as missing. Using these indicators, the log-likelihood function can be rewritten as

ℓ(θ|y, z) =

N
∑

i=1

k
∑

r=1

zir[lnπr + ln fir(yi|γ)], (5)
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8 S. Litière, A. Alonso, and G. Molenberghs: GLMM with non-Gaussian RE

wherez is the vector of all unobservedzir. This function is easier to maximize, however maximizing

ℓ(θ|y, z) with respect toθ will lead to estimates ofθ which depend on the unobserved indicatorszir. To

avoid this, it has been suggested to use the EM algorithm so that the expected value of (5) rather than

ℓ(θ|y, z) itself, will be maximized with respect toθ (with the expectation taken over all unobservedzir).

More specifically, in the E step (expectation) the conditional expectation ofℓ(θ|y, z), given the observed

datay, is determined. In the M step (maximization), the so-obtained expected log-likelihood function is

maximized with respect toθ, providing an updated estimate forθ. The algorithm is repeated until the

difference between two successive loglikelihood evaluations is small enough.

To fit heterogeneity models in practice, a SAS macro (described in Fieuws et al., 2004) has been imple-

mented, based on the SAS procedure NLMIXED and the EM algorithm. The macro can be used for fitting

nonlinear and generalized linear mixed models with finite normal mixtures as random-effects distributions.

In the next subsection we will use this macro to re-analyze the case study.

3.1 Case study - the heterogeneity model

To fit a heterogeneity model to the case study, some small changes have to be made to the model formula-

tion. For example, since there are no restrictions on theµr, the expected value of the random effects is no

longer fixed at zero. Therefore, to avoid overparameterization, we will not include an intercept:

logit{P (Yit = 1|bi)} = β1Zi + β2t + bi. (6)

Note that nowβ0 equals
∑k

r=1
πrµr. We will consider random-effects distributions with two components

bi ∼ π1N(µ1, d) + (1 − π1)N(µ2, d), (7)

as well as with three components

bi ∼ π1N(µ1, d) + π2N(µ2, d) + (1 − π1 − π2)N(µ3, d). (8)
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Table 2 Estimates and standard errors for the parameters of model (6): mixture with 2 components - mixture with 3

components.

2 components 3 components

Estimate S.E. p-value Estimate S.E. p-value

Regression Coefficients β0 -7.882 1.227 < 0.0001 -7.774 4.283 0.0695

β1 1.992 0.937 0.0336 2.703 0.854 0.0015

β2 0.665 0.096 < 0.0001 0.678 0.094 < 0.0001

µ1 -9.189 1.333 < 0.0001 -10.757 5.374 0.0453

µ2 -5.306 0.953 < 0.0001 -6.510 1.969 0.0010

µ3 -2.951 2.031 0.1461

π1 0.664 0.007 0.506 0.453

π2 0.245 0.575

Variance Component d 24.664 7.658 9.525 11.883

AIC 395.1 396.0

For these mixtures the overall variance of the random-effects corresponds to

σ2

b =
k

∑

j=1

πjµ
2

j −





k
∑

j=1

πjµj





2

+ d, (9)

with k = 2 or 3, depending on the number of components in the mixture. The parameter estimates

for these two models are shown in Table 2. The estimates of thefixed effects for both models are very
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10 S. Litière, A. Alonso, and G. Molenberghs: GLMM with non-Gaussian RE

similar, and they are also close to the results shown in Table1. The overall variance of the random effects

can be calculated using (9) and the estimates given in Table 2. This leads tôσ2

b = 28.03 for the two-

component model, and̂σ2

b = 20.21 for the three-component model. These results are in the sameorder of

magnitude of̂σ2

b = 21.01 reported in Table 1. Additionally, there is not so much difference between the

AIC of these models and the AIC corresponding to the homogeneity model, given by 391.0. Therefore, the

homogeneity model seems to be most appropriate for the data at hand. Evidently, this result increases the

level of confidence in our previous findings.

