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Summary

Whereas most models for incomplete longitudinal data are formulated within
the selection model framework, pattern-mixture models have gained consider-
able interest in recent years (Little, 1993, 1994), since it is often argued that
selection models, although many are identifiable, should be approached with
caution, especially in the context of MNAR models (Glynn, Laird and Rubin,
1986). In this paper, focus is on several strategies to fit pattern-mixture mod-
els for non-monotone categorical outcomes. The issue of under-identification in
pattern-mixture models is addressed through identifying restrictions. Attention
will be given to the derivation of the marginal covariate effect in pattern-mixture
models for non-monotone categorical data, which is less straightforward than in
the case of linear models for continuous data. The techniques developed will be
used to analyze data from a clinical study in psychiatry.
Key words: Categorical Data; Identifying Restrictions; Multivariate Dale Model;
Non-monotone Missingness; Pattern Mixture Models.

1 Introduction

A vast number of studies collect data longitudinally. In such studies, measurement sequences

are prone to incompleteness, an issue requiring attention. A model for incomplete data starts

from the joint distribution of the outcomes, Y say, and the non-response process, R say. This

joint distribution f(y, r|θ,ψ) can be factorized in several ways. A selection model is based

1
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on the factorization f(y|θ)f(r|y,ψ), whereas the reverse factorization f(y|r, θ)f(r|ψ) is

referred to as a pattern-mixture model (Little, 1993, 1994). When a common set of random-

effects is thought to influence both the Y and R processes, conditional upon which they

are independent, then the so introduced model is referred to as a shared-parameter model.

For reviews, see Kenward and Molenberghs (1998); Little (1995); Wu and Carroll (1988).

The non-response process R can either be monotone, also called dropout, or non-monotone

when there are intermittent missing values. For each of these processes different modeling

strategies are needed. For details see Molenberghs and Kenward (2007).

Several authors have contrasted selection models and pattern-mixture models, to either

compare the answer to the same scientific question, such as marginal treatment effect or time

evolution, as a form of sensitivity analysis, or to gain additional insight by supplementing

the results from a selection model analysis with those from a pattern-mixture approach.

Examples can be found in Verbeke, Lesaffre and Spiessens (2001) and Michiels et al. (2002) for

continuous outcomes, while categorical outcomes have been treated by Michiels, Molenberghs

and Lipsitz (1999a,b).

An important issue is that pattern-mixture models are by construction under-identified. Lit-

tle (1993, 1994) solved this problem through the use of identifying restrictions: inestimable

parameters of the incomplete patterns are set equal to (functions of) the parameters de-

scribing the distribution of the completers. In this way, the conditional distribution of the

unobserved measurements, given the observed ones in a specific pattern, is identified. Molen-

berghs et al. (1998) proposed a particular set of restrictions for the monotone case which

corresponds to MAR and in Thijs et al. (2002) a formal way for how to handle this kind of

restrictions is introduced. Alternatively, several types of simplified (identified) models can

be considered. The advantage is that the number of parameters decreases, which is generally

an issue with pattern-mixture models. Hogan and Laird (1997) noted that in order to esti-
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mate the large number of parameters in general pattern-mixture models, one has to make

the awkward requirement that each dropout pattern is sufficiently “filled”, in other words,

one has to require large numbers of dropouts. This problem is less prominent in simplified

models. Note, however, that simplified models, qualified as “assumption rich” by Sheiner,

Beal and Dunne (1997), are also making untestable assumptions and therefore reiterate that

no models are able to circumvent the need for making assumptions; pattern-mixture models

are no exception. Notwithstanding this, pattern-mixture models make the need for making

assumptions and the implications thereof more obvious.

On a parallel research track, categorical data modeling has received a lot of attention during

the past decades (Agresti, 2002). More recently, quite a bit of attention has been devoted

to repeated categorical data (Diggle et al., 2002; Fahrmeir and Tutz, 1994; Molenberghs and

Verbeke, 2005). Combining both strands of research, methods have been developed to ana-

lyze non-monotone missing categorical data (Jansen et al., 2003; Jansen and Molenberghs,

2007). However, these models all belong to the selection model framework. Pattern-mixture

models for monotone missing categorical outcomes have been treated by Michiels, Molen-

berghs and Lipsitz (1999a,b). In this paper, focus will be on pattern-mixture models to

analyze non-monotone missing categorical data.

The rest of the paper is organized as follows. Section 2 introduces the data from a psychi-

atric study. In Section 3, the general context of pattern-mixture models will be sketched,

together with the strategy of identifying restrictions. Section 4 gives attention to the use of

the multivariate Dale model to fit pattern-mixture models for categorical outcomes, while

Section 5 will discuss the assumptions needed when intermittent missingness is present.

Section 6 focuses on the derivation of marginal effects in pattern-mixture models for cate-

gorical outcomes. Finally, in Section 7, the techniques developed will be used to analyze the

fluvoxamine data.
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2 The Fluvoxamine Data

These data come from a multicenter, postmarketing study involving 315 patients that were

treated by fluvoxamine for psychiatric symptoms described as possibly resulting from a

dysregulation of serotonine in the brain. The data are discussed in Molenberghs and Lesaffre

(1994), Kenward, Lesaffre and Molenberghs (1994), Molenberghs, Kenward and Lesaffre

(1997), Michiels and Molenberghs (1997), Molenberghs et al. (1999), and Jansen et al. (2003).

After enrollment into the study, a number of baseline characteristics were scored, and the

patient was assessed at four follow-up visits. The therapeutic effect and the extent of wors-

ening side effects were scored at each visit on an ordinal scale. A side effect occurs if new

symptoms appear while there is therapeutic effect if old symptoms disappear. We will focus

on a dichotomized version (present/absent) of side effects. The first, second, and last visit

will be considered.

3 Pattern-Mixture Modeling

The family of pattern-mixture models is based on the factorization

f(yi, ri|θ,ψ) = f(yi|ri, θ)f(ri|ψ),

where dependence on covariates is suppressed from notation. Thus, the conditional density

of the measurements given the missingness process is combined with the marginal density

describing the missingness mechanism. Note that the second factor can depend on covari-

ates, but not on the random outcomes. It is, of course, possible to have different covariate

dependencies in either components of the factorization.

The measurement model has to reflect dependence on the missingness mechanism. There-

fore, we will assume a different distribution for each missingness pattern. However, although
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the parameters can be simply estimated from the data in each missingness pattern, not

all of them can be identified without making further assumptions. It is also clear which

information is provided by each missingness pattern and, consequently, where assumptions

are needed to predict the behavior of the unobserved responses, and to obtain marginal

models for the response. However, this model contains under-identified members since it de-

scribes the full set of measurements in each pattern, even though there are no measurements

at certain occasions. At first sight, this leaves them open to the same criticism as selec-

tion models, but Little (1993) claims that the pattern-mixture approach is more forthright,

because (conditional) distributions for which the data provide information are clearly dis-

tinguished from parameters for which there is no information at all. Next, we will introduce

the identifying-restrictions strategy advocated by Little (1993, 1994).

