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Summary. The reliability of a measurement scale is one of its most impor-
tant psychometric properties. Reliability not only has a considerable clinical
impact but is also crucial in empirical research owing to its direct influence
on the statistical analysis of the measurement results. Reliability refers to
the reproducibility of the measurement outcome and, in the classical setting,
is defined as one minus the ratio between the error variance and the total
variance. Frequently, reliability is estimated using the intraclass correlation
coefficient based on two replicate measurements. In this paper, we explore
how the definition of reliability can be generalized, keeping the spirit of the
original concept, to the more realistic setting where repeated measurements
are available. Based on four defining properties for the concept of reliability,
we propose an uncountable family of reliability measures, which circumscribes
the area in which reliability measures should be sought for. It is shown how
different members assess different aspects of the problem. The methodology
is motivated by and illustrated on data from a clinical study on schizophrenia.

Key words: Reliability, Longitudinal data, Clinical trials, Hierarchical
models, Rating scales.

1 Introduction

Frequently, measurements in research and medical practice are based on rating scales,

especially in fields like psychology and psychiatry. When using a rating scale, the study

of its psychometric properties such as validity and reliability is of utmost importance.
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Validity refers to the extent to which the instrument properly measures the underlying

trait of interest. Reliability refers to the extent to which the measurement is reproducible,

or the degree to which it is influenced by measurement error.

The properties of a statistical analysis of scale measurements depend directly on the scale’s

reliability. For example, the correlation between two variables is a direct function of the

coefficient of reliability. In regression models, the reliability of a covariate influences the

effect size. Sensitivity and specificity are affected when a scale with low reliability is used

for classification or prediction, and there is a direct relationship between the reliability of

the measurement and the power of a study. Additionally, the reliability of a measurement

also defines an upper bound for the validity of this measurement (Fleiss 1986; Lachin

2004).

The calculation of a reliability coefficient arises from classical test theory (Lord and Novick

1968), where the outcome of a test for subjects i = 1, . . . , n is modeled as Yi = Ti + εi,

where Yi represents the observed variable, Ti is the true score and εi the corresponding

measurement error. One rarely thinks of Ti as an actual true score; rather it is defined as

the expected value of Yi if the subject were re-measured an infinite number of times. It is

assumed that the measurement errors are mutually uncorrelated, as well as independent

of the true scores. Given these assumptions, we have Var(Yi) = Var(Ti)+Var(εi), and the

reliability of a measuring instrument can be defined as the ratio of the true score variance

to the observed score variance:

R =
Var(Ti)

Var(Yi)
=

Var(Ti)

Var(Ti) + Var(εi)
. (1)

It can easily be shown that (1) equals the correlation between two measurements, assum-

ing the so-called steady state condition, i.e., both measurements have equal means (true

scores) and error variances. Therefore, reliability estimation is classically based on the

correlation of two replicate measurements. However, in medical research, a steady state

condition in patients is often doubtful and can flaw reliability research. Vangeneugden et
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al. (2004) have shown that this assumption can be relaxed, by using linear mixed models.

The change in the condition of the patient can then be modeled within the fixed-effects

structure and estimated simultaneously with the covariance parameters necessary for the

calculation of the intraclass correlation (ICC) or a generalization thereof. Depending on

the complexity of the model, these authors define reliability as a single correlation, a

correlation that depends on the time lag between two measurements, or an entire cor-

relation matrix for any pair of measurements. Laenen, Alonso, and Molenberghs (2006)

also use linear mixed models in this setting. However, they approach reliability not from

a correlation perspective but starting from its basic definition as “the ratio between the

true score variance and the observed score variance”. Further, they provide a single yet

meaningful measure of reliability, the so-called RT , which is independent of the structure

of the model used to fit the data and hence facilitates interpretation and applicability.

In this paper, we position this measure RT in a broader framework. We show that,

starting from four defining properties, any measure of reliability should be sought for

within a family of which all members fulfill this restricted set of criteria.