As illustrated here, the heterogeneity model could be a plausible alternative or extension of the classic

GLMM. To explore the performance of this model under misspecification of the random-effects distribu-

tion, we have carried out a simulation study that will be presented in the next section.

4 Simulations

In this simulation study, binary data were generated using Expression (1). For the fixed effects, values

close to the estimates in Table 1 were chosen:β0 = −8, β1 = 2 andβ2 = 1, whereas the variance of

the correct random-effects distribution was fixed atσ2

b = 32, to be in the same order of magnitude as the

variance estimate in Table 1.

Further, we considered the following distributions for therandom effects: the mean zero normal distribu-

tion with variance equal to 32; the uniform distribution with support between−9.8 and 9.8; the exponential

distribution withλ = 0.177; the lognormal distribution with scale parameter 0 and shape parameter1.35;

the power function distribution with shape parameter 464 and scale parameter 80; and the asymmetric

mixture0.231×N(−10, 1.4072)+0.769×N(3, 1.4072). If necessary, the distributions were transformed

to satisfy the mean zero condition of the random effects. These distributions cover a wide range of shapes

varying from very symmetric to very skewed; with potentially very heavy tails. We considered 3 different

sample sizes: 50, 100 and 200, and for each of these settings 100 data sets were generated. Model (6) was

then fitted to the generated data assuming a mixture of two normals for the random-effects distribution.
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Consistency was studied through the evolution of the relative distance between the estimates and their

real value, over increasing sample size. Letγ
0

= (−8, 2, 1, 32)′ represent the vector of true parameter

values and̂γn = (β̂0, β̂1, β̂2, σ̂
2

b )′ the corresponding vector of maximum likelihood estimates.We can

then define the relative distance betweenγ
0

andγ̂n as

dγ =
||γ̂n − γ

0
||

||γ
0
|| , (10)

where||.|| denotes the Euclidean distance. The relative distance between the treatment effect estimate and

its real value is similarly given by

dβ1
=

∣

∣

∣

∣

∣

β̂1 − β0

1

β0

1

∣

∣

∣

∣

∣

. (11)

If the estimators remain consistent after misspecifying the model then these relative distances should go to

zero with increasing sample sizes.

4.1 Results of the simulations

Figure 1(a) shows the evolution of the relative distance betweenγ
0

and γ̂n. The smallest relative bias

is observed for the correctly specified models, i.e., when the random-effects distribution is normal or an

asymmetric mixture of normals. However, due to misspecification, the relative bias of̂γn can be as high

as 67%, as was the case for the lognormal random effects.

To be able to compare these results with the results from fitting the homogeneity, or one-component

model, the simulations were repeated. We considered the same settings as before and generated 500 data

sets for each setting (see also Litière et al., 2005a). Model (1) was then fitted to the generated data using

maximum likelihood and assuming normal random effects (using the SAS procedure NLMIXED with

gaussian quadrature and 50 quadrature points). The corresponding relative distancesdγ are displayed in

Figure 1(b). Comparing this graph with Figure 1(a), it is clear that the heterogeneity model performs better

than the homogeneity model, when the random-effects distribution is an asymmetric mixture of normals.

Additionally, the heterogeneity model seems to perform better for smaller sample sizes. Figure 1(a) clearly
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(b) Homogeneity model -dγ
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(c) Heterogeneity model -dβ1
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(d) Homogeneity model -dβ1
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for large

sample sizes

Fig. 1 Consistency of the parameter estimates under homo- and heterogeneity models: the behavior of the relative

distancedγ anddβ1
for each distribution over increasing sample size.
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illustrates that when the sample size is 50, the overall biasexceeds 60% only when the random effects come

from a lognormal or uniform distribution. On the other hand,Figure 1(b) shows that for the homogeneity

model the overall bias is above 60% for all the misspecified random-effects distributions and it is near

100% when the random effects come from a lognormal distribution. The differences between both models

are less dramatic for larger sample sizes.