For the time being, we restrict attention to monotone patterns, i.e., only dropout is present,

no intermittent missingness. In general, let us assume that we have patterns t (t = 1, . . . , n,

but not necessary all of them are present) for which the complete data density is given by

ft(y1, . . . , yn) = ft(y1, . . . , yt)ft(yt+1, . . . , yn|y1, . . . , yt). (3.1)

The first factor is clearly identified from the observed data, while the second factor is not.

It is assumed that the first factor is known or, more realistically, can be modeled using the

observed data. Then, identifying restrictions are applied in order to identify the second

component.

While, in principle, completely arbitrary restrictions can be used by means of any valid

density function over the appropriate support, strategies which relate back to the observed

data deserve privileged interest. One can base identification on all patterns for which a given

component ys is identified. A general expression for this is

ft(ys|y1, . . . ys−1) =

n
∑

j=s

ωsjfj(ys|y1, . . . ys−1), s = t + 1, . . . , n. (3.2)
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Let ωs = (ωss, . . . , ωsn)
′. Every ωs with components summing to one, provides a valid

identification scheme.

Three special but important cases are considered. Little (1993) proposed complete case

missing value (CCMV), which uses the following identification:

ft(ys|y1, . . . ys−1) = fn(ys|y1, . . . ys−1), s = t + 1, . . . , n.

In other words, the conditional distribution beyond time t is always borrowed from the

conditional distribution from the completers. This strategy can be defended in cases where

the bulk of the subjects are complete and only small proportions are assigned to the various

dropout patterns. Also, extension of this approach to non-monotone patterns is particularly

easy. Alternatively, the nearest identified pattern can be used:

ft(ys|y1, . . . ys−1) = fs(ys|y1, . . . ys−1), s = t + 1, . . . , n.

We will refer to these restrictions as neighboring case missing value (NCMV). The third

special case of (3.2) will be available case missing value (ACMV). It has been shown in

Molenberghs et al. (1998) that, for monotone missing data, ACMV in the pattern-mixture

context is equivalent with MAR in the selection model framework. The derivation of the

corresponding ωs vectors is straightforward and results in

ωsj =
πjfj(y1, . . . , ys−1)

∑n

ℓ=s πℓfℓ(y1, . . . , ys−1)
, (3.3)

where πj is the fraction of observations in pattern j (Molenberghs et al., 1998). Clearly, ωs

defined by (3.3) consists of components which are nonnegative and sum to one. In other

words, a valid density function is defined.

Restrictions (3.2), with the CCMV, NCMV, and ACMV forms as special cases, can be

incorporated in a comprehensive strategy to fit pattern-mixture models. These are the

steps needed to be followed. First, fit a model to the pattern-specific identifiable densities:
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ft(y1, . . . , yt). Next, select an identification method of choice. Third, using this identifica-

tion method, determine the conditional distributions of the unobserved outcomes, given the

observed ones. Fourth, draw multiple imputations for the unobserved components, given

the observed outcomes and the correct pattern-specific density. Fifth, analyze the multiply-

imputed sets of data using the method of choice. This can be another pattern-mixture

model, but also a selection model or any other desired model. Finally, inferences can be

conducted in the standard multiple imputation way (Rubin, 1987; Schafer, 1997; Verbeke

and Molenberghs, 2000).

4 Pattern-Mixture Models for Categorical Out-

comes

From now on, we will specialize to the case of three binary measurements. Extension to

more than three outcomes and/or to more than two outcome categories is straightforward.

The multivariate Dale model (Molenberghs and Lesaffre, 1994) will be used to estimate the

parameters of the identifiable densities. For the completers (pattern 3), a trivariate Dale

model will be used, for pattern 2 a bivariate Dale model, and a univariate Dale model

(which is equal to conventional logistic regression) for pattern 1. We will term this the

minimal approach. The multivariate Dale model combines logistic regression for each of

the measurements with marginal global odds ratios to describe the association between

outcomes. For three measurements, this results in the following logistic-regression and odds-
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ratio formulations (subject-specific indices i are removed for the ease of notation):

η1 = ln

(

p1++

1 − p1++

)

= X1θ,

η2 = ln

(

p+1+

1 − p+1+

)

= X2θ,

η3 = ln

(

p++1

1 − p++1

)

= X3θ,

η4 = ln ϕ12 = ln

(

p11+(1 − p1++ − p+1+ + p11+)

(p1++ − p11+)(p+1+ − p11+)

)

= X4θ,

η5 = ln ϕ13 = ln

(

p1+1(1 − p1++ − p++1 + p1+1)

(p1++ − p1+1)(p++1 − p1+1)

)

= X5θ,

η6 = ln ϕ23 = ln

(

p+11(1 − p++1 − p+1+ + p+11)

(p++1 − p+11)(p+1+ − p+11)

)

= X6θ,

η7 = ln ϕ123 = ln

(

p111p122p212p221

p112p121p211p222

)

= X7θ,

with pijk = P (Y1 = i, Y2 = j, Y3 = k), (i, j, k = 1, 2), and a + in lieu of a subscript

indicating that the marginal probability over this index needs to be used . Therefore, the

incomplete patterns provide information neither about the unobserved outcomes nor about

the associations involving those unobserved outcomes. Thus, for pattern 2, only η1, η2 and

η4 can be obtained from the data, while for pattern 1 only η1 will be available.

Also in this setting, one is interested in model parameters for the full set of repeated out-

comes, and thus identifying restrictions are necessary to determine the unknown probabilities

by equating them to functions of known probabilities. In the normal case, restrictions are

very natural to apply, because marginal as well as conditional distributions can be expressed

as simple functions of the mean vector and the covariance matrix components. For categor-

ical data in general and for the Dale model in particular, there is no easy transition from

marginal to conditional distributions in terms of the model parameters.

