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Abstract

A difficult point in the design of a test-retest reliability study has always been
the length of the time interval between both measurements. To ensure that patients
do not evolve on the trait being measured during the time interval, a short period
is often recommended. However, if the period is too short, raters might recall their
previous answer and tend to repeat it, the infamous memory effect, resulting in an
overestimation of the reliability.

It has been shown by Vangeneugden et al. (2004) that a modeling approach to
reliability can cope with changes of subjects over time. In this paper, we establish
that further adding a so-called serial correlation component to a linear mixed model
is a convenient way of correcting for a rater’s memory effect. Key Words: Brief

Psychiatric Rating Scale; Inter-rater Agreement; Linear Mixed Model; Positive and
Negative Syndrome Scale; Test-retest Reliability.

1 Introduction

In classical test theory (CTT), the reliability of a measurement is defined as the ratio

of the true score variability over the total variability (Lord and Novick 1968). Under

certain assumptions, reliability equals the correlation between two measurements on the

same subject. Essentially, these assumptions state that for both measurements: (i) the

true scores are equal; (ii) the error variances are equal; (iii) the measurement errors are

independent. In this framework, the test-retest reliability of a measurement can then be
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estimated by rating a group of subjects at two occasions, separated by a time interval and

calculating Pearson’s correlation coefficient, based on these two sets of measurements.

It is fair to say that test-retest reliability has always been controversial. Indeed, a fun-

damental issue with the approach resides in finding the optimal length of the time interval

between the first and the second measurement. Whenever measuring living organisms, it

is clear that the characteristics being measured might change from one replication to an-

other. The usual approach is therefore to take the time interval sufficiently short so that

it be safe to assume that the underlying process is unlikely to have changed. However, if

both measurements are taken sufficiently close in time, it is also quite likely that the rater

will recall his previous ratings and his assessments will be influenced by them. Usually

he will give similar ratings in each of the replications. The results would overstate the

raters’ performance. This effect of memory is not limited to the case where raters make

subjective decisions; it can also occur in a second attempt on a cognitive ability test, or

when filling in a questionnaire on political attitudes (Dunn 1989, Streiner and Norman

1995).

Vangeneugden et al. (2004) and Laenen et al. (2006b) proposed a modeling approach

to the estimation of reliability that solves the problem emanating from a probable change

in the subject’s condition over time. These authors showed that, using linear mixed effects

models, it is possible to incorporate this change in the mean’s fixed-effects structure, while

the variance-covariance part of the model provides us with the components necessary to

calculate reliability. Valid reliability estimates can therefore be obtained in more general

scenarios when more than two replications per subject are available and the underlying

true scores change over time.

In this paper, we will illustrate that, additionally, the problems stemming from a po-

tential rater’s memory effect can be tackled by using linear mixed models. The memory

effect is accounted for by adding a serial correlation component to the model. Mean-

ingful reliability estimates can then be obtained from repeated measurements that are

contaminated with a memory effect.

In Section 2, we introduce a modeling framework suitable for studying reliability in
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the presence of memory effect. In Section 3, the impact of such a memory effect of the

rater on the reliability estimation is explored by means of a simulation study. Section 4

illustrates the methodology by means of a case study.

2 A Modeling Approach

Linear mixed models (LMM) allow extension of the CCT modeling framework to more

general settings, applicable whenever the stringent assumptions described in Section 1

become implausible. Assuming a balanced study design, with the same number of mea-

surements taken at a common set of time points for all study subjects, this model can be

written as

Yi = Xiβ + Zibi + εi , (1)

where Y i is the p-dimensional vector of responses Yij for subject i = 1, . . . , n and occa-

sions j = 1, . . . , p. Xi and Zi are fixed pi×q and pi×r dimensional matrices, respectively,

of known covariates, β is the q-dimensional vector of fixed effects, bi ∼ N(0, D) is the

r-dimensional vector containing the random effects, and εi ∼ N(0, Σ) is a p-dimensional

vector of errors. Additionally, D is a general r × r covariance matrix and Σ is a p × p

variance-covariance matrix. Finally, the vectors b1, . . . , bN , ε1, . . . , εn are assumed inde-

pendent.