Since interest often lies in the observed treatment effect,we studied in more detail how its estimate can

be influenced by the misspecification. Figures 1(c) and (d) show the relative distance between the treatment

effect and its estimate from fitting a heterogeneity and a homogeneity model respectively. Here again, the

heterogeneity model seems to be more efficient in the estimation of this parameter, especially when the

sample size is small. Therefore, there seems to be some benefit (in terms of robustness) when using the

heterogeneity model for estimating the mean structure parameters.

Additionally, the simulations showed (results not included here) that both models are very robust to

the random-effects misspecification when estimating the time effect. However, there was some substantial

bias when estimating the variance of the random-effects (upto 73% for the homogeneity model, when the

random-effects distribution was an asymmetric mixture, and 69% for the heterogeneity model with lognor-

mal random effects, both for sample size 200). Using the heterogeneity model considerably improved the

bias in the case of the asymmetric mixture of normals, and in general the model seems to perform better

again for small sample sizes.

Markedly Figure 1(d) shows large relative distances forβ1, even under the correctly specified model

with normal random effects. This result is counterintuitive since, under these conditions, the maximum

likelihood method is expected to provide consistent estimates. However, it should be emphasized that

consistency is an asymptotic result. To explore this issue in more detail we have extended the simulations

with the homogeneity model to include larger sample sizes like 400, 800 and 1600. The corresponding

results for the relative distancesdβ1
are shown in Figure 1(f). From this graph it is clear that withincreasing
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14 S. Litière, A. Alonso, and G. Molenberghs: GLMM with non-Gaussian RE

sample sizes, the curve corresponding to the correctly specified (normal) model slowly decreases, while

the other curves stabilize.

We can conclude that, in general, the heterogeneity model seems to perform somewhat better than the

homogeneity model. Therefore in any practical situation, this model is worthy of consideration. However,

reaching convergence can be very difficult. In comparison, convergence of the homogeneity model was

100% in all the considered scenarios. Additionally, the heterogeneity model is also very sensitive to the

choice of starting values. These issues limit the models’ applicability in practice, reducing also their value

as a feasible alternative to the GLMM.

One might also be interested in the performance of the probitlink versus the logit link. Suffice it to say

that in most conditions performances of both are very similar, due to the approximate conversion factor

between parameters from both models:π/
√

3 (Molenberghs and Verbeke, 2005). The choice for the logit

rather than the probit link in our study is inspired by the omnipresence of the normal random-effect logistic

model.

5 A Bayesian approach

An alternative sensible approach to dealing with possible random-effects misspecification could be to per-

form a sensitivity analysis, considering different random-effects distributions. The Bayesian paradigm

provides a natural framework for this type of analysis. The Markov Chain Monte Carlo (MCMC) algo-

rithm allows considerable flexibility and has made Bayesianmodels a popular and efficient tool in the

analysis of hierarchical data (Gilks et al., 1996, and Gelman et al., 2005).

The Bayesian analyst needs to explicitly state prior informationp(γ) on the model parametersγ =

(ϕ, δ) of the generalized linear mixed model, independent from theevidence given by the data. Addition-

ally, he needs to specify the support for different values ofthe parameter effects based on the available

data, i.e., the likelihoodp(y|γ). Together, these two sources of information are combined into a poste-

rior distributionp(γ|y) for the parameters of interest. Whereas maximum likelihoodestimation leads to a
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point estimate for the fixed effects and the variance components of the random-effects distribution, a full

Bayesian approach will quantify our uncertainty about the unknown parameters through a whole posterior

distribution. Samples drawn from the joint posterior distribution then allow to estimate characteristics of

the joint and marginal posterior distribution like, e.g. posterior means of the parameters of interest.

A popular method for sampling from the posterior distribution is the Gibbs sampler (Zeger and Karim,

1991, and Natarajan and Kass, 2000). This algorithm proceeds by iteratively samplingγ from its full-

conditional distribution until convergence is achieved. It is currently implemented in a software called

WinBUGS, an acronym for ”Bayesian inference Using Gibbs Sampling” on a Windows platform.