First, the minimal approach is followed in the sense that a trivariate Dale model for the

complete pattern is combined with a bivariate and univariate Dale model for the incomplete

patterns. This results in the densities f3(y1, y2, y3), f2(y1, y2), and f1(y1), respectively. From
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this approach the underlying probabilities py1y2y3|3 = P (Y1 = y1, Y2 = y2, Y3 = y3|pattern =

3), py1y2|2 = P (Y1 = y1, Y2 = y2|pattern = 2) and py1|1 = P (Y1 = y1|pattern = 1) can be

estimated. For pattern 2, there is only one possibility to impute the missing cell counts,

since information on the third measurement can only be borrowed from pattern 3. So, the

partial counts Zy1y2|2 and the conditional probabilities py3|y1y2,3 = P (Y3 = y3|Y1 = y1, Y2 =

y2, pattern = 3) have to be used to identify Z∗
y1y2y3|2

as Zy1y2|2 × py3|y1y2,3. For pattern 1, we

have several possibilities to impute the missing cell counts, since information on the second

measurement can be borrowed from pattern 2 as well as from pattern 3. Using (3.2), the

joint probability of y1, y2 and y3 in pattern 1 can be written as

py1y2y3|1 = py1|1

[

ωpy2|y1,2 + (1 − ω)py2|y1,3

]

py3|y1y2,3,

where specific choices of ω lead to the previously defined identifying restrictions, i.e., CCMV,

NCMV, and ACMV:

CCMV : py1|1 py2|y1,3 py3|y1y2,3,

NCMV : py1|1 py2|y1,2 py3|y1y2,3,

ACMV : ω =
π2py1|2

π2py1|2 + π3py1|3
,

such that the missing cell counts can be identified as follows:

CCMV : Z∗
y1y2y3|1 = Zy1|1 py2|y1,3 py3|y1y2,3,

NCMV : Z∗
y1y2y3|1

= Zy1|1 py2|y1,2 py3|y1y2,3,

ACMV : Z∗
y1y2y3|1 = Zy1|1

[

π2py1y2|2 + π3py1y2|3

π2py1|2 + π3py1|3

]

py3|y1y2,3.

To perform the corresponding imputations, we use a uniform random number generator.

Suppose the count Z is to be distributed over the cells Zk, k = 1, . . . , c. Then, the cumulative

probabilities λ0, . . . , λc are calculated and Z draws Ut from a uniform U [0, 1] distribution

are made. Next, Zk is set equal to
∑

t(λk−1 < Ut ≤ λk).
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From the completed counts Z∗
y1y2y3|1

and Z∗
y1y2y3|2

, and from Zy1y2y3|3, one can estimate the

parameters of interest, for example a trivariate Dale model for the three patterns separately,

or a trivariate Dale model where pattern is included as a covariate. Also, other possible

models can be fitted to the completed counts.

Although parameter estimation is very elegant and computationally simple with the above

two-step procedure, precision estimation is less straightforward. Indeed, treating the filled-in

table as if it represented observed data fails to reflect random variability in the unobserved

counts. Therefore, multiple imputation will be used to construct an asymptotic covariance

matrix of the form

V = W +

(

M + 1

M

)

B, (4.1)

where W is the average within-imputation variance, B the between-imputation variance,

and M the number of imputations.

5 Assumptions Needed for the Intermittent Miss-

ingness Case

We will extend the above strategy to the situation of non-monotone missing data. In Fig-

ure 1, a three-dimensional graphical representation is given of all possible patterns for three

binary outcomes when intermittent missingness is allowed. Figure 2 gives an equivalent

two-dimensional representation. The first three patterns are the monotone ones, which have

been discussed already in Section 4. Pattern 3 is the fully observed pattern, and does not

need any imputation. Patterns 1 and 2 will be considered again in this section, since many

more possibilities will be available now to impute the unobserved data.

Let us first consider the patterns for which only one measurement is missing, namely pat-

terns 2, 4, and 5, where the third, the second and the first outcome, respectively, are not
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observed. A bivariate Dale model can be used to fit the observed data densities f1(y1, y2),

f4(y1, y3) and f5(y2, y3). Since it is recommended to use as much of the available data as

possible to impute the conditional distributions of the unobserved outcomes, given the ob-

served ones, we can only use information from pattern 3 to impute the unobserved data.

This results in the following complete data densities:

f2(y1, y2, y3) = f2(y1, y2)f3(y3|y1, y2),

f4(y1, y2, y3) = f4(y1, y3)f3(y2|y1, y3),

f5(y1, y2, y3) = f5(y2, y3)f3(y1|y2, y3).

Next, patterns 1, 6, and 7 will be discussed. Here, only one out of the three outcomes is

measured, and a univariate Dale model can be used to obtain f1(y1), f6(y3), and f7(y2).

First, we have to decide which of the two unobserved outcomes will be imputed first. In

the case of monotone missingness, the obvious choice for pattern 1 was to impute first y2

and then y3. In the case of non-monotone missingness, there is no such obvious choice.

Therefore, we will consider both possibilities. For pattern 6, for example, we can first

consider the conditional density of y1, given y3. Information on this density can be borrowed

from either the completers (pattern 3) or the neighbors (pattern 4), or a combination of both

densities. Thus, we obtain the previously defined identifying restrictions CCMV, NCMV and

ACMV. The conditional density of y2, given y1 and y3, can only be borrowed from pattern 3.

Similarly, the conditional density of y2, given y3, can be obtained first, using one of the

available identifying restrictions, and afterwards the conditional density of y1, given y2 and

y3. Thus, the complete data densities for patterns 1, 6, and 7 can be written as:

f1(y1, y2, y3) =

{

f1(y1) [ωf2(y2|y1) + (1 − ω)f3(y2|y1)] f3(y3|y1, y2),
f1(y1) [ωf4(y3|y1) + (1 − ω)f3(y3|y1)] f3(y2|y1, y3),

f6(y1, y2, y3) =

{

f6(y3) [ωf4(y1|y3) + (1 − ω)f3(y1|y3)] f3(y2|y1, y3),
f6(y3) [ωf5(y2|y3) + (1 − ω)f3(y2|y3)] f3(y1|y2, y3),

f7(y1, y2, y3) =

{

f7(y2) [ωf2(y1|y2) + (1 − ω)f3(y1|y2)] f3(y3|y1, y2),
f7(y2) [ωf5(y3|y2) + (1 − ω)f3(y3|y2)] f3(y1|y2, y3),
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where, in all cases, ω = 0 corresponds to CCMV, ω = 1 to NCMV, and ω as in (3.3), with

the corresponding densities and pattern probabilities, corresponds to ACMV. So, we can

either choose one of the two possibilities to determine the complete data density, or use a

linear combination of both expressions. This combination is a topic of further research.

Finally, pattern 8 does not contain any observed data, such that it is not possible to impute

the unobserved data conditional on the observed data. This pattern will therefore be ignored,

generally the only sensible route.

6 Marginal Effects Across Patterns

We already mentioned that several strategies can be followed to analyze the imputed data

sets. When a single model is used, an overall effect of the covariates of interest (e.g., treat-

ment effect) is obtained immediately from the model. When, however, a separate model for

each pattern is used to analyze the multiply imputed sets of data, the overall covariate effect

cannot be obtained directly. In the case of continuous data, where linear models are used,

the overall effect is simply a weighted average of the pattern-specific effects. We will show

that this is not true for categorical data. We therefore assume that the logistic regression

P (Yij = 1|pattern k) =
eαk+βkTi

1 + eαk+βkTi

is used to model the data from pattern k = 1, . . . , K (as in the multivariate Dale model). α

and β can depend on j, but we suppress this index from notation.

