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Summary

A method is presented to describe the in vitro-in vivo correlation of an extended
release drug formulation. This extended release drug product is overencapsulated with
immediate release material. The heterogeneity of the capsule is modelled using a mix-
ture distribution of an extended release and an immediate release pharmacokinetic
profile. Whereas an IVIVC is conventionally performed using a two-stage procedure,
the model of this mixture uses the convolution-based method with a one-stage ap-
proach. The method is applied to a Galantamine controlled release formulation, an
acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. The average
percentage prediction error indicated a good fit of the new model using the logit link
function.

Keywords: controlled release; convolution; dissolution curve; IVIVC; one-stage model

fitting.

1 Introduction

In Vitro-In Vivo Correlation (IVIVC) is commonly used in preclinical and clinical biophar-

maceutical research. It establishes a valuable link between the in-vitro dissolution and the
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in-vivo release of the investigational drug. Based on this link, the controlled release pharma-

cokinetic profile can be predicted from a subject’s immediate release plasma concentrations

profile and the in-vitro dissolution profile using the IVIVC model. If a controlled release

capsule dissolves differently, this change in in-vitro dissolution properties can be translated

into the corresponding altered in-vivo pharmacokinetic profile once an IVIVC is established.

IVIVC models are commonly used in a wide range of applications. One can use the

IVIVC to claim that the differences observed in-vitro between two batches do not affect the

drug exposure by predicting the in-vivo plasma concentration-time profile. Similarly, one

can state that manufacturing changes of the controlled release formulations do not affect

the drug exposure. Thus no expensive in-vivo bioequivalence testing is required for either

situation (Hayes 2004). This technique can also be applied in formulation development.

The formulation can be modified such that the plasma concentrations remain within the

therapeutic window over a sufficient period of time.

The first methodological work on IVIVC was done two decades ago (Gillespie et

al. 1985) with the introduction of the deconvolution method: deconvolution extracts the

in-vivo release based on the fact that controlled release plasma concentrations equal the

convolution of immediate release plasma concentrations and the in-vivo release. The latter

is then linked to the in-vitro dissolution results. Dunne et al. (2005), however, proved that

the deconvolution method might give biased results. Gillespie (1997) and O’Hara et al.

(2001) improved the method by directly modelling the convolution itself, without explicitly

calculating the in-vivo release, using a two-stage approach.

Our methodology presented in this paper also uses the convolution approach and

extends previous work in two respects. The two-stage approach is replaced by a one-stage

approach and contrary to other published results (Modi et al. 2000, Veng-Pedersen et al.

2000) a heterogeneous formulation is used in the IVIVC model. The formulation contains an

extended release part overencapsulated with immediate release material, and will be referred

to as controlled release capsule in the remainder of the paper.

The rest of the paper is organized as follows. The case study, motivating this research,
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is described in Section 2. The convolution-based models described by O’Hara et al. (2001)

used for IVIVC can be found in Section 3.2.1. The dissolution models applied in this paper

are described in Section 3.1. Extension of these models including a mixture distribution is

described in Section 3.2.2. The results of applying the proposed methodology to the case

study are reported in Section 4.

2 The Case Study

The acetylcholinesterase inhibitor Galantamine is used for the treatment of Alzheimer’s

disease (Lilienfeld 2002). Galantamine formulations currently on the market are tablets, a

syrup and extended-release capsules.

Within the population of subjects with Alzheimer’s disease, the duration of drug

exposure can sometimes be too short to guarantee sufficient protection for a certain time

period due to poor compliance. Therefore, a controlled release formulation of Galantamine

was developed in an attempt to optimize drug exposure. Whereas an immediate release

formulation dissolves instantaneously and the drug product is immediately available, an

extended release formulation releases the drug product slowly over time allowing the body to

absorb the drug product gradually. The controlled release formulation under investigation

here consisted of the extended and immediate release components combined in the same

pellet as 2 layers (ratio CR/IR: 3/1) separated by a rate-controlling membrane containing 5-

12% ethylcellulose/hydroxypropyl-methylcellulose (EC/HPMC; ratio: 75/25). The relatively

high water solubility (3.3 g/100 mℓ water, pH=5.2) and absolute oral bioavailability (88.5%)

of Galantamine are pharmaceutical characteristics indicative of a drug whose controlled

release formulation is a good candidate for IVIVC exploration.