Section 2 describes the case study data. Section 3 elaborates the methodology for finding a

measure for reliability, and Section 4 investigates the properties of some of such measures,

based on simulations. Section 5 applies the methodology to the case study introduced in

Section 2.

2 Case Study

The study is concerned with individual patient data from a randomized clinical trial,

investigating the effect of risperidone as compared to an active control for the treatment

of chronic schizophrenia. Schizophrenic patients suffer from both ‘positive’ and ‘negative’
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symptoms. Positive symptoms generally imply occurrences beyond normal experience

whereas negative symptoms bear the connotation of diminished experience.

A total of 453 patients were evaluated, using two different rating scales at baseline and

after 1, 2, 4, 6, and 8 weeks, respectively. The Positive an Negative Syndrome Scale

(PANSS) consists of 30 items and is highly useful in the assessment of schizophrenia

(Kay, Fizbein, and Opler 1987). The Brief Psychiatric Rating Scale (BPRS) is an 18-item

scale, essentially a shorter version of the PANSS.

3 Methodology

We start by briefly reviewing the linear mixed model on which the present approach

is based. Thereafter, we recall the minimum set of defining properties, introduced by

Laenen, Alonso, and Molenberghs (2006). Finally, we introduce a family of parameters

fulfilling this set of properties and study some of its elements.

3.1 The Linear Mixed Model

A linear mixed-effects model allows repeated measurements to be modeled in terms of their

means, variances and covariances within a normal distribution based framework (Laird

and Ware 1982; Verbeke and Molenberghs 2000). Three components of variability can be

distinguished. Random effects capture part of the variability coming from heterogeneity

between individual subjects. A serial correlation component formalizes the fact that

pairs of measurements with shorter time lags are generally more strongly correlated than

measurements with larger time lags between them. A third component is the measurement
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error. A linear mixed-effects model can generally be written as

Yi = Xiβ + Zibi + ε(1)i + ε(2)i , (2)

where Y i is the pi dimensional vector of responses for subject i, 1 ≤ i ≤ n with n the

number of subjects, and pi the number of measurements for subject i. Xi and Zi are fixed

(pi × q) and (pi × r) dimensional matrices of known covariates, β is the q-dimensional

vector of fixed effects, bi ∼ N(0, D) is the r-dimensional vector containing the random

effects, ε(2)i ∼ N(0, τ 2Hi) is a pi-dimensional vector of components of serial correlation,

and ε(1)i ∼ N(0,ΣRi) is a pi-dimensional vector of residual errors. Additionally, D is a

general (r × r) covariance matrix, Hi is a (pi × pi) correlation matrix, τ 2 is a variance

parameter, and ΣRi is a (pi × pi) covariance matrix. Note that Hi and ΣRi depend on

i only through their dimension pi, i.e., the set of unknown parameters will not depend

upon i. The random terms b1, . . . , bN , ε(1)1, . . . , ε(1)N , ε(2)1, . . . , ε(2)N are assumed to be

independent. The implied marginal model is:

Yi ∼ N(Xiβ, Vi),

where Vi = ΣDi
+ Σi, ΣDi

= ZiDZ
′
i, and Σi = τ 2Hi + ΣRi.

3.2 Properties of a Measure of Reliability

Based on the concept of reliability proposed in the early literature (Lord and Novick

1968), Laenen, Alonso, and Molenberghs (2006) asserted that any meaningful measure

of reliability R should satisfy: (i) 0 ≤ R ≤ 1, (ii) R = 0 if and only if there is only

measurement error: Vi = Σi, (iii) R = 1 if and only if there is no measurement error:

Σi = 0, and (iv) in the cross-sectional setting the classical expression for reliability (1)

is recovered. Further, these authors proposed the following parameter, for quantifying

reliability, that satisfies this set of properties:

RT = 1 − 1

n

n∑

i=1

tr(Σi)

tr(Vi)
.
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For a single-trial with a balanced design it simplifies to:

RT = 1 − tr(Σ)

tr(V )
. (3)

Note that the variability of the repeated measurements on the scale is summarized by

the trace of its variance-covariance matrix. In a similar way, the error variabilities are

summarized by the trace of the variance-covariance matrix associated with the error

vectors ε(1)i and ε(2)i .