For a detailed exploration and application of Bayesian model formulation, model parametrization,

choice of prior distribution, diagnosing convergence, comparison between models and model adequacy

for binary longitudinal data, we refer to Albert and Jais (1998). A Bayesian formulation of the model

mentioned in Section 1 requires specification of prior distributions for the parametersϕ andδ. Whether

estimation of the random effects is of interest or not, the prior information ofδ is necessary for inference

about the regression coefficients. Usually, when no prior information is available, vague priors are as-

sumed. In the next subsection we will continue the analysis of the case study by expanding the sensitivity

analysis to a wide range of non-normal random-effects distributions.

5.1 Case study - the Bayesian approach

In this section we will revisit the case study introduced in Section 2. We will use Bayesian methods

as implemented in WinBUGS 1.3 to fit GLMM, considering different random-effects distributions. We

will include a mean zero normal with precisionτ (note thatτ = 1/σ2), an exponential with parameter

λ, a chi-square withk degrees of freedom, a lognormal with scale parameter 0 and precision parameter

τ , a uniform with support between−b and b and a discrete distribution with unequal probabilityπ at

two support pointsXi, i = 1, 2. Furthermore, we will choose vague priors for the parameters of the

random-effects distributions. For example, a gamma distribution was chosen forτ , k, λ andb; the Xi
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16 S. Litière, A. Alonso, and G. Molenberghs: GLMM with non-Gaussian RE

are assumed to be sampled from a mean zero normal distribution; and the prior for the probabilityπ is a

uniform distribution with support between 0 and 1. For each setting, the Gibbs sampler had 3 chains with

10000 iterations as the burn-in period, plus 100000 additional iterations with a thinning interval of 10 for

the normal, exponential and lognormal, 30 for the uniform, 60 for the chi-square and 75 for the discrete

distributions.

Note that the considered random-effects distributions do not necessarily have mean zero. It has been

suggested that this parametrization can improve convergency and stability of the samples by reducing the

autocorrelations of the Gibbs chains (Albert and Jais, 1998). Also note that keeping the intercept in the

model (in contrast to the approach in Section 3) improved theconvergence of the models. To be able to

compare the new estimates with the previously obtained results, we will use the following model

logit{P (Yij = 1|bi)} = α + β1Zi + β2tj + bi, (12)

such thatβ0 = α + E(b).

Convergency of the models was studied through the trace plots of the sample values of the main pa-

rameters. As the number of iterations increases the trace plots should stabilize, varying randomly around a

mean value. Additionally we have studied the Gelman-Rubin diagnostic tool (Gelman et al., 1996), which

uses several parallel chains with widely dispersed starting values with respect to the true posterior distri-

bution, to check convergence. This diagnostic tool compares the variability between- and within-chains

by estimating a scale reduction factor. If the variance between the different chains is not larger than the

variance within each individual chain, then approximate convergence can be diagnosed.

The parameter estimates of fitting Model (12) are shown in Table 3. Noticeably, a lot of variability

can be observed in the estimation ofβ0 andσ2

b . As one would intuitively expect, the variance components

estimates seem to be very sensitive to the choice of the random-effects distribution. However, the estimates

for the treatment and time effects are similar in all considered settings, and they are also similar to the

results from the homogeneity and the heterogeneity model. Note that Table 3 also contains the Monte
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Table 3 Parameter estimates (standard error and MC error between parenthesis) for model 1 and the corresponding

deviance information criterion (DIC) for the different random-effects distributions using MCMC in Winbugs.