For each controlled release formulation, twelve dissolution curves were assessed in-

vitro. The dissolution data were generated using an USP apparatus 2 - paddle with 50 rpm

(s.e. 2 rpm) speed of shaft rotation. The dissolution medium used was a volume of 900 mℓ

of 0.050 M phosphate buffer at pH 6.5. The percentage dissolution was registered between

0.5 and 18 hours, as shown in Figure 1 for the controlled release formulation.
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Seventeen subjects were first assigned to the immediate release formulation and then

randomized according to a four period latin square design. Treatments were four controlled

release formulations (slow, fast, between and medium) of Galantamine. One subject dropped

out after the immediate release period. He did not receive the controlled release formula-

tions and was included as such in the analysis. To demonstrate our methodology, only one

of the four controlled release formulation, the slow one, is included in this analysis. A ve-

nous blood sample was taken for the measurement of Galantamine plasma concentrations at

specified time points during the study, from pre-dose (0 hour) until 60 hours post-dose for

the immediate release formulation, and up to 72 hours post-dose for the controlled release

formulations.

The immediate release plasma concentration-time data are shown in Figure 2, while

the plasma concentration-time data for the controlled release formulation are presented in

Figure 3. In the former, maximal plasma concentrations were reached faster and were higher,

but they decreased rapidly. In the latter, a bimodal profile was present: one steep peak was

present after 30 minutes followed by a second smoother peak 6 hours after intake. In addition,

the decrease of plasma concentration is slower after the second peak.

The advantage of combining the extended and immediate release formulation lies in

this bimodal profile. The extended release part ensures that patients remain in the effective

plasma concentration range from 3-4 until 24 hours. The extended release fraction on it own

would not reach the therapeutic window quickly enough; levels would remain too low during

the first 3 hours post-dose. Therefore, a loading dose consisting of an immediate release

fraction, is added. Hence, patients remain protected for the full 24 hours.

3 Methodology

First, three types of models used for describing the in-vitro dissolution curves are introduced

in Section 3.1. Then the in-vivo convolution-based IVIVC methodology described by O’Hara

et al. (2001) is described in Section 3.2.1, followed by the newly proposed convolution model

in Section 3.2.2, the model fitting in Section 3.3 and the goodness-of-fit in Section 3.4.
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The following notation will be used. The index 1 denotes the in-vitro data, while 2 will

be used for in-vivo, i is the statistical unit representing the capsule for in-vitro and subject for

the in-vivo data; k denotes the formulation; The immediate release formulation however will

be denoted with δ instead of k due to its special status in IVIVC modelling and to emphasize

that the underlying probability density function of the release mechanism follows in this case

the Dirac Delta distribution. F will denote the actual dissolution/release fraction; c stands

for the actual plasma concentration profile, and more specific, ci2δ is the actual immediate

release plasma concentration profile, also referred to as the unit impulse response. This

is traditionally but not necessarily, based on a compartmental model. Y1 stands for the

measured dissolution for the in-vitro data, Y2 for measured plasma concentration in-vivo.

For example, Yi2k denotes the measured controlled release plasma concentration of subject i

for formulation k.

3.1 In-Vitro Dissolution Models

The in-vitro dissolution profile is often described by a Weibull function (Comets and Mentré,

2001). Besides the Weibull function, also a simpler exponential function and a more complex

Gompertz in-vitro dissolution model will be evaluated.

The simplest model for the in-vitro dissolution profile is given by the exponential

model:

Yi1k(t) = Fi1k(t) + ε1, ε1 ∼ N(0, σ2
1),

Fi1k(t) = φ1{1 − exp[−(t − φ3)φ2i]}, (3.1)

with φ2i ∼ N(φ2, σ
2
φ2

), and φ2i the capsule-specific half-life and φ3 a lag time. This model has

a steep increase in the beginning and converges slowly to the asymptotic maximal dissolution,

φ1.

The following extension of the exponential model copes with the heterogeneity of the
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formulation via the φ5-parameter.

Yi1k(t) = Fi1k(t) + ε1, ε1 ∼ N(0, σ2
1),

Fi1k(t) = φ5 + (φ1 − φ5){1 − exp[−(t − φ3)φ2i]}, (3.2)

where φ5 captures an initial jump followed by the previous version of the exponential model.

The previous models, however, lack the capability to fit a sigmoidal curvature. There-

fore, the traditional Weibull function with the initial jump φ5 is proposed to check for the

improvement under these conditions, see model 3.3. The parameters have the same inter-

pretation as for the exponential model.

Yi1k(t) = Fi1k(t) + ε1, ε1 ∼ N(0, σ2
1),

Fi1k(t) = φ5 + (φ1 − φ5){1 − exp[−(
t

φ3

)φ2i ]}. (3.3)

The dissolution profiles in Figure 1 contain both an asymmetrical S-shaped curvature

and an initial jump. The Gompertz curve has the first property, but it has its short curvature

at the end. The following modification of the Gompertz function (Lindsey 1997) will serve

to model this feature and to challenge the performance of the Weibull model:

Yi1k(t) = Fi1k(t) + ε1, ε1 ∼ N(0, σ2
1)

Fi1k(t) = φ5 + [φ1i − φ5] exp{− exp[φ3(φ2i − t)]}, (3.4)

where φ5 represents the initial jump. The coefficient φ1 ∼ N(0, σ2
φ1

) corresponds to the

asymptotic maximum dissolution. φ2i represents a capsule specific lag-time, φ3 corresponds

to the half-life of the curve.