In the next section, we elaborate on the reliability concept in this general setting, and

propose a family of which all members satisfy the four properties introduced above. In

doing so we embed the measure RT in a broader framework. Actually, it will be shown

that RT is merely a special member of this general family.

3.3 A Family of Parameters for Reliability

Alonso, Laenen, and Molenberghs (2004) introduced a family of parameters to evaluate

criterion validity of psychiatric symptom scales, based on canonical correlations. In the

evaluation of criterion validity, a new scale is compared to a criterion scale, with known

performance. In this setting, canonical correlations are a useful tool to quantify the

amount of information shared between both instruments. In the context of reliability, we

study the reproducibility of a single scale, which implies that canonical correlations are no

longer applicable. Nevertheless, we will show that the role played by canonical correlations

in the validity research, is in the reliability context assumed by the relative eigenvalues

associated with specific variance-covariance matrices. Let us start by introducing the

following result.

Theorem 1 Given the function q(λ) = |Σ− λV |, if model (2) holds then: (i) all roots of

q(λ) = 0 are real, and (ii) if λj is a root of q(λ) = 0 then 0 ≤ λj ≤ 1.
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An outline of the proof can be found in Appendix A. Based on this theorem we define

the family:

Ω =

{
θ : θ =

p∑

j=1

wjρ
2
j with wj > 0

p∑

j=1

wj = 1

}
. (4)

The elements wj are weights assigned to the parameters ρ2
j , where ρ2

j = 1 − λj with λj

the roots of the equation q(λ) = 0, or equivalently, the eigenvalues of the matrix ΣV −1.

Further, it is easy to prove, using Theorem 1, that all elements of Ω satisfy the properties

(i)–(iv), given in Section 3.2.

This family is structurally similar to the family introduced by Alonso et al. (2004) in

the validity framework. The main difference is that here the ρ2
j are not the canonical

correlations associated with the new and criterion scales but rather the relative eigenvalues

associated with the total and error variance covariance matrices. Actually, family (4) is

closer to the eigenvalue-based, root statistics used in multivariate analysis of variance

models (Pillai’s Trace, Wilks’s Lambda, Hotelling-Lawley’s Trace) than to the idea of

canonical correlations.

Note also that, even though the Ω family is uncountable, it clearly delineates our search

for reliability measures. We will now study some specific, important members.

3.3.1 RT as Member of the Ω Family

From Theorem 2 in Appendix A, we know that there exists a non-singular matrix Q

so that Σ = (Q′)−1D0Q
−1 and V = (Q′)−1Q−1, where D0 is a diagonal matrix whose

diagonal elements are the roots of the polynomial equation q(λ) = 0. Plugging the

previous expression into (3), we obtain

RT = 1 − tr((Q′)−1D0Q
−1)

tr((Q′)−1Q−1)
= 1 − tr(Q−1(Q′)−1D0)

tr(Q−1(Q′)−1)
.
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Further, if we call S = Q−1(Q′)−1 = (Q−1)(Q−1)′, we have:

RT = 1 − tr(SD0)

tr(S)
= 1 − tr

(
S

tr(S)
D0

)
= 1 −

p∑

j=1

wjλj,

with wj =
sjj

tr(S)
and sjj the jth element in the diagonal of S. Note that sjj ≥ 0 for all j

and that
p∑

j=1

wj =

p∑

i=j

sjj

tr(S)
=

1

tr(S)

p∑

j=1

sjj = 1.

The rationale of these derivations is that RT is an element of Ω, since

RT =

p∑

j=1

wj(1 − λj) =

p∑

j=1

wjρ
2
j with wj > 0 and

p∑

j=1

wj = 1.

