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Summary

Recent research is showing that generalized linear mixetlegGLMM) may not always be robust against
certain model misspecifications. In this work we focus orspéifying the random-effects distribution and
its impact on maximum likelihood estimation. We proposeéaldvith possible misspecification by way of
sensitivity analysis, considering several random-effetistributions. First, we analyze a case study using
the heterogeneity model, i.e., a GLMM where the normal ram@dfects distribution is replaced by a finite
mixture of normals. It is shown through simulations thas tiiodel performs slightly better in the presence
of misspecification. However, the model can be very unstahtbconvergence is sometimes hard to obtain.
We therefore complete the sensitivity analysis of the caglyavith a Bayesian approach, where we fit logit
models with different distributions for the random effedtiere the Deviance Information Criterion (DIC)

can be used as a criterion to select the most appropriatelmode
Key words: Hierarchical models, Misspecification, Random-effectaxivhum likelihood, Heterogeneity
model, Bayesian modeling.
1 Introduction
When dealing with non-Gaussian longitudinal measuremebtservations on a subject are unlikely to be
independent. This dependence can be taken into account sisbject-specific parameters. A popular
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2 S. Litiere, A. Alonso, and G. Molenberghs: GLMM with non-@&sian RE

approach to handle this type of correlated data is the gkrnedldinear mixed model (GLMM; Agresti,
2002; Diggle et al., 2002; Fahrmeir and Tutz, 2001; Moleghsrand Verbeke, 2005). This model has
been widely used in different areas like, e.g., toxicoldgplenberghs and Verbeke, 2005), epidemiology
(Kleinman, Lazarus and Platt, 2004), dairy science (Tempal 1998), etc., and is easy to apply using
software tools such as the SAS procedures NLMIXED and GLIMMIonditional on the random effects
b;, the outcome variabl¥; for a subject follows a pre-specified distributioR; (y,|¢, b;), parameterized
through a vectorp of unknown parameters common to all subjects. The subpestiic effectsb; are
assumed to come from a distributi6t{b;|d), which may depend on a vectérof unknown parameters.
Estimation is usually based on maximum likelihood, assgntivat the underlying probability model is

correctly specified.

A wide range of software tools are available for fitting thesedels. However, the analysis is often
limited to the setting of Gaussian random effects. Sincdwoaneffects are not observed, diagnostic tools
to study the random-effects distribution are not straighird. Indeed, one should be careful in using
empirical Bayes estimates of the random effects to detguartigres from normality. Even when the
random effects are coming from a normal distribution, theieical Bayes estimates will usually not be
normally distributed. Therefore, it is relevant to assés robustness of the parameter estimates with

respect to this type of model misspecification.

Verbeke and Lesaffre (1997) showed that the maximum likelthestimators for fixed effects and vari-
ance components in linear mixed models, obtained understhamption of normally distributed random
effects, are consistent and asymptotically normally itisted, even when the randome-effects distribution
is not normal. Nevertheless, it could be argued that the \poekented by Verbeke and Lesaffre (1997)
provides only asymptotic results whereas in practice osdddeal with limited sample sizes, so the dis-
cussion of the properties of estimators under finite sampksss also a very important one. Relevant
results in this area include Pinheiro et al. (2001), whidtdsses an alternative robust approach by imple-

menting linear mixed models with multivariate t-distrilmurts for the random-effects and the within-subject
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errors. Rosa, Gianola and Padovani (2004) extended thisagpby using normal/independent distribu-
tions, such as the Student-t, the slash, and contaminatethhdistributions, as robust alternatives to the
Gaussian assumption for both the residuals and the randeictef These authors adopted a Bayesian

framework with Markov chain Monte Carlo methods to carry thet posterior analysis.

In the present work our main focus will be on the robustnesgeofralized linear mixed models with
respect to the misspecification of the random-effectsidigion. Some work has been done to study the
impact on the parameter estimates of these models. Neuhals €1992) examined the performance
of mixed-effects logistic regression models with misspedirandom-effects distributions. They showed
that the maximum likelihood estimators of the model par@mseare inconsistent but that the magnitude
of the bias is typically small. More recently, Heagerty andrleind (2001) studied the impact of the
misspecification of the random-effects distribution onrtreximum likelihood estimators of the regression
coefficients in logistic regression models for clusterathby response data. These authors found that the
marginal regression parameters are much less susceptihle misspecification than the parameters of the
corresponding hierarchical model. In Agresti et al. (200 choice of the random-effects distribution
seems to have little effect on the maximum likelihood estora A similar message can be found in some
very well known texts for the analysis of categorical ddta Wgresti (2002), where it is stated that usually,

assuming normality does not hurt when the true distribugarot normal.