Assume interest is in one particular effect T , e.g., treatment effect at the last occasion, and

assume πk to be the pattern probability as defined before. The marginal success probability

is then equal to

K
∑

k=1

πk

eαk+βkT

1 + eαk+βkT
. (6.1)
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There are three ways to calculate the marginal treatment effect at the last occasion from

this. First, the direct linear approach (Park and Lee, 1999) can be used, where

β ≃
∑

k

πkβk, (6.2)

but this is clearly incorrect. Second, the marginal probability can be approximated via a

logistic regression, a probit model, or by fully using the longitudinal nature of the design,

through a Dale model, a generalized linear mixed model (GLMM), . . . . Third, classical

averaging can be performed. To this effect, keep function (6.1) as is and compute and

graph, or sample. Note that averaging in this way will be similar to the marginalization

of random-effects models (e.g., GLMM to GEE). Here, the marginalization is over pattern,

rather than over random effects. When a GLMM is used in each pattern, then there is a

double marginalization, one over the random effects and one over the patterns. We will focus

on the second approach, using a marginal logistic model.

Let us approximate (6.1) by a logistic regression, with obvious notation:

f(T ) =
∑

k

πk

eαk+βkT

1 + eαk+βkT
∼=

eA+BT

1 + eA+BT
. (6.3)

Then, the logit of f(T ) can be approximated by

F (T ) = logit (f(T )) ∼= A + BT.

Using a first order Taylor expansion results in

F (0) +
∂F

∂T

∣

∣

∣

∣

T=0

T ∼= A + BT,

such that

A ≃ F (T = 0) = logit

(

∑

k

πk

eαk

1 + eαk

)

.

It is easily shown that

∂logit(x)

∂x
=

1

x(1 − x)
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and

∂f

∂T
=
∑

k

πk

(

eαk+βkT
)

βk

(1 + eαk+βkT )2
,

such that

∂F

∂T

∣

∣

∣

∣

T=0

=
1

∑

k πk

eαk

1 + eαk

1
∑

k πk

1

1 + eαk

∑

k

βkπk

eαk

(1 + eαk)2
,

and equivalently

B ≃

∑

k βkπk

eαk

1 + eαk

1

1 + eαk

(

∑

k πk

eαk

1 + eαk

)(

∑

k πk

1

1 + eαk

) .

Let Pk =
eαk

1 + eαk

, then the approximate marginalized treatment effect can be estimated

using

B ≃

∑

k βkπkPk(1 − Pk)

(
∑

k πkPk) [
∑

k πk(1 − Pk)]
. (6.4)

Note that direct expansion of (6.3), without taking the logit first, leads to exactly the same

expression.

Let us now consider the special case where the treatment effect is the same in each pattern

(βk = β, ∀k), then

B ≃ β

∑

k πkPk(1 − Pk)

(
∑

k πkPk) (
∑

k πk(1 − Pk))
,

such that (proof is in A.1)

|B| ≤ |β|. (6.5)

This means that the marginal treatment effect at the last occasion, obtained through ap-

proximation (6.3), will not be larger in absolute value than the marginal treatment effect,

obtained from the direct linear approach (6.2), when the treatment effects are equal across

patterns.

Marginalization when the βk’s are different, may both increase and decrease the effect, in

absolute value. Let us consider the example of two patterns (K = 2). Set π1 = π, π2 = 1−π,



PMMJansenEtAl.tex (Version: November 6, 2006) 15

β1 = 1 and β2 = ρ. Expressions (6.2) and (6.4) then reduce to

π + (1 − π)ρ and
πP1(1 − P1) + ρ(1 − π)P2(1 − P2)

[πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)]
. (6.6)

Let N = [πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)]. Choosing ρ such that the equality

between both expressions in (6.6) holds, results in

ρ =
π [N − P1(1 − P1)]

(1 − π) [P2(1 − P2) − N ]
. (6.7)

Since ρ ∈ R, setting ρ equal to this value is sufficient to have both equations equal. ρ + ε

and ρ − ε will then make the relative positions of both quantities go either way.

If P1 = P2 = P then the right hand side expression in (6.6) reduces to

πP (1 − P ) + ρ(1 − π)P (1 − P )

P [π + (1 − π)] (1 − P ) [π + (1 − π)]
,

which is equal to π + (1 − π)ρ, and hence, for all ρ, both expressions in (6.6) are the

same. Note also that then in (6.7) the numerator and denominator are both equal to zero,

confirming that the result applies to every ρ. Thus, the difference emerges from a difference

in background success probability Pk.

Now we will determine the sign of ρ for P1 6= P2. Denote the coefficient of π in the numerator

of ρ by f1, and the coefficient of (1 − π) in the denominator by f2. Then,

f1 = [πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)] − P1(1 − P1)

and

f2 = − [πP1 + (1 − π)P2] [π(1 − P1) + (1 − π)(1 − P2)] + P2(1 − P2).

Since for π = 0, f1 = P2(1 − P2) − P1(1 − P1) = Q and f2 = 0, and for π = 1, f1 = 0 and

f2 = P2(1−P2)−P1(1−P1) = Q, both functions evolve in the interval [0, Q]. To determine
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whether there are internal extrema in f1 and f2, we calculate

∂f1

∂π
= (P1 − P2) [π(1 − 2P1) + (1 − π)(1 − 2P2)] ,

which, since P1 6= P2 by assumption, equals 0 for π equal to

π∗ =
2P2 − 1

2(P2 − P1)
.

∂f2

∂π
equals zero at the same point π∗. By calculating the second order derivatives of f1 and

f2 to π,

∂2f1

∂π2
= − 2(P1 − P2)

2 < 0,

∂2f2

∂π2
= 2(P1 − P2)

2 > 0,

we see that f1 reaches a maximum in π∗, while f2 is minimal in π∗. At π∗, f1 = 1

2
.1
2
−P1(1−

P1) ≥ 0 and f2 = −1

2
.1
2

+ P2(1 − P2) ≤ 0. Note that π∗ is a valid extremum in [0, 1] if for

P1 < P2, P1 ≤
1

2
≤ P2, and for P1 > P2, P2 ≤

1

2
≤ P1. In those situations, f1 > 0 and f2 < 0,

and hence ρ < 0, in a neighborhood of π∗. When π∗ 6∈ [0, 1], then f1 and f2 are monotonic

and both of the same sign, such that ρ is nonnegative. Then there exist treatment effects

(1, ρ) such that there is no dilution of effect, but equality or inflation. Figure 3 (in Appendix)

shows the curves of f1 and f2 for several values of P1 and P2. Two of those examples are

further studied in detail in A.2 and A.3.