3.2 In-Vivo Models

3.2.1 Convolution-based Models (O’Hara 2001)

Gillespie (1985), Gillespie et al. (1997), Dunne et al. (1999), O’Hara et al. (2001), and

Hayes et al. (2004) showed, based on in-vitro dissolution data and in-vivo immediate release
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plasma concentrations, that the slow release formulation concentrations can be predicted

and an IVIVC established using a convolution-based method. This method is more robust

than the deconvolution method (Dunne et al. 2005), and it jointly fits a set of models.

The controlled release plasma concentrations at time t, denoted by Yi2k(t), for the ith

subject taking treatment k, can be derived as the convolution of the unit impulse response

ci2δ and the in-vivo release curve Fi2k (Gillespie 1985):

Yi2k(t) =

∫ t

0

ci2δ(t − τ)F ′

i2k(τ)dτ + ε2,

ε2 ∼ N(0, σ2
2).

The in-vivo release curve Fi2k can be considered as the cumulative distribution func-

tion of the stochastic process representing the release of the molecule into solution. Hence,

F ′

i2k represents the corresponding density function of the release of the molecule into solu-

tion. The unobserved in-vivo release cumulative distribution function can be linked to the

in-vitro one using the following IVIVC model:

Fi2k(t) = g−1(θ0 + θ1t + sik + g(F1k(t))),

sik ∼ N(0, σ2
s).

The parameters θ0 and θ1 cope with dissolution changes in the gastrointestinal tract, whereas

the random effect sik represents inter-subject differences of the intestines. The link function

g(·) can be set equal to, for example, the logit, log-log, or the complementary log-log link

functions. In this paper, the link function will be limited to the logit function.

The method of O’Hara (O’Hara et al. 2001, Hayes et al. 2004) first estimates the

subject-specific parameters of the immediate release profile using a compartmental analysis

and in a second stage simultaneously models the in-vitro dissolution curves as well as the

convolution using the empirical Bayes estimates from the first stage.

3.2.2 Mixture Distribution Models

All published models are limited to homogeneous formulations. A naive approach would

be to ignore the heterogeneity of the formulation and fit the traditional model mentioned
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above for a homogenous formulation. However, in case of a heterogenous formulation of both

immediate and extended release material, the cumulative distribution function does not start

at 0 but rather at a quantity approximately similar to the proportion of immediate release

material within the mixture. The inclusion of this initial jump alters the density function

F ′

i2k(τ). Therefore, we propose in this section a new model that takes this heterogeneity into

account.

For the convolution model a similar derivation is possible. Recall from Section 2 that

the capsules represent a heterogeneous formulation, consisting in part of immediate release

and in part of extended release. As a result, two different underlying dissolution processes

can be expected to be present.

The principle of superposition within pharmacokinetics, i.e., the assumption that

each mechanism acts independently of each other and there is linear kinetics, means that

the PK concentration-time profile of the controlled release formulation can be described as

a weighted combination of each of the drug product PK-concentration-time profiles. This

is a valid assumption (Piotrovsky et al. 2003). Based on this principle, one part of the

profile corresponds to the immediate release drug product within the formulation, the other

one corresponds to the extended release drug product. The PK-profile corresponding to the

immediate release drug product can be considered as identical to the one observed whereas

the latter follows the convolution model as described in Section 3.2.1. Therefore, the following

new model is proposed:

Yi2k(t) = φ5Dci2δ(t) + [φ1 − φ5] D

∫ t

0

ci2δ(t − τ)F ′

i2k(τ)dτ + ε2, (3.5)

ε2 ∼ N(0, σ2
2),

where φ5 is the weight corresponding to the quantity of immediate release drug product

within the formulation and D represents the dose. This corresponds to the initial jump

observed in the in-vitro models.

Furthermore, the in-vivo release Fi2k(t) model is slightly modified compared to the
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proposal of O’Hara (2001):

Fi2k(t) = g−1(θ0 + θ1t + g(Fi1k(t))), (3.6)

where the index i stands for the capsule i dependent variability of the in-vitro dissolution

Fi1k. As this is unobserved for the capsule administered to the subject i, this is indirectly

included via the subject level. Thus, the random effects are included at the in-vitro level of

the model rather than as a random intercept. This corresponds to the underlying source of

variation. Further, the gastro-intestinal subject level sik was removed from the IVIVC.