One of the features making (1) appealing for reliability estimation is its natural capa-

bility to simultaneously account for fixed and random effects. The change of a patient’s

condition over time can then be modeled within the fixed structure, obviating the need

to assume a steady-state condition (Vangeneugden et al. 2004, Laenen et al. 2006b).

Additionally, LMMs are able to naturally distinguish between different sources of vari-

ability (Laird and Ware 1982, Verbeke and Molenberghs 2000), a property very relevant

in the light of reliability estimation. For calculating reliability, a distinction needs to be

made between variability coming from the true scores of the subjects, a subject-specific

or random effects, and the residual variability. Note that LMMs decompose the total

variability of the longitudinal observations as Vi = ZiDZ ′
i +Σi where ZiDZ ′

i accounts for
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the variability of the subject-specific parameters or true scores, and Σi includes all the

remaining sources of variability. In a balanced design, subscripts i can be dropped from

the above matrices.

The p diagonal elements of Σ are the variances of the measurement errors at the various

time points, whereas the off-diagonal elements are the residual covariances between the

measurement errors at any two points in time. We claim that a memory effect can be

incorporated into our framework by introducing a serial correlation term into the model.

Essentially, a serial correlation structure would imply, as expected in the presence of

a memory effect, that observations closer in time are more similar than observations

taken further apart. In the simplest scenario, like the one used in classical test theory,

all correlations within a subject can be described through the variance of the random

effects, the true scores, and the variance of the measurement error. In such a setting, the

reliability and the within-subject correlation are equivalent concepts. In more complex

situations, like the one considered in the present work, the within-subject correlation

cannot be explained fully through the variability of the random effects and uncorrelated

measurement error terms. Therefore, correlated error terms should be used and this

correlation can be taken into account using a serial correlation structure. Arguably, in

this scenario the link between reliability and within-subject correlation breaks down. One

commonly used structure is the autoregressive one, where Σ = τ 2H, with Hjk = ρdjk .

Here, τ 2 is a common error variance for all the time points, H is a correlation matrix

with ρ the correlation between two measurements taken one unit of time apart, and djk

the time lag between two measurements taken at time points j and k. A strong memory

effect would reflect in a large value of ρ. Including this term into the model will remove

the potential effect that it would exert on the estimation of the variance components,

were not taken into account.

As stated before, in complex settings, the link between reliability and within-subject

correlation breaks down and an extension of the classical concept is needed. Laenen et

al. (2006ab) proposed such an extension based on a minimum set of defining properties.

Further, these authors introduced two families of parameters designed to evaluate relia-
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bility, with building block the cross-eigenvalues associated with the matrices Σ and V .

Considering some mathematical arguments and simulation studies they found two “opti-

mal” members, one from each family, which one may want to use in practical situations,

the so-called RT and RΛ. These two measures are defined as RT = 1 − tr(Σ)/tr(V ) and

RΛ = 1 − |ΣV −1|. Note that both proposals quantify the proportion of the total vari-

ability not owing to measurement error, exactly as in the classical definition of reliability.

Actually, when applied in the classical setting, they both reduce to the classical definition.

The main difference between both measures is their different approach for summarizing

the variability in a variance-covariance matrix. For RT , this is done by means of the trace

of the matrix, and for RΛ the determinant is used. Laenen et al. (2006b) have shown that

these measures for reliability lead to quite distinct interpretations. The RT should be

interpreted as the average reliability over measurements at different time points, whereas

the RΛ can be seen as the overall reliability over the entire sequence of measurements.

Owing to this characteristic, this measure increases with the number of repeated measure-

ments. In the following section we will study, via simulations, the impact of a memory

effect on the RT and the RΛ when this effect either is or is not included into the model.