Given all of these considerations, it is clear that determining a marginal effect across patterns

in the case of non-Gaussian data, is less straightforward than in the Gaussian case. One

should bear in mind that the direct linear approach (Park and Lee, 1999) is invalid in the

case of categorical data, and that this method can neither be considered to be conservative

nor liberal.
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7 Models Fitted to the Fluvoxamine Data

In this section, we will analyze the fluvoxamine data, presented in Section 2. We will account

for patients’ gender (0 = males, 1 = females), a covariate recorded for all. There are 224

completers (pattern 3), 44 patients missed the last visit (pattern 2), 31 only appeared at the

first visit (pattern 1), 1 person belongs to pattern 5, 1 to pattern 6, and the remaining 14

patients do not have any observations at all (pattern 8). For those 14 patients, there is no

reasonable way to impute the missing outcomes, and therefore, they will not be considered

for analyses. Pattern 5 and pattern 6 both only contain 1 patient (0.33% of the total number

of subjects in the study), so their effect on the results can be ignored. This leaves 299 patients

in the study. The data are summarized in Table 1.

As described in Section 4, we start by fitting a trivariate Dale model to the completers, a

bivariate Dale model to pattern 2, and a logistic regression to pattern 1. Then, an identifying

restriction is chosen to define the conditional distributions of the unobserved outcomes, given

the observed ones. Thereafter, we draw multiple imputations (M = 10). We thus obtain,

for each choice of identifying restriction strategy, ten multiply-imputed sets of data, which

can then be analyzed, using several possible models.

Let us first discuss the results reported in Table 2. A single trivariate Dale model is fitted,

with a constant log odds ratio for each of the possible associations between outcomes, and a

possible effect of gender on the marginal probabilities. We notice that the estimates for the

association parameters are very close under the three possible identifying restrictions. The

associations ϕ12, ϕ13 and ϕ23 are highly significant (p < 0.0001), while ϕ123 is borderline

significant (p ≈ 0.045). Also, the estimates for the first marginal probability are almost

equal under CCMV, NCMV, and ACMV. This was to be expected, since the first outcome

was observed for all subjects that were included for analysis. The parameter estimates for
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the logistic regression of the third marginal probability are also quite similar. This is due to

the fact that all identifying restrictions implied the same conditional density for the third

outcome, given the first and second ones, namely to borrow it from the completers. The

small difference that is observed nevertheless, results from a difference in imputation for the

second outcome, since the imputation of the third outcome is conditional on the second one.

And as we can see, the estimates for the second marginal probability differ much between

the three identifying restrictions. The CCMV and NCMV estimates, for the intercept as

well as for gender, are lying furthest apart. ACMV estimates are closer to CCMV estimates,

since many more completers are available than neighbors, thus ω will be smaller than 0.5.

Finally, we will contemplate the effect of gender. We observe that the estimate is negative

for the first marginal probability, approximately zero for the second one, and positive for the

third one, meaning that the probability of no side effects is larger, equal or smaller for males

than for females, for the first, second and last measurement occasion, respectively. However,

the effect of gender on the marginal probabilities is not significant.

Next, a more extended trivariate Dale model is presented in Table 3. Now, pattern-specific

intercepts are allowed in the logistic regressions for the marginal probabilities. The gender

effect is assumed to be the same for all patterns, and the associations between outcomes are

still constant. The parameter intercepti is the intercept in the logistic regression for the ith

marginal probability for pattern 3. pattern1i and pattern2i are dummy variables, such that

they correspond to the difference in intercept between pattern 3 and pattern 1 or pattern 2,

respectively. For the first marginal probability there is no significant difference between the

pattern-specific intercepts. Only in the NCMV case, a borderline non-significant difference

(p ≈ 0.077) is observed between pattern 1 and pattern 3. We notice that the intercept for

pattern 3 is higher than for the other patterns, resulting in a higher probability of no side

effects at the first measurement occasion for the completers. Similar conclusions can be found
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for the second and last occasions. Taking a closer look at the results for the second marginal

probability, we notice that the intercepts for pattern 2 and 3 are significantly different (p ≈

0.035), while patterns 1 and 3 are only borderline significantly different (p ≈ 0.05) when

NCMV is used, and not significant when CCMV or ACMV are used. This can be explained

by the fact that for NCMV, pattern 1 borrows all information from pattern 2 and thus takes

distance from pattern 3, while under CCMV and ACMV all, or most, of the information

is borrowed from pattern 3, and therefore there is only little distance between pattern 1

and 3. For the third marginal probability, there is no significant difference between the three

patterns for all identifying restrictions, since the missing information is always identified from

pattern 3. CCMV, NCMV, and ACMV lead to almost the same estimates for all parameters

concerning the third marginal probability. Finally, the effect of gender changes over the

different measurement occasions as before, and again its effect on the marginal probabilities

is not significant. The associations ϕ12, ϕ13, and ϕ23 are highly significant (p < 0.0001), while

ϕ123 is now borderline significant (p ≈ 0.045) only for NCMV, and borderline non-significant

(p ≈ 0.064) for CCMV and ACMV.

Third, Table 4 contains parameter estimates of a trivariate Dale model where now not only

the intercept, but also the gender effect is allowed to be different in the three patterns. Also

here intercepti corresponds to the effect of pattern 3, while the dummy variables pattern1i

and pattern2i model the difference in success probability between pattern 3 and pattern 1

or 2, respectively. genderi represents the gender effect in pattern 3, while the interactions

between the dummies and gender refer to the difference in gender effect between pattern 3

and pattern 1 or 2, respectively. The parameter estimates for the logistic regression of

p1++ reveal the following results. The probability of no side effects is borderline significantly

different (p ≈ 0.05) between pattern 2 and 3, but not significantly different between pattern 1

and 3. Gender is borderline non-significant (p ≈ 0.058) in pattern 3, and a borderline
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non-significant different gender effect occurred between pattern 2 and 3. For p+1+, similar

conclusions are reached, but now the difference in probability of no side effects is highly

significant (p ≈ 0.006) between pattern 2 and 3, and under NCMV borderline significant

(p ≈ 0.05) between pattern 1 and 3. The gender effect in pattern 3 is not significant

anymore. Finally, the success probability p++1 is not different in the three patterns, and the

gender effect is not significant. The associations ϕ12, ϕ13 and ϕ23 are again highly significant

(p < 0.0001), while ϕ123 is borderline significant (p ≈ 0.044) only for NCMV, and borderline

non-significant (p ≈ 0.059) for CCMV and ACMV.