It should be noted that most of these studies used randautelistributions with small variances. For
example, in Agresti et al. (2004) the largest random-edfgatiance used for simulations was equal to 1.
As we will illustrate with our case study in Section 2, thes®l values may not always be realistic. When
dealing with larger random-effects variances, Litierale{2005a) have found that misspecification of the
random-effects distribution can introduce a relative lmhap to 30% for the mean structure parameters
and up to 70% for the variance components. Additionallyséh@uthors have shown that the type | and II

errors can be seriously affected, depending on the shape ¢rfite random-effects distribution.
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This overview illustrates the wide range of opinions thasei the literature with respect to the im-
pact of misspecifying the random-effects distribution.vbitheless, it becomes clear that more research
is needed to find models that are robust against this type sdpacification. Some alternative robust ap-
proaches have been suggested. Butler and Louis (1992) ggdpo replace the normal random-effects
distribution by a non-parametric distribution. Howevengrasti et al. (2004) reported that there can be
some loss of efficiency, when using a non-parametric appr@acnpared to a parametric assumption close
to the real distribution. Additionally, model comparis@ande difficult as standard asymptotic theory does
not apply. Chen, Zhang and Davidian (2002) suggested a garaimetric random-effects distribution, al-
lowing the random-effects density to be skewed, multi-nhdidé or thin-tailed and including the normal
as a special case. These authors then used a Monte Carlo ENttaigwith a rejection sampling scheme

to obtain estimates of the model parameters and the semivgdric random-effects distribution.

Furthermore, Kizilkaya et al. (2003) discussed a hieraadtthreshold mixed model based on a cumu-
lative t-link specification for the analysis of ordinal dafsdditionally, Kizilkaya and Tempelman (2005)
proposed a general Bayesian approach to model heterosikeztasr in GLMM, in which linked functions
of conditional means and residual variances were specHisdarate linear combinations of fixed and ran-
dom effects. Finally, the heterogeneity model, where thenab random-effects distribution is replaced
by a finite mixture of normals, has been suggested as andthesiple alternative (Fieuws, Spiessens and
Draney, 2004; Molenberghs and Verbeke, 2005). This allawesto cover a wide range of shapes for the
random-effects distribution. In the present work we willdy the performance of this alternative using

both real and simulated data.

On the other hand, Bayesian models are very flexible in thé&ceraf the random-effects distribution
and have been used in the past to deal with possible rand@ctsefnisspecification (Pinheiro et al., 2001;
Kizilkaya et al., 2003; Rosa et al., 2004). Therefore, irs ttdse a Bayesian approach might be a good

alternative to the classic frequentist methods.
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We will start by analyzing in Section 2 the motivating casedgtusing a GLMM with normal ran-
dom effects. In Section 3, we will introduce and apply theehegeneity model to the example. Next, in
Section 4, various aspects of the parameter estimategingsfibm the heterogeneity model are investi-
gated through extensive simulations. Finally, in Sectiow®& will consider a Bayesian approach to fitting
GLMM with non-Gaussian random effects and perform a setisitanalysis for our case study within the

Bayesian framework.

2 Case study: the schizophrenia data

The study consists of individual patient data from a randmuaiclinical trial, comparing the effect of
risperidone to conventional antipsychotic agents for thattment of chronic schizophrenia (Alonso et al.,
2004). The response variableis a dichotomous version of the Clinical Global Impressi6G&() scale
and equals 1 for patients classified as normal to mildly iild @ for patients classified as moderately to
severely ill. The treatment variabl&, is set to 0 for the control group and 1 for the risperidoneugro
Treatment was administered for 8 weeks and the outcome wasuresl at 6 fixed time points: at the
beginning of the study and after 1, 2, 4, 6 and 8 weeks. Onerladrtd/ienty-eight patients were included
in the study.

The following random-intercept logistic model was fitteding maximum likelihood:

logit{ P(Yi; = 1|b;)} = Bo + B1Zi + Pat; + by, (1)

whereY;; denotes the response for thth patient at time; andb; denotes a random intercept assumed to
follow a mean zero normal distribution with varianeg. The results are shown in Table 1 and they give
evidence of certain treatment effect.