3.3.2 Other Members of the Ω Family

The uncountable nature of the Ω family implies that the choice of some special members

to be scrutinized further must be based on pragmatic considerations. Retaining RT is

evident. Another intuitive choice is to set all weights equal to wj = 1/p. We then have

that

Rp =

p∑

j=1

1

p
ρ2

j =

p∑

j=1

1

p
(1 − λj) = 1 − 1

p

p∑

j=1

λj = 1 − 1

p
tr(ΣV −1).

It would be appealing to consider the elements of Ω corresponding to the largest and

smallest eigenvalue of ΣV −1, i.e., θ̃max = ρ2
(p) and θ̃min = ρ2

(1), where ρ2
(j) is the jth largest

eigenvalue. However, the restrictions placed on the weights (wj > 0) make θ̃max and θ̃min

invalid choices. Nevertheless, we could define θmax and θmin in the following alternative

way:

θmax =

p∑

j=1

wjρ
2
j with wp >> wj for j 6= p,

θmin =

p∑

j=1

wjρ
2
j with w1 >> wj for j 6= 1.
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Note that, if the weights wj are carefully chosen, we can be rather confident that for any

arbitrary element of Ω: θmin ≤ θ ≤ θmax. Indeed, for any given scale and independently

of the element of Ω that one may use in the analysis, the reliability of the instrument

will lie always in the interval [θmin,θmax]. In the following section, we will investigate the

performance of the previously defined elements of Ω via simulation.

4 Simulation Study

4.1 Design of the Simulation Study

Let us consider 12 different simulation settings. In a first stage, the data are generated

based on the following linear mixed model with random intercept:

Yij = β0 + β1tj + β2Zi + bi + εij,

where Yij refers to an observation for subject i at time tj, and Zi is the treatment indicator

variable. Further, bi ∼ N(0, σ2
b ), εij ∼ N(0, σ2I), with σ2

b = 300. The error variability

takes values σ2 = 30, 300, or 3000, and the sample size was set to either n = 50 or 150.

These choices for σ2
b and σ2 allow us to study the performance of the elements of the Ω

family when the error variance is 9%, 50%, and 90% of the total variance, respectively.

These settings correspond to high, medium, and low reliability.

In a second stage, data are generated based on a linear mixed model with random intercept

and random slope for time:

Yij = β0 + β1tj + β2Zi + b1i + b2itj + εij

where (b1i, b2i)
′ ∼ N(0, D), εij ∼ N(0, σ2I), and

D =

(
300 −1
−1 5

)
.
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The same choices for σ2 and n are made.

In both stages, the mean parameters are fixed at β0 = 85, β1 = 2.5, β2 = 3 to generate

the data. These values are based on the results obtained when the previous models were

fitted using the case study data. We consider p = 5 time points in all scenarios and, for

each setting, 250 data sets are simulated.

The parameters θmin and θmax are specified in the following way:

θmin =

p∑

j=1

wjρ
2
(j) where wj = 0.999 for j = 1 and wj =

0.001

p− 1
otherwise, and

θmax =

p∑

j=1

wjρ
2
(j) where wj = 0.999 for j = p and wj =

0.001

p− 1
otherwise.

Using restricted maximum likelihood, we calculate the point estimates, the confidence

intervals, and the coverage percentage (CP) of the confidence intervals. A confidence

interval, based on the delta method, can be derived for all members of the Ω family,

assuming the weights are known constants. Details on the derivation of these confidence

intervals can be found in Appendix B. This assumption is not fulfilled for RT . Confidence

intervals for RT are calculated as described in Laenen, Alonso, and Molenberghs (2006).

To avoid that confidence limits take values beyond the [0, 1] range, a logit transformation

is applied.

4.2 Results of the Simulation Study

Point estimates, true values, average confidence intervals, and coverage percentages are

given in Tables 1–3 for RT , Rp, and θmax, respectively, showing that accurate point esti-

mates for all parameters can be obtained with a relative small sample size of 50 patients.

A larger sample size, as expected, produces narrower confidence intervals. Furthermore,

the coverage probabilities for all the asymptotic confidence intervals are generally around
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the pre-specified 95% level.