Finally, a trivariate Dale model is fitted to each of the patterns separately, with marginal

probabilities depending on gender, and constant associations between outcomes. These re-

sults are summarized in Table 5. If the previous model was further extended, with, for

the three patterns, different associations between outcomes, the same estimates would have

been obtained, as in Table 5. We will now discuss the estimates that were obtained by

fitting a separate trivariate Dale model to each pattern. For pattern 3, of course, there is

no difference between the initial estimates and the multiple imputation estimates, since no

imputation was necessary in this pattern. For patterns 1 and 2, several estimates are tending

to infinity, since a lot of sparse or empty cells were present in the multiply-imputed sets of

data, because the 13 males and 18 females in pattern 1, and the 20 males and 24 females

in pattern 2, had to be distributed over 8 cells, with one more likely to be filled than the

other. Especially the association parameters suffer from those empty cells. Therefore, it is

hard to draw conclusions for patterns 1 and 2. Also, it is no avail trying to find the marginal

effects of the covariate gender, using the technique of Section 6. If, however, the proportion

of subjects were equal in each pattern, then the marginal gender effects, obtained by using

those techniques, would correspond to the gender effects that resulted from the first model

that was fitted.
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Since the empty cells occurring through multiple imputation can be seen as sampling zeroes

instead of structural zeroes, a continuity correction (adding 1

2
to each cell count) is advisable

to overcome the problem of estimates tending to ∞ (Agresti, 2002). Table 6 shows the

results of a pattern-specific analysis of these continuity corrected data. When comparing the

parameter estimates of the imputed data with the initial estimates, we observe that there is

some deviation, probably due to the continuity correction of 1

2
. A sensitivity analysis can be

performed by repeating the analysis for continuity corrections of various sizes (10−8, 10−4,

10−2, 10−1) in order to explore their effect on the parameter estimates.

From all the analyses performed here, we conclude that the first model is overly simple,

since all patterns are treated equally, and from more complex models, we conclude that

some difference in success probability exists between the patterns. Thus, this should at

least be taken into account. The last model, however, is very complex, and a continuity

correction was needed before convergence was reached. Also, marginal covariate effects

cannot be obtained so easily. A sensible compromise has to be chosen between the simplest

and most complex model, ensuring that non-significant covariate effects be removed from

the model.

8 Conclusions

In this paper, we reviewed the general concepts of pattern-mixture models and the tech-

nique of identifying restrictions to specify the conditional distribution of the unobserved

measurements, given the observed ones. Then, these concepts were extended to categorical

outcomes, subject to intermittent missingness. The same identification families as employed

with monotone missingness are suggested here as well.

Since interest is often in an overall covariate effect, and not in the pattern-specific effects only,
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and since this overall effect cannot be obtained as simple as in the case of Gaussian data by

averaging the pattern-specific effects, attention was devoted to the derivation of a marginal

effect of interest. It was also shown that the intuitive but naive method of averaging can

lead to both deflated as well as overestimated effects; it should not be seen as a conservative

method.

The fluvoxamine data were analyzed, using the method of pattern-mixture models, includ-

ing identifying restrictions. Several models were fitted to the multiply-imputed sets of data.

Some were too simple, others too complex, leading to sparse or even empty cells for the

originally incomplete patterns, and resulting in convergence problems. Nevertheless, the dif-

ferent ways in which the data were analyzed, can be seen as a sensitivity analysis. Especially

the use of different identifying restrictions is a first step in assessing the sensitivity of the

assumptions made.

Further research can be devoted to the analysis of other data sets with more intermittent

missingness, such that the suggestions made in this chapter to identify those missing values,

can be explored.
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A Appendix

A.1 Proof of Equation (6.5)

Let

g =

(

∑

k

πkPk

)(

∑

k

πk(1 − Pk)

)

−
∑

k

πkPk(1 − Pk)

and

H =
∑

k

πkPk.

To find the extrema of g, we calculate

∂g

∂Pℓ

= πℓ(1 − H) − πℓH − πℓ(1 − 2Pℓ)

= 2πℓ(Pℓ − H)

= 2πℓ

(

Pℓ −
∑

k

πkPk

)

.

g then reaches an extremum if
∂g

∂Pℓ

= 0 for all ℓ. Thus,

πℓ

(

Pℓ −
∑

k

πkPk

)

= 0.

We can exclude πℓ = 0, since such a pattern would vanish. Thus, g reaches an extremum if

Pℓ =
∑

k

πkPk ∀ℓ ⇔ P1 = . . . = PK ≡ P

and hence
∑

k

πkPk = P
∑

k

πk = P.
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At this extremum, g = P (1 − P ) − P (1 − P ) = 0. Now we still have to check whether this

extremum is a minimum or a maximum. Therefore we calculate the second order derivatives

of g.
∂2g

∂P 2
ℓ

= 2πℓ(1 − πℓ)

∂2g

∂Pℓ∂Pm

= 2πℓ (−πm) = −2πℓπm















⇒
∂2g

∂P ∂P ′ = 2 [diagπ − ππ′]

which is a positive definite matrix. We can conclude that this extremum is a minimum, and

thus g ≥ 0, which means 0 ≤

∑

k πkPk(1 − Pk)

(
∑

k πkPk) (
∑

k πk(1 − Pk))
≤ 1, and |B| ≤ |β|. �

A.2 Example 1

Assume P1 = 0.2 and P2 = 0.7. Set π equal to π∗ = 0.4. Then f1 = 0.09 and f2 = −0.04

(see also Figure 3), such that

ρ =
π

1 − π
.
f1

f2

= −
0.4

0.6
.
0.09

0.04
= −1.5.

In this case, the treatment effects, (1;−1.5) are in the opposite direction. Since πP1(1−P1) =

0.064, (1−π)P2(1−P2) = 0.126, πP1 +(1−π)P2 = 0.5 and π(1−P1)+(1−π)(1−P2) = 0.5,

the marginal treatment effect, calculated by (6.2) and (6.4) can be summarized as follows,

for several values of ρ:

|B| versus |β|
|0.256 + 0.504ρ| |0.4 + 0.6ρ|

ρ = −2 | − 0.752| < | − 0.8|
ρ = −1.5 | − 0.5| = | − 0.5|
ρ = −1 | − 0.248| > | − 0.2|
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A.3 Example 2

Assume now P1 = 0.2 and P2 = 0.3. Then π∗ = −2 6∈ [0, 1]. We choose π = 0.5. Now

f1 = 0.0275 and f2 = 0.0225, such that

ρ =
π

1 − π
.
f1

f2

=
0.5

0.5
.
0.0275

0.0225
=

11

9
.