Taking into account the problems described in Section leébimes clear that these results can be in-
fluenced by possible model misspecifications, like the @ofthe random-effects distribution. Naturally,

we are concerned with the impact of such model violationfierparameter estimates. Let us first note that
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6 S. Litiere, A. Alonso, and G. Molenberghs: GLMM with non-@&sian RE

Table 1 Estimates and standard errors for the parameters in Mogelke SAS procedure NLMIXED with adaptive

Gaussian quadrature and 20 quadrature points was used.

Parameter Estimate S.E. p-value

Regression Coefficients 3y -7.369 1.177 < 0.0001
51 2144  1.079 0.0490
Bo 0.650 0.096 < 0.0001
Variance Component o7 21.01 6.808

in Litiere, Alonso and Molenberghs (2005b) a theoretieauit was introduced which states the conditions
under which the type | error is robust to misspecificationhef tandom-effects distribution. Applied to
our case study, this theorem implies that the type | erraresmponding to the treatment effect will not be
affected by the choice of the random-effects distributibherefore, we can be fairly confident about the
presence of a (borderline) significant treatment effectweéleer, we should be careful when interpreting

the estimated size of the effect due to the bias that can tedunted by misspecification.

A plausible alternative approach to the GLMM could congsistaplacing the Gaussian random-effects
distribution by a finite mixture of normals. Note that mix¢srof normal distributions are a very flexible
class of distributions as they can cover unimodal as well aimmodal, and symmetric as well as very
skewed distributions. Additionally, mixtures can be usedrtodel unobserved heterogeneity that can
appear when an important categorical variable has beeauefif the model. In the next section we will

study the heterogeneity model in more detail.
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3 The heterogeneity model

In the homogeneity model considered so far, the randoneisfie were assumed to be sampled from a
normal distribution. The heterogeneity model is an extamsif this model, obtained by sampling the
random effects from a mixture df normal distributions with mean vectogs, and covariance matrix
D, ie. b; ~ Z’:Zl 7N (p,, D). The probability for a subject to belong to componeris 7., with
Zle m- = 1. Note that each component has the same covariance niatridhis constraint is necessary
to avoid unbounded likelihoods (Bdhning, 1999).

Let #’ = (my,...,m) and~ be the vector containing the remaining parameters, i.e.y#ttory of
unknown parameters common to all subjects, as well as alnpaters ine,. and D. The joint density

function ofy, can then be written a (y,) = Zle 7 fir (Y;|7y) Where

for (i) = / Fi(wilp.b:) by (bi)dbs. @)

Note thato,. (b;) refers to the multivariate normal with mean and covariance matrif>. Estimation is

now based on the maximization of

(Bly) = Zln{Zm‘w (y:l7) } 3

where®’ = (4/,n’), using the Expectation-Maximization (EM) algorithm delsed in Laird (1978).
Initially, the EM algorithm was developed for missing datalglems. It has however also been used a lot
for estimation in the linear mixed models. For our purpobke,dlgorithm is very useful if we treat the

component membership indicatgy., defined as

1 if b; is sampled from theth component in the mixture
Zir = (4)
0 otherwise

as missing. Using these indicators, the log-likelihoodttion can be rewritten as

N k
0|ya Zzzzr lnﬂr +1nfzr(y1|7)] (5)

=1 r=1
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8 S. Litiere, A. Alonso, and G. Molenberghs: GLMM with non-@&sian RE

wherez is the vector of all unobserved,.. This function is easier to maximize, however maximizing
£(8ly, z) with respect td will lead to estimates of which depend on the unobserved indicatars To
avoid this, it has been suggested to use the EM algorithm atothie expected value of (5) rather than
£(8y, =) itself, will be maximized with respect @ (with the expectation taken over all unobserved.
More specifically, in the E step (expectation) the condaiexpectation of(0|y, z), given the observed
datay, is determined. In the M step (maximization), the so-okadiaxpected log-likelihood function is
maximized with respect té, providing an updated estimate f@r The algorithm is repeated until the

difference between two successive loglikelihood evatureis small enough.

To fit heterogeneity models in practice, a SAS macro (deedribb Fieuws et al., 2004) has been imple-
mented, based on the SAS procedure NLMIXED and the EM algorifThe macro can be used for fitting
nonlinear and generalized linear mixed models with finitenmad mixtures as random-effects distributions.

In the next subsection we will use this macro to re-analyeectise study.