Considering the values of the point estimates, the measure RT produces results in line

with intuition. We obtain values close to 1 when the error variance is small compared

to the model variance, we settle for values in the neighborhood of 0.50 in case the error

variance and model variance are of a similar magnitude, and values are close to 0 when

error variances are large.

Interestingly, θmax takes higher values in all the settings. With 50% of the variability

originating from error, it takes values above 0.80. To gain intuition about this behavior

let us recall that θmax ≈ ρ2
(p) and consider the random intercept model, where Σ = σ2I

and V = σ2
bJ + σ2I. It can be shown that in this scenario:

ρ2
(p) =

pσ2
b

pσ2
b + σ2

. (5)

From (5) it can be seen that this measure increases with the number of time points.

Actually, θmax seems to quantify the reliability of the entire series of measurements, in

contrast to RT , which gives an average reliability. Note that, from this perspective, θmax

is in total agreement with clinical intuition: the longer a patient is followed, the more

reliable our conclusions about that patient will be. Another important implication of

(5) is that we can obtain reliable information from an instrument that produces a lot of

measurement error, as long as we take a sufficiently high number of measurements.

Looking at the third measure, Rp, we observe again a totally different pattern. This

measure gives generally low values. Even when the error variance is small compared

to the model variance, Rp reaches values far below 1. Studying Rp under the random

intercept model, it can easily be shown that, if σ2 6= 0, Rp = σ2
b/(pσ

2
b + σ2). Note that,

unlike θmax, Rp is a decreasing function of the number of time points. The expression

further shows that, even when the error variance is very small, the measure Rp can never

exceed 1/p. Additionally, Rp is not a continuous function of σ2 for σ2 = 0. Indeed,
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lim
σ2→0

Rp =
1

p
6= 1 = Rp(σ

2 = 0). In spite of their differences, Rp and θmax are functionally

related. It can be shown that Rp =
ρ2

(p)

p
≈ θmax

p
. Rp can therefore be interpreted as

the average contribution per measurement to the total reliability of the whole sequence.

Where large values of θmax can, in principle, always be obtained by increasing the number

of repeated measurements, Rp is more a measure of efficiency. It shows us at what ‘cost’

we obtain a large θmax.

The parameter θmin gives the lowest estimates of all members of the Ω family. The

simulation study shows that the measure takes values close to 0 under all circumstances

considered. The informative value of this measure is therefore very limited.

Comparing the different parameters in the present simulation study has made clear that

different measures can lead to rather divergent messages. While the RT should be in-

terpreted as the average reliability, θmax gives the reliability of the entire sequence of

measurements. Further, Rp gives the average contribution to θmax at each time point, and

can be seen as a measure of efficiency.

Which measure is preferred will depend on the circumstances of the research and the

scientific question one wants to address. The RT is closest to the intuition behind the

classical concept of reliability and might therefore be preferred in some settings. However,

other members of Ω might bring valuable information as well. A parallel can be drawn

with the concept of distance in mathematics that, based on no more than three properties,

has several operationalizations. Arguably, in some cases, it will be of interest to consider a

few measures simultaneously. In the next section, we will further explore the performance

of these proposals using a real case study.
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5 Analysis of the Case Study

In this section, we will study the parameters introduced for the schizophrenia data, intro-

duced in Section 2. All reliability estimates are obtained from the estimated covariance

parameters resulting from fitting a linear mixed model to the data. A model building

step is therefore crucial to find the best fitting model for the data at hand. The model

selection was based on the AIC and restricted maximum likelihood was used for parame-

ter estimation (Verbeke and Molenberghs 2000). For all three scales, the final model has

the general form:

Yij = µij + bi0 + bi1tj + εij

where Yij denotes the score (either PANSS or BPRS) for subject i at time point tj, µij

summarizes the fixed-effects structure, encompassing treatment, categorical time, and

their interaction, bi ∼ N(0, D) with D a 2 × 2 unstructured variance-covariance matrix,

εi ∼ N(0,Σ), and Σ = diag(σ2
j ).