So, in this case, both treatment effects, (1; 1.22) are quite close to each other. Since πP1(1−

P1) = 0.08, (1−π)P2(1−P2) = 0.105, πP1+(1−π)P2 = 0.25 and π(1−P1)+(1−π)(1−P2) =

0.75, the marginal treatment effect, calculated by (6.2) and (6.4) can be summarized as

follows, for several values of ρ:

|B| versus |β|
|128/300 + 0.56ρ| |0.5 + 0.5ρ|

ρ = 10/9 |18.88/18| < |19/18|
ρ = 11/9 |10/9| = |10/9|
ρ = 12/9 |21.12/18| > |21/18|
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Figure 1: Three-dimensional representation of all possible patterns for three binary outcomes
with intermittent missingness. The horizontal axis displays the first measurement, the verti-
cal axis corresponds to the second measurement, and the third axis to the last measurement.

Figure 2: Two-dimensional representation of all possible patterns for three outcomes with
intermittent missingness, in the same order as in Figure 1. A solid square represents an
observed measurement. From left to right, and from top to bottom, we have patterns 3, 2
and 1 as defined before, and further the non-monotone patterns 4, 5, 6, 7, and 8.
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Figure 3: Graphical representation of the f1 (solid line) and f2 (dotted line) curves for several
values of P1 and P2. In the top panels, π∗ ∈ [0, 1], in the bottom panels, π∗ 6∈ [0, 1].

Table 1: Fluvoxamine Data. ‘Side effects’ (yes/no) at the first (horizontal), second (vertical)
and last visit. Top table for males, bottom table for females.

33 8

1 4

2 2

4

18
4 1

2 13

4 9

53 20

2 25

4 5

3

40
9 3

2 10

5 13
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Table 2: Fluvoxamine Data. Multiple imputation estimates and standard errors for CCMV,
NCMV and ACMV. A trivariate Dale model, with marginal probabilities depending on gen-
der, and constant associations.

CCMV NCMV ACMV

intercept1 -0.1259(0.1949) -0.1266(0.1951) -0.1230(0.1949)
gender1 -0.2528(0.2423) -0.2516(0.2429) -0.2574(0.2424)
intercept2 0.1180(0.1995) 0.0385(0.1984) 0.1060(0.2005)
gender2 -0.0022(0.2536) 0.0375(0.2435) 0.0020(0.2531)
intercept3 0.3245(0.2134) 0.2901(0.2139) 0.3120(0.2166)
gender3 0.2816(0.2675) 0.3159(0.2700) 0.2968(0.2703)
ϕ12 3.1051(0.3433) 3.1218(0.3284) 3.1178(0.3386)
ϕ13 2.0288(0.3072) 2.0047(0.3077) 2.0220(0.3121)
ϕ23 2.8687(0.3583) 2.9588(0.3521) 2.8639(0.3548)
ϕ123 1.8446(0.9272) 1.9283(0.9269) 1.8524(0.9386)

Table 3: Fluvoxamine Data. Multiple imputation estimates and standard errors for CCMV,
NCMV and ACMV. A trivariate Dale model, with marginal probabilities depending on a
pattern-specific intercept and a fixed gender effect, and constant associations.

CCMV NCMV ACMV

intercept1 0.0215(0.2134) 0.0266(0.2131) 0.0238(0.2133)
pattern11 -0.6731(0.4209) -0.7339(0.4151) -0.6736(0.4205)
pattern21 -0.3418(0.3379) -0.3429(0.3376) -0.3426(0.3379)
gender1 -0.3027(0.2458) -0.3013(0.2459) -0.3060(0.2457)
intercept2 0.3164(0.2250) 0.2935(0.2187) 0.3172(0.2240)
pattern12 -0.4485(0.4777) -0.9597(0.4906) -0.5451(0.4927)
pattern22 -0.6989(0.3324) -0.6914(0.3323) -0.7004(0.3325)
gender2 -0.0709(0.2629) -0.0424(0.2514) -0.0725(0.2608)
intercept3 0.4713(0.2326) 0.4503(0.2346) 0.4607(0.2321)
pattern13 -0.2846(0.5761) -0.4108(0.5997) -0.3162(0.5311)
pattern23 -0.5498(0.4615) -0.5469(0.4639) -0.5457(0.4620)
gender3 0.2309(0.2778) 0.2654(0.2812) 0.2476(0.2779)
ϕ12 3.1343(0.3469) 3.1410(0.3361) 3.1406(0.3444)
ϕ13 2.0304(0.3084) 2.0168(0.3134) 2.0208(0.3112)
ϕ23 2.8706(0.3589) 2.9654(0.3573) 2.8624(0.3561)
ϕ123 1.7910(0.9649) 1.9351(0.9666) 1.8100(0.9778)
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Table 4: Fluvoxamine Data. Multiple imputation estimates and standard errors for CCMV,
NCMV and ACMV. A trivariate Dale model, with marginal probabilities depending on a
pattern-specific intercept and a pattern-specific gender effect, and constant associations.

CCMV NCMV ACMV

intercept1 0.1878(0.2364) 0.1933(0.2356) 0.1882(0.2361)
pattern11 -0.9785(0.6495) -1.0467(0.6485) -0.9689(0.6510)
pattern21 -1.0648(0.5433) -1.0659(0.5424) -1.0664(0.5431)
gender1 -0.5432(0.2866) -0.5438(0.2862) -0.5434(0.2865)
pattern1×gender1 0.4447(0.8463) 0.4748(0.8506) 0.4224(0.8521)
pattern2×gender1 1.2278(0.6989) 1.2271(0.6981) 1.2297(0.6991)
intercept2 0.5089(0.2448) 0.5067(0.2456) 0.5087(0.2448)
pattern12 -0.8513(0.7509) -1.5285(0.7823) -0.9168(0.7770)
pattern22 -1.4699(0.5386) -1.4657(0.5382) -1.4711(0.5390)
gender2 -0.3519(0.2937) -0.3517(0.2943) -0.3519(0.2938)
pattern1×gender2 0.6298(1.1582) 0.8790(0.9177) 0.5870(1.1482)
pattern2×gender2 1.3098(0.6927) 1.3032(0.6929) 1.3095(0.6934)
intercept3 0.5916(0.2445) 0.5942(0.2446) 0.5922(0.2446)
pattern13 -0.5736(0.7847) -0.8706(0.8602) -0.6826(0.8516)
pattern23 -0.9877(0.6146) -0.9937(0.6158) -0.9868(0.6134)
gender3 0.0561(0.2979) 0.0542(0.2978) 0.0559(0.2979)
pattern1×gender3 0.4706(0.9388) 0.7796(1.0740) 0.5907(0.9538)
pattern2×gender3 0.7610(0.8722) 0.7683(0.8693) 0.7612(0.8700)
ϕ12 3.1328(0.3456) 3.1271(0.3359) 3.1412(0.3424)
ϕ13 2.0235(0.3102) 2.0092(0.3140) 2.0143(0.3139)
ϕ23 2.9035(0.3702) 2.9732(0.3564) 2.8943(0.3669)
ϕ123 1.7912(0.9537) 1.9162(0.9506) 1.8026(0.9504)
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Table 5: Fluvoxamine Data. Estimates from the initial Dale models for the incomplete
data, together with multiple imputation estimates and standard errors for CCMV, NCMV
and ACMV. A trivariate Dale model, with marginal probabilities depending on gender, and
constant associations, fitted for each pattern separately.