3.1 Case study - the heterogeneity model

To fit a heterogeneity model to the case study, some smallgesamave to be made to the model formula-
tion. For example, since there are no restrictions onithehe expected value of the random effects is no

longer fixed at zero. Therefore, to avoid overparameteo@atve will not include an intercept:
logit{ P(Yi: = 1|b;)} = 1 Z; + Pt + b;. (6)
Note that nows, equaIst:1 -t We will consider random-effects distributions with twangponents
bi ~ mN(pa,d) + (1 — m1)N(p2, d), (7)
as well as with three components

by ~ m N (p1,d) + moN(p2,d) + (1 — mp — w2)N(p3, d). (8)
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Table 2 Estimates and standard errors for the parameters of madeh{gture with 2 components - mixture with 3

components.

2 components

3 components

Estimate S.E. p-value Estimate S.E. p-value
Regression Coefficients Gy -7.882 1.227 < 0.0001 -71.774  4.283 0.0695
I 1.992 0.937 0.0336 2,703 0.854 0.0015
Bo 0.665 0.096 < 0.0001 0.678 0.094 < 0.0001
A -9.189 1.333 < 0.0001 -10.757 5.374 0.0453
o -5.306 0.953 < 0.0001 -6.510 1.969 0.0010
13 -2.951 2.031 0.1461
T 0.664 0.007 0.506 0.453
o 0.245 0.575
Variance Component d 24.664 7.658 9.525 11.883
AIC 395.1 396.0
For these mixtures the overall variance of the random-effemrresponds to
k k 2
op =3 mpd— | Y _mip | +d, 9)
j=1 j=1

with & = 2 or 3, depending on the number of components in the mixturee gdrameter estimates

for these two models are shown in Table 2. The estimates dixed effects for both models are very
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10 S. Litiere, A. Alonso, and G. Molenberghs: GLMM with n@aussian RE

similar, and they are also close to the results shown in Thblhe overall variance of the random effects
can be calculated using (9) and the estimates given in TablEhis leads tos? = 28.03 for the two-
component model, angf = 20.21 for the three-component model. These results are in the satee of
magnitude of? = 21.01 reported in Table 1. Additionally, there is not so much difece between the
AIC of these models and the AIC corresponding to the homagemedel, given by 391.0. Therefore, the
homogeneity model seems to be most appropriate for the thtnd. Evidently, this result increases the
level of confidence in our previous findings.

As illustrated here, the heterogeneity model could be agitéeialternative or extension of the classic
GLMM. To explore the performance of this model under misgfEtion of the random-effects distribu-

tion, we have carried out a simulation study that will be preed in the next section.

4 Simulations

In this simulation study, binary data were generated usixgré&ssion (1). For the fixed effects, values
close to the estimates in Table 1 were chosén= -8, 51 = 2 and3, = 1, whereas the variance of
the correct random-effects distribution was fixedat= 32, to be in the same order of magnitude as the
variance estimate in Table 1.

Further, we considered the following distributions for tardom effects: the mean zero normal distribu-
tion with variance equal to 32; the uniform distribution kvétupport between 9.8 and 9.8; the exponential
distribution withA = 0.177; the lognormal distribution with scale parameter 0 and shagrametet.35;
the power function distribution with shape parameter 46d secale parameter 80; and the asymmetric
mixture0.231 x N (—10, 1.4072) +0.769 x N (3, 1.4072). If necessary, the distributions were transformed
to satisfy the mean zero condition of the random effects s€ltistributions cover a wide range of shapes
varying from very symmetric to very skewed; with potentralery heavy tails. We considered 3 different
sample sizes: 50, 100 and 200, and for each of these setti@gdata sets were generated. Model (6) was

then fitted to the generated data assuming a mixture of twmalgrfor the random-effects distribution.
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Consistency was studied through the evolution of the ratistance between the estimates and their
real value, over increasing sample size. fgt= (—8,2,1,32)’ represent the vector of true parameter
values andy,, = (o, 1, 32,62)’ the corresponding vector of maximum likelihood estimatége can

then define the relative distance betwegrand<y,, as

Fn = ol
d, = o Toll (10)
! 7ol

where||.|| denotes the Euclidean distance. The relative distancegestiine treatment effect estimate and

its real value is similarly given by

B — B
i

dg, = (11)

If the estimators remain consistent after misspecifyirgrttodel then these relative distances should go to

zero with increasing sample sizes.