Distribution β0 (S.E., MC Error) β1 (S.E., MC Error) β2 (S.E., MC Error) σ2

b (S.E., MC Error) DIC

Normal -7.905 (1.325, 0.023) 2.322 (1.208, 0.018) 0.680 (0.100, 0.001) 26.28 (9.58, 0.131) 275.72

Exponential -6.448 (1.160, 0.023) 2.098 (1.203, 0.021) 0.660 (0.098, 0.001) 19.09 (7.72, 0.141) 275.27

Chi-square -12.800 (3.081, 0.191) 2.390 (1.251, 0.036) 0.683 (0.099, 0.003) 10.86 (4.16, 0.261) 276.60

Uniform -7.828 (1.427, 0.079) 1.507 (0.994, 0.014) 0.672 (0.103, 0.003) 27.04 (9.966, 0.612) 276.20

Lognormal -4.305 (1.160, 0.009) 1.377 (0.823, 0.008) 0.5764 (0.085, 0.0008 ) 247.4 (1786.0, 11.24) 290.38

Discrete -4.846 (0.599, 0.011) 1.246 (0.507, 0.009) 0.528 (0.077, 0.001) 60.45 (67.86, 4.244) 344.14

Carlo error, which can be used to assess the accuracy of the posterior estimates. This error decreases as the

sample size used for posterior inference increases.

A useful tool to select the model that fits our data best, is given by the Deviance Information Criterion

(DIC; Spiegelhalter et al., 2002). It is similar to the Akaike Information Criterium (AIC), i.e., a compro-

mise between the deviance and the number of parameters in themodel. Smaller values are better. The

DIC values of the models with the different random-effects assumptions are shown in the last column of

Table 3. Here, the models that assume a normal and exponential distribution for the random effects seem

to perform best and produce very similar estimates for the treatment effect. Therefore, we can still be very

confident about the results obtained from the homogeneity model for the treatment effect.

6 Discussion

In contrast to the conventional wisdom amongst data analysts, recent research is showing that the choice

of the random-effects distribution can be crucial to the quality of inference about regression coefficients.

Indeed, unlike for the linear mixed model, misspecifying the random-effects distribution in GLMM leads
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to inconsistent estimators for both the mean and the covariance structure. At the present time fully robust

alternatives are not available for the analyst and therefore we strongly suggest exploring the impact of

such misspecifications using a sensitivity analysis. Alongwith these ideas, we have focused in the cur-

rent work on two possible approaches to do a sensitivity analysis. The heterogeneity model could be, in

certain circumstances, a plausible choice, especially when dealing with small sample sizes. However, our

simulations clearly showed that the model can be unstable and convergency can heavily depend on initial

values. Even though the heterogeneity model performed better than the GLMM, we still observed serious

bias under certain model misspecifications. Additionally,considering more than two components in the

mixture can become computationally unfeasible in most practical situations.

The second alternative considered in this work was a Bayesian approach to model hierarchical data.

Bayesian models have become easy to apply in practice with the implementation of the MCMC algorithm

in free software like WinBUGS. With its flexibility in the choice of the random-effects distribution and the

implementation of the DIC to choose the most appropriate model, this approach offers a natural way of

implementing a sensitivity analysis, as illustrated in Section 5. Note that for this analysis we did not use

the latest available version of WinBUGS. Our models did not run in version 1.4 due to some changes in the

update order of the parameters. The authors of the software are aware of the fact that some models which

run in version 1.3 are running slowly or not at all in version 1.4. They are currently trying to deal with this

issue. Since WinBUGS 1.4 allows the automation of routine analysis, it should therefore be conceivable in

the near future to study the effectiveness of an analysis with non-Gaussian random effects in more detail

via simulations.

In this work we have confined attention to the impact of misspecifying the random-effects distribution.

However, misspecifications of other model aspects deserve agreat deal of research attention too. It is

becoming clear that there probably will not be a general easyanswer on how to deal with model mis-

specification. Perhaps in some specific situations, good alternative models can be found by using e.g.,

random-effects distributions conjugate to the distribution of the outcome (Lee and Nelder, 1996). Still, an
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important topic for future research will be the developmentof diagnostic tools for detecting the lack of

consistency and therefore the need for alternative models.These tools, together with the ability to consider

several random-effects distributions, would allow for a useful and, arguably, necessary sensitivity analysis.
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