initial CCMV NCMV ACMV
Pattern 1

intercept1 -0.8109 (0.6009) -0.8329 (0.4665) -1.1210 (14.110) -0.7455 (0.5671)
gender1 -0.1446 (0.7988) -0.0794 (0.6389) 6.0180 (21.981) -0.3621 (0.9958)
intercept2 -0.4042 (0.5910) -13.062 (40.395) -0.5381 (0.7385)
gender2 0.2961 (0.9318) 0.5644 (0.8026) 0.3274 (0.9198)
intercept3 0.0394 (0.7034) -4.3260 (13.075) -0.0734 (0.7340)
gender3 0.5328 (0.8321) 12.117 (37.712) 0.6421 (0.8248)
ϕ12 6.7429 (979.38) -4010.0 (13044) 3.9641 (49.283)
ϕ13 20.529 (2.86E6) 13.581 (2462i) 4.8504 (115.91)
ϕ23 2.6890 (2.0828) 62.209 (205.04) 3.3699 (217.70)
ϕ123 -4.5287 (7.69E43) 226.80 (45980) -1.3710 (707.5i)
Pattern 2

intercept1 -0.8473 (0.4880) 1.4118 (7.2243) 1.4118 (7.2202) 1.4118 (7.2269)
gender1 0.6802 (0.6371) -1.9439 (8.2479) -1.9439 (8.2396) -1.9439 (8.2498)
intercept2 -1.0986 (0.5164) -4.4028 (12.501) -4.4028 (12.497) -4.4028 (12.500)
gender2 1.0986 (0.6583) 4.1350 (12.071) 4.1350 (12.064) 4.1350 (12.070)
intercept3 13.651 (46.566) 13.651 (46.555) 13.651 (46.566)
gender3 -13.221 (46.112) -13.221 (46.107) -13.221 (46.111)
ϕ12 2.9199 (0.8145) 3.9217 (28.152) 3.9217 (62.726) 3.9217 (48.873)
ϕ13 2596.9 (2.86E6) 2596.9 (8249.1) 2596.9 (8609.7)
ϕ23 -9.8258 (54.313) -9.8258 (73.867) -9.8258 (224.30)
ϕ123 2581.9 (7.69E43) 2581.9 (2.62E22) 2581.9 (2.62E22)
Pattern 3

intercept1 0.1956 (0.2376) 0.1956 (0.2376) 0.1956 (0.2376) 0.1956 (0.2376)
gender1 -0.5525 (0.2886) -0.5525 (0.2886) -0.5525 (0.2886) -0.5525 (0.2886)
intercept2 0.5107 (0.2437) 0.5107 (0.2437) 0.5107 (0.2437) 0.5107 (0.2437)
gender2 -0.3522 (0.2929) -0.3522 (0.2929) -0.3522 (0.2929) -0.3522 (0.2929)
intercept3 0.5824 (0.2447) 0.5824 (0.2447) 0.5824 (0.2447) 0.5824 (0.2447)
gender3 0.0679 (0.2987) 0.0679 (0.2987) 0.0679 (0.2987) 0.0679 (0.2987)
ϕ12 3.1325 (0.3889) 3.1325 (0.3889) 3.1325 (0.3889) 3.1325 (0.3889)
ϕ13 2.1026 (0.3533) 2.1026 (0.3533) 2.1026 (0.3533) 2.1026 (0.3533)
ϕ23 2.9471 (0.3726) 2.9471 (0.3726) 2.9471 (0.3726) 2.9471 (0.3726)
ϕ123 1.2110 (0.9510) 1.2110 (0.9510) 1.2110 (0.9510) 1.2110 (0.9510)
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Table 6: Fluvoxamine Data. Estimates from the initial Dale models for the incomplete
data, together with multiple imputation estimates and standard errors for CCMV, NCMV
and ACMV. A trivariate Dale model, with marginal probabilities depending on gender, and
constant associations, fitted for each pattern separately. A continuity correction of 1

2
is used

to overcome the problem of sampling zeroes.

initial CCMV NCMV ACMV
Pattern 1

intercept1 -0.8109 (0.6009) -0.6141 (0.5074) -0.6327 (0.5085) -0.6031 (0.5070)
gender1 -0.1446 (0.7988) -0.1426 (0.6797) -0.1074 (0.6778) -0.1622 (0.6812)
intercept2 -0.2541 (0.5666) -0.7844 (0.6024) -0.3323 (0.5774)
gender2 0.2087 (0.8750) 0.3775 (0.7287) 0.2146 (0.8557)
intercept3 0.0221 (0.6105) -0.1987 (0.6374) -0.0625 (0.6462)
gender3 0.4174 (0.7459) 0.6426 (0.8118) 0.5247 (0.7506)
ϕ12 2.2922 (1.0342) 2.4398 (0.8669) 2.3648 (0.9745)
ϕ13 1.4683 (0.9096) 1.2864 (0.9326) 1.4161 (0.9922)
ϕ23 1.5591 (0.9562) 1.8639 (0.9715) 1.4965 (1.0034)
ϕ123 1.0355 (2.4118) 1.9070 (2.4134) 1.2348 (2.5027)
Pattern 2

intercept1 -0.8473 (0.4880) -0.6859 (0.4294) -0.6859 (0.4294) -0.6859 (0.4294)
gender1 0.6802 (0.6371) 0.5381 (0.5675) 0.5381 (0.5675) 0.5381 (0.5675)
intercept2 -1.0986 (0.5164) -0.8357 (0.4337) -0.8357 (0.4337) -0.8357 (0.4337)
gender2 1.0986 (0.6583) 0.8075 (0.5716) 0.8075 (0.5716) 0.8075 (0.5716)
intercept3 -0.3284 (0.4858) -0.3284 (0.4858) -0.3284 (0.4858)
gender3 0.6901 (0.7085) 0.6901 (0.7085) 0.6901 (0.7085)
ϕ12 2.9199 (0.8145) 2.3211 (0.6719) 2.3211 (0.6719) 2.3211 (0.6719)
ϕ13 1.2766 (0.6825) 1.2766 (0.6825) 1.2766 (0.6825)
ϕ23 2.3965 (0.8353) 2.3965 (0.8353) 2.3965 (0.8353)
ϕ123 2.0700 (2.0344) 2.0700 (2.0344) 2.0700 (2.0344)