4.1 Results of the simulations

Figure 1(a) shows the evolution of the relative distancevbeh~y, and4,,. The smallest relative bias
is observed for the correctly specified models, i.e., whenréimdom-effects distribution is normal or an
asymmetric mixture of normals. However, due to misspediticathe relative bias of,, can be as high
as 67%, as was the case for the lognormal random effects.

To be able to compare these results with the results fromdittie homogeneity, or one-component
model, the simulations were repeated. We considered the sattings as before and generated 500 data
sets for each setting (see also Litiere et al., 2005a). Mddeavas then fitted to the generated data using
maximum likelihood and assuming normal random effectsn@she SAS procedure NLMIXED with
gaussian quadrature and 50 quadrature points). The comés relative distances, are displayed in
Figure 1(b). Comparing this graph with Figure 1(a), it issclthat the heterogeneity model performs better
than the homogeneity model, when the random-effects bligtan is an asymmetric mixture of normals.

Additionally, the heterogeneity model seems to perforndodéor smaller sample sizes. Figure 1(a) clearly
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Fig. 1 Consistency of the parameter estimates under homo- antbpeteity models: the behavior of the relative

distanced., andd, for each distribution over increasing sample size.
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illustrates that when the sample size is 50, the overalldiaseds 60% only when the random effects come
from a lognormal or uniform distribution. On the other haRk@jure 1(b) shows that for the homogeneity
model the overall bias is above 60% for all the misspecifiewloan-effects distributions and it is near
100% when the random effects come from a lognormal disidbuflhe differences between both models

are less dramatic for larger sample sizes.

Since interest often lies in the observed treatment effeestudied in more detail how its estimate can
be influenced by the misspecification. Figures 1(c) and (alvghe relative distance between the treatment
effect and its estimate from fitting a heterogeneity and adgeneity model respectively. Here again, the
heterogeneity model seems to be more efficient in the estimaf this parameter, especially when the
sample size is small. Therefore, there seems to be some t@médirms of robustness) when using the

heterogeneity model for estimating the mean structurenpeters.

Additionally, the simulations showed (results not inclddeere) that both models are very robust to
the random-effects misspecification when estimating the &ffect. However, there was some substantial
bias when estimating the variance of the random-effectsquj3% for the homogeneity model, when the
random-effects distribution was an asymmetric mixture, 8% for the heterogeneity model with lognor-
mal random effects, both for sample size 200). Using therbgameity model considerably improved the
bias in the case of the asymmetric mixture of normals, anceiregal the model seems to perform better

again for small sample sizes.

Markedly Figure 1(d) shows large relative distancesdgreven under the correctly specified model
with normal random effects. This result is counterint@tsince, under these conditions, the maximum
likelihood method is expected to provide consistent estisia However, it should be emphasized that
consistency is an asymptotic result. To explore this issuaadre detail we have extended the simulations
with the homogeneity model to include larger sample siZes 400, 800 and 1600. The corresponding

results for the relative distancés, are shown in Figure 1(f). From this graph it is clear that virtreasing
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sample sizes, the curve corresponding to the correctlyifsgek¢normal) model slowly decreases, while
the other curves stabilize.

We can conclude that, in general, the heterogeneity modetséo perform somewhat better than the
homogeneity model. Therefore in any practical situatibis model is worthy of consideration. However,
reaching convergence can be very difficult. In comparisonyergence of the homogeneity model was
100% in all the considered scenarios. Additionally, theehegeneity model is also very sensitive to the
choice of starting values. These issues limit the modelgliegbility in practice, reducing also their value
as a feasible alternative to the GLMM.

One might also be interested in the performance of the pliokiversus the logit link. Suffice it to say
that in most conditions performances of both are very sinélae to the approximate conversion factor
between parameters from both modetg:/3 (Molenberghs and Verbeke, 2005). The choice for the logit
rather than the probit link in our study is inspired by the gmesence of the normal random-effect logistic

model.

5 A Bayesian approach

An alternative sensible approach to dealing with possifelom-effects misspecification could be to per-
form a sensitivity analysis, considering different randeffects distributions. The Bayesian paradigm
provides a natural framework for this type of analysis. Tharkév Chain Monte Carlo (MCMC) algo-
rithm allows considerable flexibility and has made Bayesiadels a popular and efficient tool in the
analysis of hierarchical data (Gilks et al., 1996, and Geletzal., 2005).