Table 4 presents the reliability estimates for the different parameters and for both scales,

together with the 95% confidence interval. Clearly, both scales have high average relia-

bilities characterized by large estimates of RT and the value of θmax indicates that highly

reliable results can be achieved with six measurements per subject.

It has been shown earlier (Laenen, Alonso, and Molenberghs 2006) that RT is slightly

higher for PANSS than for BPRS. However the two confidence intervals overlap. Also for

Rp and θmax the point estimates for PANSS and BPRS are almost identical.

PANSS, with 30 items, is conceived as a more complete extension of BPRS, having 18

items. Nevertheless, the previous results illustrate that this additional complexity does

not bring a considerable gain in reliability. Similar results have been found by Alonso

et al. (2002) when studying criterion validity. These authors also obtained very similar

13



values of trial-level validity and individual-level validity for these two scales. Finally, we

should not that the choice between different instruments usually is not only based on

statistical aspects and clinical considerations must be taken into account as well.

6 Discussion

The reliability of a measurement is not only relevant from a clinical point of view but it

directly affects the results of a statistical analysis based upon it. Therefore, reliability is a

concept of the utmost importance in the evaluation of a rating scale to be used in clinical

trials.

A test-retest reliability study essentially consists of taking two replicate measurements.

However, in clinical studies it is common practice to measure a patient’s condition repeat-

edly over time. It is therefore good practice to take advantage of the available longitudinal

data when estimating test-retest reliability. Vangeneugden et al. (2004) already showed

how linear mixed models can correct for evolutions in the patient’s condition while esti-

mating reliability. These authors discussed merits and advantages of such an approach.

Obviously, the price to pay is the need to make modeling assumptions. Laenen, Alonso,

and Molenberghs (2006) introduced, with the parameter RT , an alternative for the intra-

class correlation coefficient as a measure of reliability, based on the original definition of

reliability as the ratio of the true score variance and the total variance. The same authors

introduce a basic set of properties that should be fulfilled by any parameter for reliability.

In this paper, we have defined an entire family of which all members satisfy these four

properties. I doing so, we have established that any measure of reliability should be

built from the relative eigenvalues related to error and total variance-covariance matrices.

Different weights assigned to these eigenvalues lead to different members of the family. A
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few key members of this family were scrutinized further, the RT being one of them.

A simulation study demonstrates that there are clear and important differences in the

meaning of the different members. Since different measures give different messages, they

cannot be compared on objective criteria when selecting one as the ‘best’ measure. The

measure to be used will depend on the circumstances of the study. It might be of interest

to consider more than one measure simultaneously. In a similar fashion, a family of

parameters has been introduced to evaluate the criterion validity of psychiatric symptom

scales (Alonso et al. 2004). It is appealing to see that the two most important psychometric

characteristics of a scale can be investigated using similar methodologies.

Appendix A

Proof of Theorem 1. In the proof we will use the following theorem (Graybill 1983).

Theorem 2: Let A and B be symmetric matrices of order p× p, then:

1. If A is positive definite, then there exists a nonsingular matrixQ such thatQ′AQ = I

and Q′BQ = D0, where D0 is a diagonal matrix whose diagonal elements are the

roots of the polynomial equation q(λ) = |B − λA| = 0.

2. If A and B are positive semidefinite, then there exists a nonsingular matrix P

such that P ′AP = D1 and P ′BP = D2, where D1 and D2 are diagonal matrices

(Newcomb 1960).

Applying now the first part of Theorem 2 with A = V and B = Σ we obtain that there

exists a nonsingular matrix Q such that:

Q′V Q = I ⇒ V = (Q′)−1(Q)−1 (6)
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Q′ΣQ = D0 ⇒ Σ = (Q′)−1D0(Q)−1 (7)

withD0 diagonal and the elements of the diagonal are the roots of the equation q(λ) = |Σ−

λV | = 0. From (6)- (7) it follows that: ΣV −1 = (Q′)−1D0(Q)−1(Q)(Q′) = (Q′)−1D0Q
′, so

that

tr(ΣV −1) = tr[(Q′)−1D0Q
′] = tr(D0) =

p∑

j=1

λj where D0 = diag(λj)j=1,p.