This newly proposed model represents a mixture distribution at two levels. A first

mixture is situated in the in-vitro dissolution: it represents a mixture cumulative distribution

function of a step function for the immediate release material of the formulation on one

hand and a second cumulative distribution function such as the weibull distribution for the

slow release product on the other hand. The mixture is also present at a second level: it

is a combination of two normally distributed processes for the immediate release plasma

concentration time-profile on one hand and the convolution based profile for the slow release

product on the other hand. Again, the weight φ5 comes in to attribute the ratio of the two

distinct underlying release processes.

3.3 Model Fitting

The models for the immediate release plasma levels and the in-vitro dissolution were initially

fitted separately to obtain good starting values for fitting the IVIVC model. The immediate

release pharmacokinetics of Galantamine are known to follow a two-compartmental model

(Piotrovsky et al. 2003). This was based on population modelling of several studies in elderly
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patients:

Yi2δ(t) = ci2δ(t) + εiδk,

ci2δ(t) =
ka

VF

(

(k21 − αi)e
−αi(t−tlag)

(ka − αi)(βi − αi)
+

(k21 − βi)e
−βi(t−tlag)

(ka − βi)(αi − βi)

+
(k21 − ka)e

−ka(t−tlag)

(αi − ka)(βi − ka)

)

,

εiδk ∼ N(0, σ2
δ ), (3.7)

[

αi

βi

]

∼ N

([

α

β

]

,

[

s2
α cαβsαsβ

cαβsαsβ s2
β

])

.

In this model, VF is the apparent volume of distribution, tlag is a lag-time, ka is the absorption

coefficient, k21 the inter-compartmental clearance and α and β are clearance parameters. The

best fit to the data was attained by choosing random effects on α and β, with associated

variabilities σ2
α and σ2

β. This was based on visual inspection of the fit of the individual

profiles as well as by comparison of the likelihood functions. The absorption rate constant

ka could not be estimated by fitting the immediate release formulation alone because too

few samples were taken during the absorption phase shortly after drug intake and ka had to

be fixed in the immediate release model.

A fundamental change to the convolution method of O’Hara (O’Hara et al. 2001) is

that all models are fitted simultaneously, whereas O’Hara’s method first fits the immediate

release profile per subject and then in a second stage fits the convolution and the IVIVC using

the empirical Bayes estimates of the immediate release PK-profile. A possible drawback of

such a two-stage modelling approach is that this might lead to biased results (Verbeke and

Molenberghs 2000). By using a one-stage model, this source of possible bias is eliminated.

The possible impact is discussed further in Section 5.

Traditionally in pharmacokinetic modelling, the model fit is verified at the individual

subject level, i.e., the question is asked whether the model can fit each subject’s plasma

concentration profile. Thus a hierarchical model is used. In IVIVC modelling, one is not

interested in the behavior of the individual capsules or subjects, but rather in the formulation

itself, at the population level. In particular, the link between the in-vitro dissolution and
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in-vivo release process of the formulation is very important. Unlike in the linear setting, the

marginal and hierarchical models do not coincide when the random effects are significant.

Therefore, the random effects have to be integrated out to obtain the marginalized model.

The marginalization of the hierarchical model was performed as follows: 10000 capsules

were simulated and then averaged over. As such, the random effects were integrated out

(Molenberghs and Verbeke 2005) and the model plotted.

The set of models was implemented in the SAS procedure NLMIXED (version 9.1).

Model convergence was obtained using the first-order integration method of Beal and Sheiner

(1982). The convolution integral itself was approximated with the trapezoid rule. An exam-

ple of the SAS code can be found in the appendix.

3.4 Goodness-of-Fit

Following the regulatory guidances (FIP 1996, CDER 1997) the adequacy of the proposed

models was assessed using the average absolute percent prediction error (%PE). This was

defined as the mean of
∣

∣

∣

∣

xobs,i − xpred,i

xobs,i

∣

∣

∣

∣

× 100, (3.8)

where x.,i is the Area Under the Curve to the last measurable observation (AUClast) or the

maximal concentration (Cmax) of the empirical Bayes estimates and the observed concentra-

tions for subject i. Thus, for each observed and predicted profile per subject, the AUClast

and Cmax were calculated and the above ratios were obtained. Given its skewed distribu-

tion, all ratios were log-transformed to better approximate normality, the mean and its 90%

confidence interval was calculated and backtransformed.

4 Results

As mentioned in Section 3.1, the modified Gompertz function fitted the data well. Ran-

dom effects were added to φ1 and φ2 since, as seen in Figure 1, the asymptotic maximum

dissolution was capsule dependent. The random effect on the lag time improved the fit
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further.