The Bayesian analyst needs to explicitly state prior infation p(~) on the model parameters =
(¢, ) of the generalized linear mixed model, independent fronethéence given by the data. Addition-
ally, he needs to specify the support for different valuethef parameter effects based on the available
data, i.e., the likelihoog(y|v). Together, these two sources of information are combingdarposte-

rior distributionp(~y|y) for the parameters of interest. Whereas maximum likelinegitnation leads to a
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point estimate for the fixed effects and the variance compisnaf the random-effects distribution, a full
Bayesian approach will quantify our uncertainty about thenown parameters through a whole posterior
distribution. Samples drawn from the joint posterior dimttion then allow to estimate characteristics of

the joint and marginal posterior distribution like, e.gsperior means of the parameters of interest.

A popular method for sampling from the posterior distribatis the Gibbs sampler (Zeger and Karim,
1991, and Natarajan and Kass, 2000). This algorithm pracbgdteratively samplingy from its full-
conditional distribution until convergence is achievedlislcurrently implemented in a software called

WIinBUGS, an acronym for "Bayesian inference Using Gibbs flamg” on a Windows platform.

For a detailed exploration and application of Bayesian rhéalenulation, model parametrization,
choice of prior distribution, diagnosing convergence, panson between models and model adequacy
for binary longitudinal data, we refer to Albert and Jais48R A Bayesian formulation of the model
mentioned in Section 1 requires specification of prior distions for the parameters andd. Whether
estimation of the random effects is of interest or not, therpnformation ofd is necessary for inference
about the regression coefficients. Usually, when no pritorination is available, vague priors are as-
sumed. In the next subsection we will continue the analyldiseocase study by expanding the sensitivity

analysis to a wide range of non-normal random-effectsibigions.

5.1 Case study - the Bayesian approach

In this section we will revisit the case study introduced ectn 2. We will use Bayesian methods
as implemented in WinBUGS 1.3 to fit GLMM, considering difat random-effects distributions. We
will include a mean zero normal with precisien(note thatr = 1/02), an exponential with parameter
A, a chi-square witlk degrees of freedom, a lognormal with scale parameter O asaisown parameter
7, a uniform with support betweerb andb and a discrete distribution with unequal probabilityat
two support pointsX;, ¢ = 1,2. Furthermore, we will choose vague priors for the paransedérthe

random-effects distributions. For example, a gamma 8istion was chosen for, k£, A andb; the X;
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are assumed to be sampled from a mean zero normal distribatial the prior for the probability is a
uniform distribution with support between 0 and 1. For eagttirsy, the Gibbs sampler had 3 chains with
10000 iterations as the burn-in period, plus 100000 additiorabtions with a thinning interval of 10 for
the normal, exponential and lognormal, 30 for the unifor@ f@ the chi-square and 75 for the discrete

distributions.

Note that the considered random-effects distributions atonecessarily have mean zero. It has been
suggested that this parametrization can improve conveygamd stability of the samples by reducing the
autocorrelations of the Gibbs chains (Albert and Jais, 19880 note that keeping the intercept in the
model (in contrast to the approach in Section 3) improvedcctmvergence of the models. To be able to

compare the new estimates with the previously obtainedtsesie will use the following model

|Og|t{P(Y;7 = 1|b1)} =a+ 7+ ﬂgt]‘ + b, (12)

such thatdy = o + E(b).

Convergency of the models was studied through the tracs pfathe sample values of the main pa-
rameters. As the number of iterations increases the trate ghould stabilize, varying randomly around a
mean value. Additionally we have studied the Gelman-Rulzdgmbstic tool (Gelman et al., 1996), which
uses several parallel chains with widely dispersed stastaiues with respect to the true posterior distri-
bution, to check convergence. This diagnostic tool conmgp#re variability between- and within-chains
by estimating a scale reduction factor. If the variance ketwthe different chains is not larger than the

variance within each individual chain, then approximatevesgence can be diagnosed.

The parameter estimates of fitting Model (12) are shown iHer@b Noticeably, a lot of variability
can be observed in the estimation®fands?. As one would intuitively expect, the variance components
estimates seem to be very sensitive to the choice of the naredfiects distribution. However, the estimates
for the treatment and time effects are similar in all consdesettings, and they are also similar to the

results from the homogeneity and the heterogeneity modete hat Table 3 also contains the Monte
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Table 3 Parameter estimates (standard error and MC error betweentpasis) for model 1 and the corresponding

deviance information criterion (DIC) for the different dom-effects distributions using MCMC in Winbugs.