Further we have from the second part of Theorem 2 that P ′V P = D1 and P ′ΣP = D2,

where P is nonsingular and D1, D2 are diagonals. It then follows that V = (P ′)−1D1P
−1

and Σ = (P ′)−1D2P
−1, and thus

|Σ − λV | = |(P ′)−1D2P
−1 − (P ′)−1(λD1)P

−1| = |P ′|−1|P |−1 |D2 − λD1|

=
|D2 − λD1|

|P |2
.

In case that q(λ) =
D2 − λD1

|P |2 = 0 then λj =
d2j

d1j
with D1 = diag(d1j) and D2 =

diag(d2j), j = 1, ..., p. This proves the first part of Theorem 1.

We will now show that 0 ≤ λj ≤ 1 ∀j. It is not difficult to see that d1j ≥ 0 and

d2j ≥ 0 ∀j, and therefore λj ≥ 0 ∀j. Additionally we have:

V = ΣD + Σ ⇔ P ′V P = P ′ΣDP + P ′ΣP

so that D1 −D2 = P ′ΣDP = RDR′ with R = P ′Z,

so dj1 − d2j = rjDr
′
j ≥ 0 where rj is the jth row of R, and thus 0 ≤ λj =

d2j

d1j
≤ 1,

completing the proof. �

Appendix B

Let θ be any member of Ω as defined in (4). Let ψ be the vector of the covariance

parameters of a linear mixed-effects model. We know from ML theory that ψ̂ ∼ N(ψ,ΣP )
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where ΣP is the variance-covariance matrix of ψ̂. Applying now the Delta method to θ̂

we get: θ̂ ∼ N(θ,∆ΣP ∆′) where ∆ =
∂θ

∂ψ
. A (1− α)% confidence interval for θ can then

be given by
[
θ̂ ± z1−α

2

√
∆ΣP∆′

]
.

To avoid confidence limits to go beyond the [0, 1] range, a logit transformation is applied,

with l(θ) = log

(
θ(ψ)

1 − θ(ψ)

)
. A restricted (1−α)% confidence interval for θ is then given

by [
el1

1 + el1
,

el2

1 + el2

]
,

with l1 the lower limit and l2 the upper limit of the confidence interval
[
l(θ̂) ±

z1−α
2

θ(1 − θ)

√
∆ΣP ∆′

]
.

Additionally, let us note that θ = 1 − Σjwjλj where λj are the eigenvalues of ΣV −1.

This implies that there exists a nonsingular matrix P so that Λ = P−1ΣV −1P with

Λ = diag(λj). On the other hand,

θ = 1 − tr(WΛ) where W = diag(wj)

= 1 − tr(WP−1ΣV −1P )

θ = 1 − tr(QΣV −1) where Q = PWP−1.

Thus:

∂θ

∂z
= − ∂

∂z
tr(QΣV −1) = −tr

(
∂Q

∂z
ΣV −1

)
− tr

(
Q
∂

∂z
(ΣV −1)

)
= −tr

(
Q
∂

∂z
(ΣV −1)

)
.

From the product rule of differential calculus for matrices we get:

∂

∂z
(ΣV −1) =

∂Σ

∂z
V −1 + Σ

∂V −1

∂z

and therefore

∂

∂z
(ΣV −1) =

(
∂Σ

∂z
− ΣV −1∂V

∂z

)
V −1

⇒ ∂θ

∂z
= tr

[
Q

(
ΣV −1∂V

∂z
− ∂Σ

∂z

)
V −1

]
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where:

∂Σ

∂z
=

∂τ 2

∂z
H + τ 2∂H

∂z
+
∂ΣR

∂z
∂V

∂z
= Z

∂D

∂z
Z ′ +

∂Σ

∂z

So in general:

∂θ

∂z
= tr

[
V −1Q

(
ΣV −1∂V

∂z
− ∂Σ

∂z

)]