A system of sub-models is proposed for the IVIVC modelling consisting of the com-

bining models 3.4, 3.5, 3.6, and 3.7. All four models are fitted simultaneously. This allows

exchange of information between models. Whereas the absorption rate constant ka could

not be estimated for the immediate release model alone due to insufficient early sampling

points, the pooling of information about common parameters from different data sources,

did allow for estimation of ka, i.e., ka is also present in the slow release formulation. Some

simplifications were done for the system of sub-models compared to the separate models: (i)

No random effect was used on the α-component of the two-compartmental model because

inclusion of this random effect made the model diverge; (ii) The dissolution random effects

φi1 and φi4 were forced to be independent otherwise estimation of the correlation could not

be established.

The following models were fitted: Model (1)–(2) using the exponential dissolution

and logit link without and with mixture, Model (3) with a Weibull dissolution and logit link

function, and Model (4) with Gompertz dissolution and logit link. Model (2)–(4) are the

newly proposed models to cope with the heterogeneity of the data. Estimates of the model

parameters can be found in Table 1 for the four different dissolution curves. For comparison

purposes, Table 2 was included with the parameter estimates of the Gompertz odds model

and the estimates after recalculation obtained from a population modelling (Piotrovsky et

al., 2003) of several studies in elderly patients. Vf represents 1000 liters instead of liters as

traditionally would be used. The PK-parameters obtained were within the same range as

the ones obtained from the population modelling, even though k21 and β were estimated a

factor three too high.

The fit based on the different dissolution models was not formally compared. A formal

comparison would require the calculation of the Extended Information Criterion (Yafune et

al., 2005). Given the long time needed to fit the models, this bootstrapping procedure

was considered practically infeasible. The model prediction of the controlled release plasma

concentration of a randomly chosen subject for the different models is depicted in Figure 4.
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The fit of the controlled release plasma concentrations was judged based on visual inspection

of the empirical Bayes estimates versus the observed controlled release profiles on the one

hand (Figure 5) and the average absolute percent prediction error on the other hand. The

fit of the immediate release concentrations can be found in Figure 6, the fit of the in-vitro

dissolution is presented in Figure 7 for the Gompertz odds model.

The %PE of the different models can be found in Table 3. The first two columns

correspond to the Cmax and AUClast as requested in the regulatory guidelines (FIP 1996,

CDER 1997), the last represents AUC0−4 and is an indication of the model fit for the data

up to 4 hours. The model with the exponential dissolution does not fit the data well for the

early time points. The addition of the mixture to the exponential dissolution improves the

model. The in-vitro exponential mixture dissolution model however misses the S-shape as

observed in the data, see Figure 7. Therefore, the model is extended to the Weibull, but the

improvement was limited, and the Gompertz model with mixture distribution. This model

remains under the 10% with its upper limit of the confidence interval.

In the above, the focus was on the subject level, i.e., the hierarchical model. For the

correlation between the in-vivo and the in-vitro dissolution curves, one is only interested

in the estimates for the formulation, not specifically at the subject level. The marginalized

model, i.e., after integrating out the random effects, is visualized in Figure 8 and Figure 9.

5 Discussion

A model with clear improvements over the standard IVIVC models at two levels is presented:

It allows the fitting of formulations containing both extended and immediate release material

and it is a true one-stage analysis method. We employed the SAS procedure Nlmixed rather

than the standardly used NONMEM package.

All publications up to now have been limited to homogeneous formulations. In this

paper, the convolution based method is extended for a heterogeneous formulation of both

an immediate and an extended release drug product by including a mixture distribution.
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Four different models were evaluated during the model building: The first model used the

convolution with the Exponential dissolution model and the logit link function. The average

percent error %PE of both Cmax and AUClast remained below the 10% criterion as in the

guidelines (FIP 1996, CDER 1997), see Table 3. However, the controlled release profiles

behave in a bimodal manner, i.e. the profile shows essentially an early, steep peak which

originates from the immediate release drug product, followed by a broader peak from the slow

release drug product. The early plasma concentrations are systematically underestimated

by the traditional model, as can be seen in the parameter AUC0−4. The fact that this

model performed adequately based on the criteria stated in the guidelines, even though it

underestimates the first four hours, can be explained as follows: as the formulation contained

only 25% of immediate release drug product, therefore, the first peak is small and the

criterion for Cmax is primarily fulfilled by the second peak. The part of the observed AUClast

corresponding to this initial peak on the other hand represents only a small portion of the

total exposure. Therefore, the poor estimation of the initial peak has little effect on the

%PE of the overall AUClast.