3 A Simulation Study

To study the consequences of a memory effect on the estimation of the reliability, we set

up a simulation study where the data generating mechanism was chosen to resemble a

realistic longitudinal study, with scores within subjects changing over time. First, data

were generated based on the following random-intercept model:

Yij = β0 + β1tij + β2Zi + bi + εij, (2)

with bi ∼ N(0, σ2
b ), ε ∼ N(0, τ 2H), tij the time at which measurement j for subject i is

taken, and Zi the treatment allocation for subject i. The value of σ2
b was fixed at 300

and τ 2 equaled 100, corresponding to a situation where the error variability accounts for

one quarter of the total variability. In this model, the true score of a subject, which is
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the sum of the fixed effects and the random intercept, can change over time due to the

presence of a time variable in the fixed effects part of the model. However, this change is

the same for all subjects. This model would correspond to an essentially tau-equivalent

model , where the true scores differ only by a “constant”, even though such a constant

would transform to a function of time in our case. Second, data were generated based

on an extended model, including a random slope for time in addition to the random

intercept, thus expanding (2) to

Yij = β0 + β1tij + β2Zi + b1i + b2itij + εij, (3)

where now bi ∼ N(0, D), ε ∼ N(0, τ 2H) and

D =

(
300 −1
−1 5

)
.

The time variable now also appears in the random part of the model, allowing for subject-

specific evolutions over time. This model resembles, but is not exactly equal to, a con-

generic model. A congeneric model would be (3) without the random intercept term

b1i.

In both models (2) and (3), the value of ρ was set to either 0.1, 0.5, or 0.8, corre-

sponding to a small, moderate, and large memory effect, respectively. Values for the fixed

effects were set to β0 = 85, β1 = −2.5, and β2 = 3, based on real case study results. Data

were generated for six equally spaced time points, at weeks 0, 2, 4, 6, 8, and 10, and

sample sizes were equal to 250. This amounts to six settings and 250 data sets for each

were generated.

We analyzed the data in two different ways. First, we calculated the Pearson correla-

tion coefficient between the first measurement and the measurements at later occasions.

The goal was to study the impact of the change of subjects over time and a memory

effect on the classical approach to reliability estimation. Second, we fit the data using

two different models: (i) a correctly specified model that includes a serial correlation

component with an autoregressive structure and (ii) a misspecified model that includes a

variance-components structure for the residual part (Σ = σ2I), ignoring the presence of
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Table 1: Instability and memory effect on reliability measures: correlation coefficients.

RI refers to random-intercepts model (2), RIS refers to model (2) with random intercepts,

random slopes, and serial correlation. ρ is the correlation parameter and (Yij, Yik) refer

to pairs of measurement occasions.

Model ρ (Yi0, Yi2) (Yi0, Yi4) (Yi0, Yi6) (Yi0, Yi8) (Yi0, Yi,10)

RI 0.1 0.770 0.751 0.748 0.748 0.748

RI 0.5 0.871 0.810 0.779 0.764 0.757

RI 0.8 0.948 0.908 0.875 0.850 0.830

RIS 0.1 0.746 0.683 0.617 0.553 0.492

RIS 0.5 0.845 0.734 0.641 0.564 0.498

RIS 0.8 0.921 0.822 0.718 0.624 0.544

the memory effect. We calculated RT and RΛ based on these two models to investigate

the impact of the memory effect on both measures for reliability.

Table 1 shows the Pearson correlations between the outcomes of the first measurement

(Yi0) and the outcomes at later measurement occasions (Yi2–Yi,10). Under the random

intercept model (RI, model 2)) the true reliability according to the classical definition, as

the ratio of the true score variability to the total variability, can easily be obtained as:

R = RT = RΛ =
σ2

b

σ2
b + σ2

=
300

300 + 100
= 0.75.

In the case of a small memory component, the effect of it already fades away at 4 weeks

and the correlation coefficient gives stable and trustworthy results as an estimator of

reliability. Since the change of the true score over the various measurements is constant,

it does not influence the correlation. The correlation is therefore a valid estimator for

reliability in this setting. However, with a memory component of increasing importance,

the reliability is strongly overestimated, especially for small time lags, and it takes longer

before the effect of memory fades out.
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Since the classical definition of reliability does not apply to a model with random

intercept and slope (RIS), there is no such thing as the true reliability for this model.