Q = PWP−1, W = diag(wj)

∂Σ

∂z
=

∂τ 2

∂z
H + τ 2∂H

∂z
+
∂ΣR

∂z

∂V

∂z
= Z

∂D

∂z
Z ′ +

∂Σ

∂z

And in particular:

1.
∂θ

∂dD
= tr

[
V −1QΣV −1

(
Z
∂D

∂dD
Z ′

)]

2.
∂θ

∂τ 2
= tr

[
V −1Q

(
ΣV −1 − I

)
H

]

3.
∂θ

∂dH

= tr

[
V −1Q

(
ΣV −1 − I

)
τ 2 ∂H

∂dH

]

4.
∂θ

∂dΣR

= tr

[
V −1Q

(
ΣV −1 − I

) ∂ΣR

∂dΣR

]
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Table 1: Simulation Results for RT : true values, point estimates, average confidence

intervals and coverage probabilities.

Random intercept model Random intercept + slope model

σ2 n true est. 95% CI CP true est. 95% CI CP

30 50 0.91 0.90 [0.86; 0.93] 93 0.93 0.93 [0.90; 0.95] 94

30 150 0.91 0.91 [0.89; 0.93] 96 0.93 0.93 [0.92; 0.94] 91

300 50 0.50 0.50 [0.38; 0.61] 94 0.58 0.57 [0.47; 0.68] 95

300 150 0.50 0.50 [0.43; 0.57] 96 0.58 0.58 [0.51; 0.64] 93

3000 50 0.09 0.09 [0.04; 0.34] 90 0.12 0.14 [0.06; 0.33] 86

3000 150 0.09 0.09 [0.05; 0.18] 97 0.12 0.13 [0.07; 0.22] 94

Table 2: Simulation Results for Rp: true values, point estimates, average confidence

intervals and coverage probabilities.

Random intercept model Random intercept + slope model

σ2 n true est. 95% CI CP true est. 95% CI CP

30 50 0.20 0.20 [0.19; 0.20] 95 0.36 0.36 [0.35; 0.38] 95

30 150 0.20 0.20 [0.20; 0.20] 97 0.36 0.36 [0.36; 0.37] 95

300 50 0.17 0.17 [0.15; 0.18] 96 0.24 0.23 [0.17; 0.30] 92

300 150 0.17 0.17 [0.16; 0.18] 98 0.24 0.24 [0.20; 0.28] 96

3000 50 0.07 0.06 [0.03; 0.22] 88 0.09 0.09 [0.04; 0.24] 92

3000 150 0.07 0.07 [0.04; 0.12] 96 0.09 0.09 [0.05; 0.16] 95
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Table 3: Simulation Results for θmax: true values, point estimates, average confidence

intervals and coverage probabilities.

Random intercept model Random intercept + slope model

σ2 n true est. 95% CI CP true est. 95% CI CP

30 50 0.98 0.98 [0.97; 0.99] 96 0.98 0.98 [0.97; 0.99] 97

30 150 0.98 0.98 [0.97; 0.98] 98 0.98 0.98 [0.98; 0.99] 96

300 50 0.83 0.83 [0.74; 0.89] 96 0.86 0.86 [0.78; 0.91] 97

300 150 0.83 0.83 [0.78; 0.87] 97 0.86 0.86 [0.82; 0.89] 97

3000 50 0.33 0.32 [0.14; 0.70] 91 0.39 0.41 [0.21; 0.69] 93

3000 150 0.33 0.33 [0.19; 0.53] 98 0.39 0.40 [0.26; 0.56] 97

Table 4: Schizophrenia Study: Three reliability parameters, applied to two scales: esti-

mates and 95% confidence intervals.

parameter PANSS BPRS

RT 0.846 [0.825; 0.865] 0.821 [0.797; 0.842]

Rp 0.285 [0.277; 0.294] 0.280 [0.271; 0.289]

θmax 0.976 [0.970; 0.980] 0.968 [0.962; 0.973]
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