The model was therefore extended to the mixture convolution with the logit link func-

tion because this used the underlying heterogeneous structure of the capsules and fitted a

bimodal profile. The use of this mixture imposes, however, no restriction on the model. It re-

lies on the principle of superposition within pharmacokinetics, i.e., the assumption that each

mechanism acts independently of each other and there is linear kinetics. The metabolism

of the drug remains unchanged during the drug product release and only depends on the

amount of drug product released. The standard convolution model itself assumes already

the superposition principle and linear kinetics. The %PE for Cmax of this model remains

stable, but for AUCt and AUC0−4 the %PE improved. The fit of the in-vitro dissolution

data indicated however that further refining was required: the exponential model has a steep

incline for the first hours and converges to its asymptotic limit, whereas the in-vitro disso-

lution data showed an asymmetric S-shaped curve. The model was finetuned with the use

of the Weibull and the Gompertz model for the in-vitro dissolution in combination with the

logit link function. However, this does not lead to an additional decrease in %PE. The
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lack of improvement in %PE suggests that small misspecifications in the in-vitro dissolu-

tion model can not be distinguished from the noise of in-vivo testing, such as measurement

error, sampling time inaccuracies, ignoring subject dependent absorption due to sparse sam-

pling and other sources of variability. A more intense in-vivo sampling scheme shortly after

administration of the capsule might have allowed the inclusion of a random effect on the ab-

sorption coefficient and as such possibly highlight the difference between the models. Thus,

taking into account the heterogeneity of the vessels proves to be more important than small

misspecifications in the in-vitro dissolution model. Therefore traditional models should not

be used in case of formulations consisting of both immediate release and slow release drug

product. The risk of overfitting is limited given that the construction of the model is based

on the formulation properties and the clearly bimodal profiles.

All models meet the regulatory specifications on the point estimate, see Table 3.

Whereas the guidelines (FIP 1996, CDER 1997) focus only on the mean %PE to be inferior to

10% to conclude IVIVC predictability, this does not take into account the possible variability

of the prediction. Even though the average might be inferior to 10%, a large variability of

the individual %PE might indicate that some subject’s controlled release profile is poorly

estimated. Therefore, one should rather use the non-inferiority philosophy and look at the

upper limit of the 90% confidence interval.

A second, more fundamental change to the convolution method of O’Hara (O’Hara

et al. 2001) is that all models are fitted simultaneously, whereas O’Hara’s method first fits

the immediate release profile per subject and then fits in a second stage the convolution

and the IVIVC using the empirical Bayes estimates of the immediate release PK-profile. A

possible drawback of such a two-stage modelling approach is that this might lead to biased

results (Verbeke and Molenberghs, 2000). In the first stage, the immediate release PK-

profile is reduced to a couple of summary statistics and residual error is ignored. In the

second stage, these estimates are used as if they are error-free. Hence, the possible error

of these coefficients will be reallocated to the remaining coefficients and as such introduce

possibly bias. Fitting everything at once however does not ignore the error in the individual

compartmental PK-parameters. On the contrary, it allows a pooling of information about
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common parameters of the immediate and the extended release model. This might lead to

more accurate parameter estimation like for example the ka in the case study. However, no

formal comparison of the two approaches was performed yet. The advantage of the two-stage

approach is that the parameter space is split. As a result, the two-stage approach is more

flexible, in the sense of adding random effect, and model convergence is easier and faster.

In conclusion, a novel one-stage methodology was proposed as well as a mixture

distribution to cope with heterogeneous formulations in IVIVC testing. Based on the case

study it was shown superior to the traditional model.
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Appendix - SAS Code

As an example, the SAS code for the Gompertz model is given. The odds link function

was used. The dataset was structured as follows: capsule numbers were handled as if they

were subject levels (“crfid”) starting from 1000, whereas the patient numbers remained

below 1000. The variable “treat” indicated whether the data was from the immediate or the

controlled release formulation. The column “time” stands for the time the sample was taken.

Columns “ 1” up to “ 20” contained the all the sampling times of the in-vivo sampling in

consecutive order. The plasma concentration or dissolution percentage was in the variable

“brval”. The variable “indicator” indicates the order of the sample within the subject.

proc nlmixed data=ivcp01 method=firo;

parms lka = 1.5513 lVF = -1.7769 lk21 = -1.5949 lalpha = -2.7590

lbeta = -1.1698 tlag = 0.1499 s1 = 4.7484 s2 = 0.01 to 0.1

by 0.01 s2beta = 0.1896 theta0 = 0 theta1 = 0 phi1 = -2.0498

phi3 = 0.3291 phi4 = 3.5022 phi5 = -1.3546 s0 = 0.02436

sb4 = 0.2339 sb1 = 0.01 ;

bounds s0>0;

array t[20] _1-_20;

array cp_im[20];

array cp_ext[20];

array F2kder[20];

array expr9[20] ;

array expr11[20] ;
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array expr13[20] ;

array expr14[20] ;

array expr15[20] ;

array expr18[20] ;

array expr19[20] ;

array expr23[20] ;

array expr31[20] ;