Therefore, we need to quantify reliability using the RT and RΛ concepts, reviewed in

Section 2. Table 3 presents the true values of both measures in the simulation study.

Different subjects can now change over time in different ways. Table 1 shows that these

changes lower the correlations when time lag increases. The effect of memory is also

clearly visible in the lower part of Table 1. Obviously, in this scenario, the classical

approach to reliability is strongly misleading.

The correlation is a good estimator for reliability if a certain set of stringent condi-

tions is fulfilled. However, when they do not hold, a modeling approach offers a sensible

alternative. It has been shown previously that linear mixed models can handle changes of

subjects over time, even if evolutions differ across subjects. In what follows, we evaluate

the impact of accounting for a memory effect by introducing a serial correlation compo-

nent into the model. Tables 2 and 3 summarize the results of the modeling approach

to reliability, for the RI model (2) and the RIS model (3), respectively. Both tables

present the true values for RT and RΛ, and the average of the estimated values over the

250 simulated data sets. The coverage probability (CP) indicates the percentage of the

cases in which the true value lies within the estimated 95% confidence interval. Both

tables show that, when the model does not include a serial correlation component to

account for the memory effect, both R̂T and R̂Λ overestimate the real value, exactly as

expected. In case of a small memory effect, the estimates are still relatively close to the

real value. However, for an increasingly important memory component, the real value

is largely overestimated. The estimated confidence interval then almost never contains

the true value. Larger sample sizes further confirmed these results: the reliability is then

even more strongly overestimated and the coverage probabilities are even lower.

When a serial correlation component is included into the model to account for the

memory effect, estimates for RT and RΛ are much closer to the real values and coverage

probabilities are close to 95%. Only for a very large memory effect (ρ = 0.8) are the true

values for both measures somewhat underestimated and coverage probabilities below 95%
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Table 2: Memory effect on reliability measures: random intercept model (2). ρ is the

correlation coefficient; both reliability measures are considered, with RT and RΛ the true

values, R̂T and R̂Λ the simulation averages, and CP· referring to coverage probability.

Correlation structure ρ RT R̂T CPRT
RΛ R̂Λ CPRΛ

variance components 0.1 0.750 0.757 90.4 0.939 0.949 50.0

variance components 0.5 0.750 0.815 3.2 0.889 0.963 0

variance components 0.8 0.750 0.902 0 0.824 0.982 0

autoregressive 0.1 0.750 0.748 95.2 0.939 0.938 96.4

autoregressive 0.5 0.750 0.746 95.2 0.889 0.886 96.0

autoregressive 0.8 0.750 0.734 95.2 0.824 0.808 96.0

for the RIS model. However, this situation improves for larger sample sizes.

Note that the true value of RΛ decreases when the serial correlation increases. RΛ has

the ability to increase with the number of time points, due to the fact that every new

observation brings additional information (Laenen et al. 2006b). However, for an equal

number of time points, we have less information when different observations are strongly

correlated, explaining lower RΛ for larger values of ρ.

4 A Case Study in Schizophrenia

Based on data from a clinical trial comprising 453 patients, we estimate the reliabilities of

three different rating scales conceived for measuring the severity in schizophrenic patients:

the Positive and Negative Syndrome Scale (PANSS), the Brief Psychiatric Rating Scale

(BPRS) and the Clinical Global Impression (CGI). The PANSS is a 30-item scale allowing

to distinguish between the typical positive and negative symptoms by means of two

subscales. The BPRS has 18 items, a subset of PANSS, but the focus of this scale is rather

on positive symptoms. The CGI is a general one-item tool that registers the change of
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Table 3: Memory effect on reliability measures: random intercepts and slopes model (3).

ρ is the correlation coefficient ; both reliability measures are considered, with RT and

RΛ the true values, R̂T and R̂Λ the simulation averages, and CP· referring to coverage

probability.