Distribution 3y (S.E., MC Error) (31 (S.E., MC Error)  (3; (S.E., MC Error) o2 (S.E., MC Error) DIC

Normal -7.905 (1.325,0.023) 2.322(1.208,0.018)  0.68000,0.001)  26.28 (9.58,0.131)  275.72
Exponential  -6.448 (1.160,0.023)  2.098 (1.203,0.021) 60(0.098,0.001)  19.09 (7.72,0.141)  275.27
Chi-square  -12.800 (3.081,0.191) 2.390 (1.251,0.036) 83(6.099,0.003)  10.86 (4.16,0.261)  276.60
Uniform -7.828(1.427,0.079) 1.507 (0.994,0.014)  0.672@8,0.003)  27.04(9.966,0.612) 276.20
Lognormal  -4.305 (1.160,0.009)  1.377(0.823,0.008) 045PE085, 0.0008) 247.4(1786.0,11.24) 290.38

Discrete -4.846 (0.599,0.011) 1.246 (0.507,0.009)  0.828B7(7, 0.001)  60.45 (67.86,4.244) 344.14

Carlo error, which can be used to assess the accuracy of sherjoo estimates. This error decreases as the
sample size used for posterior inference increases.

A useful tool to select the model that fits our data best, isgiyy the Deviance Information Criterion
(DIC; Spiegelhalter et al., 2002). It is similar to the Akaiknformation Criterium (AIC), i.e., a compro-
mise between the deviance and the number of parameters mdtel. Smaller values are better. The
DIC values of the models with the different random-effegsuamptions are shown in the last column of
Table 3. Here, the models that assume a normal and expolrdistidbution for the random effects seem
to perform best and produce very similar estimates for s@inent effect. Therefore, we can still be very

confident about the results obtained from the homogeneitalfor the treatment effect.

6 Discussion

In contrast to the conventional wisdom amongst data arslystent research is showing that the choice
of the random-effects distribution can be crucial to theliqgaf inference about regression coefficients.

Indeed, unlike for the linear mixed model, misspecifying thndom-effects distribution in GLMM leads
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to inconsistent estimators for both the mean and the coweeiatructure. At the present time fully robust
alternatives are not available for the analyst and theeefar strongly suggest exploring the impact of
such misspecifications using a sensitivity analysis. Alaity these ideas, we have focused in the cur-
rent work on two possible approaches to do a sensitivityyaigl The heterogeneity model could be, in
certain circumstances, a plausible choice, especiallynvdealing with small sample sizes. However, our
simulations clearly showed that the model can be unstalleanvergency can heavily depend on initial
values. Even though the heterogeneity model performedrtibtin the GLMM, we still observed serious
bias under certain model misspecifications. Additionalbnsidering more than two components in the

mixture can become computationally unfeasible in mosttpralcsituations.

The second alternative considered in this work was a Bayegiproach to model hierarchical data.
Bayesian models have become easy to apply in practice vathmtplementation of the MCMC algorithm
in free software like WinBUGS. With its flexibility in the cliae of the random-effects distribution and the
implementation of the DIC to choose the most appropriateghdtis approach offers a natural way of
implementing a sensitivity analysis, as illustrated intfec5. Note that for this analysis we did not use
the latest available version of WinBUGS. Our models did ootin version 1.4 due to some changes in the
update order of the parameters. The authors of the softwarawaare of the fact that some models which
run in version 1.3 are running slowly or not at all in versiod.IThey are currently trying to deal with this
issue. Since WinBUGS 1.4 allows the automation of routiredyasis, it should therefore be conceivable in
the near future to study the effectiveness of an analysis monh-Gaussian random effects in more detail

via simulations.

In this work we have confined attention to the impact of mistfgang the random-effects distribution.
However, misspecifications of other model aspects desepreat deal of research attention too. It is
becoming clear that there probably will not be a general essyver on how to deal with model mis-
specification. Perhaps in some specific situations, goedrative models can be found by using e.g.,

random-effects distributions conjugate to the distribotof the outcome (Lee and Nelder, 1996). Still, an
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important topic for future research will be the developmaintliagnostic tools for detecting the lack of
consistency and therefore the need for alternative modlaksse tools, together with the ability to consider

several random-effects distributions, would allow for afusand, arguably, necessary sensitivity analysis.
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