/* In vitro dissolution */

if crfid gt 1000 then do;

mu = 100*(exp(phi5) + (1-exp(phi1+b1) - exp(phi5))*exp(- exp( phi3 *

((phi4+b4) - time))) );

sigma = (S0*mu)**2;

bbeta=0;

end;

/* Immediate release PK profile */

if treat = "IR" and crfid lt 1000 then do;

ka = exp(lka );

alpha = exp(lalpha );

beta = exp(lbeta +bbeta);

k21 = exp(lk21 );

VF = exp(lVF);

common = ka * Dose / VF ;

A1 = common *(k21 - alpha)/ ((ka-alpha)*(beta-alpha));

A2 = common *(k21 - beta)/ ((ka-beta)*(alpha-beta));

A3 = common *(k21 - ka)/ ((alpha-ka)*(beta-ka));

mu = A1 * exp(-alpha*(time-tlag)) + A2 * exp(-beta*(time-tlag))

+ A3 * exp(-ka*(time-tlag));

if mu lt 0 then mu = 0;

sigma=S1**2;

end;

else if treat =: "CR" and crfid lt 1000 then do ;

t[1] = 0;

/* Calculation of the convolution */

if indicator ne 1 then do;

mu=0;

do i = 2 to indicator;

ka = exp(lka );

alpha = exp(lalpha );

beta = exp(lbeta +bbeta);

k21 = exp(lk21 );

VF = exp(lVF);

common = ka * Dose / VF ;

A1 = common *(k21 - alpha)/ ((ka-alpha)*(beta-alpha));

A2 = common *(k21 - beta)/ ((ka-beta)*(alpha-beta));

A3 = common *(k21 - ka)/ ((alpha-ka)*(beta-ka));
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cp_im[i] = A1 * exp(-alpha*(time-tlag - t[i]))

+ A2 * exp(-beta*(time-tlag - t[i]))

+ A3 * exp(-ka*(time-tlag - t[i]));

/* Density function F2’ */

expr3 = exp(phi5);

expr6 = (1 - (exp(phi1+b1))) - expr3;

expr9[i] = exp((phi3 * (phi4+b4 - t[i])));

expr11[i] = exp(( - expr9[i]));

expr13[i] = expr3 + (expr6 * expr11[i]);

expr14[i] = 1 - expr13[i];

expr15[i] = expr13[i]/expr14[i];

expr18[i] = exp(((theta0 + (theta1 * t[i])) + (log(expr15[i]))));

expr19[i] = 1 + expr18[i];

expr23[i] = expr6 * (expr11[i] * (expr9[i] * phi3));

expr31[i] = expr18[i] * (theta1 + (((expr23[i]/expr14[i]) +

((expr13[i] * expr23[i])/(expr14[i]**2)))/expr15[i]));

F2kder[i] = (expr31[i]/expr19[i]) - ((expr18[i] * expr31[i])/

(expr19[i]**2));

cp_ext[i] = .5*(cp_im[i] * F2kder[i] + cp_im[i-1] * F2kder[i-1])

* (t[i]-t[i-1]);

mu = mu + cp_ext[i];

end;

end;

ka = exp(lka );

alpha = exp(lalpha );

beta = exp(lbeta +bbeta);

k21 = exp(lk21 );

VF = exp(lVF);

common = ka * Dose / VF ;

A1 = common *(k21 - alpha)/ ((ka-alpha)*(beta-alpha));

A2 = common *(k21 - beta)/ ((ka-beta)*(alpha-beta));

A3 = common *(k21 - ka)/ ((alpha-ka)*(beta-ka));

cir = A1 * exp(-alpha*(time-tlag)) + A2 * exp(-beta*(time-tlag))

+ A3 * exp(-ka*(time-tlag));

/* Mixture */

mu = (exp(phi5))* cir + (1-(exp(phi5))) * mu;

sigma= ((exp(phi5))*S1)**2 + ((1-(exp(phi5)))*S2)**2 ;

end;

model brval ~ N(mu, sigma);

random b1 b4 bbeta ~ normal([0, 0, 0],

[sb1*sb1,

0, sb4*sb4,

0, 0, s2beta*s2beta]) subject=crfid ;
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predict mu out=empirbayes;

run;
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Table 1: Parameter estimates (95% confidence interval) for
Models 1–4.

Model 1 Model 2 Model 3 Model 4

Est. Est. Est. Est.