Correlation structure ρ RT R̂T CPRT
RΛ R̂Λ CPRΛ

variance components 0.1 0.826 0.837 83.2 0.986 0.990 35.2

variance components 0.5 0.826 0.900 0 0.972 0.997 0

variance components 0.8 0.826 0.960 0 0.965 0.999 0

autoregressive 0.1 0.826 0.825 97.6 0.986 0.986 96.8

autoregressive 0.5 0.826 0.821 96.8 0.972 0.968 97.2

autoregressive 0.8 0.826 0.812 88.1 0.965 0.955 91.9

the patient’s condition compared to baseline measurement using seven categories, ranging

from ‘very much improved’ to ‘very much worsened’. The trial compared a new treatment

against an active control. Study subjects were measured at weeks 0, 1, 2, 4, 6, and 8.

Since interest primarily lies in the covariance structure, an elaborate fixed effects

structure was adopted, containing categorical time, treatment, and treatment by time

interaction. The selection of the covariance structure was based on the AIC. Restricted

maximum likelihood was used for parameter estimation (Verbeke and Molenberghs 2000).

For all three scales, the final model takes the general form:

Yij = µij + bi0 + bi1tj + εij,

where Yij denotes the outcome (PANSS, BPRS, or CGI) for subject i at time point tj,

µij summarizes the fixed effects, bi ∼ N(0, D) with D a 2 × 2 unstructured variance-

covariance matrix, and εi ∼ N(0, Σ). For PANSS and BPRS, the best fitting covariance

structure for the errors corresponds to Σ = diag(σ2
j ). In contrast, for CGI, Σ = τ 2H,

with H corresponding to a spatial power serial correlation structure. Table 4 presents
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Table 4: Schizophrenia Study: estimates [95% confidence intervals] for RT and RΛ on

the Positive and Negative Syndrome Scale (PANSS), the Brief Psychiatric Rating Scale

(BPRS), and Clinical Global Impression (CGI).

PANSS BPRS CGI

RT 0.846 [0.825; 0.865] 0.821 [0.797; 0.842] 0.737 [0.700; 0.771]

RΛ 0.994 [0.992; 0.995] 0.991 [0.988; 0.993] 0.977 [0.969; 0.983]

the reliability estimates for the three scales and a 95% confidence interval. Interestingly,

none of the two multi-item scales give rise to a serial correlation component in the best

fitting model. However, the one-item CGI does. A plausible explanation is that such

a one-item scale scored by the specialist physician, is more prone to a memory effect

than a multi-item scale. Fortunately, by modeling a serial correlation, overestimating the

reliability due to such an effect can be avoided. This analysis illustrates that based, on

longitudinal scale outcomes, reliability of the scales can be derived in the same way in

case of a memory effect as without such an effect.

5 Concluding Remarks

In the simplest scenario, arising, for example, in classical test theory, all correlations

within subjects can be described through the variance of the random effects (true scores)

and the variance of the measurement error. In such a setting, the reliability and the

within-subject correlation are equivalent concepts: the reliability equals the correlation

between two measurements on the same subjects. In more complex situations, like the

one considered in this paper, the within-subject correlation cannot be explained fully

through the variability of the random effects and uncorrelated measurement error terms.

Therefore, correlated error terms should be used, or other components should be added to

the model, such as, for instance, a serial correlation structure. Arguably, in this scenario,

11



the link between the reliability and within-subject correlation breaks down.

When a memory effect is present, the condition of the subject at consecutive mea-

surements will appear more similar than they actually are. Incorrectly assuming that

the observations are independent will lead to an underestimation of the within-subject

variability. However, accounting for the fact that these values are correlated, by including

a correlation term, corrects the estimate of this within-subject variability, and allows for

estimation of reliability in an unbiased way.

Using data from a clinical trial in schizophrenic patients, we have shown that the

ideas developed in this paper can be applied when a memory effect in a rating scale is

either present or absent, underscoring the power and flexibility of the method proposed.

While reliability can be summarized by means of more than one measure, each one

focusing on different aspects, the measures retain the simplicity of R2 coefficients, ranging

between 0 and 1, so that the intuition coming with the classical approach is retained.
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