Parameter (95% CI) (95% CI) (95% CI) (95% CI)

Immediate Release

ka 7.90 8.91 8.65 4.92

(3.13 ; 19.97) (4.20 ; 18.92) (4.11 ; 18.21) (4.23 ; 5.72)

VF 0.16 0.17 0.18 0.17

(0.14 ; 0.19) (0.16 ; 0.18) (0.17 ; 0.19) (0.16 ; 0.18)

k21 0.39 0.17 0.13 0.20

(0.13 ; 1.20) (0.10 ; 0.29) (0.06 ; 0.29) (0.14 ; 0.30)

α 0.08 0.07 0.08 0.06

(0.06 ; 0.10) (0.06 ; 0.09) (0.05 ; 0.12) (0.05 ; 0.07)

β 0.56 0.26 0.20 0.32

(0.18 ; 1.68) (0.18 ; 0.39) (0.13 ; 0.31) (0.22 ; 0.45)

tlag 0.29 0.33 0.33 0.23

(0.09 ; 0.49) (0.20 ; 0.46) (0.20 ; 0.46) (0.20 ; 0.26)

σδ 5.06 5.03 5.08 5.18

(4.61 ; 5.50) (4.61 ; 5.46) (4.64 ; 5.52) (4.73 ; 5.63)

σβ 0.16 0.20 0.20 0.17

(0.09 ; 0.23) (1.13 ; 1.31) (0.12 ; 0.29) (0.11 ; 0.24)

In Vitro Dissolution

φ1 1.00 1.00 0.90 0.88

(0.97 ; 1.03) (0.97 ; 1.03) (0.88 ; 0.92) (0.85 ; 0.90)

φ2 0.12 0.12 1.45 3.24

(0.11 ; 0.14) (0.11 ; 0.14) (1.38 ; 1.52) (2.86 ; 3.61)
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Table 1: Parameter estimates (95% confidence interval) for
Models 1–4. (continued)

Model 1 Model 2 Model 3 Model 4

Est. Est. Est. Est.

Parameter (95% CI) (95% CI) (95% CI) (95% CI)

φ3 -1.56 0.18 7.88 0.33

(-1.80 ; -1.32) (-0.33 ; 0.39) (7.49 ; 8.27) (0.31 ; 0.35)

φ5 0.20 0.24 0.27

(0.19 ; 0.22) (0.23 ; 0.25) (0.26 ; 0.29)

σ1 3.00 2.94 1.94 0.02

(2.57 ; 3.43) (2.52 ; 3.35) (1.65 ; 2.22) (0.02 ; 0.03)

σφ2
0.09 0.16 1.23 1.19

(0.04 ; 0.13) (0.09 ; 0.23) (0.71 ; 1.75) (0.67 ; 1.73)

σφ1
0.25

(0.13 ; 0.37)

Mixture Convolution

θ0 0.55 -0.37 0.32 -0.45

(0.34 ; 0.76) (-0.63 ; -0.11) (0.09 ; 0.55) (-0.80 ; -0.11)

θ1 0.16 0.06 -0.07 0.18

(0.11 ; 0.22) (0.03 ; 0.10) (-0.10 ; -0.04) (0.13 ; 0.23)

σ2 3.38 1.04 0.73 1.22

(3.08 ; 3.69) (0.83 ; 1.25) (0.35 ; 1.12) (0.70 ; 1.74)

23



Table 2: Parameter estimates of the Gompertz Odds Model Compared to the Population
Modelling (Piotrovsky 2003) applied on several studies on elderly patients.

Gompertz Odds Population Model

ka 4.29 3.05

Vf 0.17 0.18

k21 0.20 0.07

α 0.06 0.04

β 0.32 0.10

Table 3: Average Absolute Percent Prediction Error and its 90% confidence interval.

Model Cmax AUCt AUC0−4

1 5.12 (3.17 ; 8.25) 6.54 (3.55 ; 12.05) 15.27 (11.56 ; 20.18)

2 5.28 (3.22 ; 8.66) 2.87 (1.02 ; 8.10) 6.68 (4.07 ; 11.06)

3 8.16 (6.52 ; 10.21) 4.13 (2.22 ; 7.66) 7.88 (5.33 ; 11.66)

4 3.76 (2.39 ; 5.93) 6.49 (4.27 ; 9.86) 6.25 (4.52 ; 8.63)
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Figure 1: In-Vitro Dissolution Curves of Individual Capsules of the Controlled Release
Formulation
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Figure 2: Individual In-Vivo Plasma Concentrations for the Immediate Release Formulation
of Galantamine.
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Figure 3: Individual In-Vivo Plasma Concentrations for the Controlled Release Formulation
of Galantamine.
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Figure 4: Observed and Predicted Controlled Release Galantamine Concentrations of one
Subject for the Different Models.
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Figure 6: Observed and Predicted Immediate Release Galantamine Concentrations per Sub-
ject for the Gompertz Odds Model.
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Figure 8: Marginalized In-Vivo Release Prediction.
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Figure 9: Marginalized In-Vitro Dissolution versus In-Vivo Release Prediction.
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