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Abstract

The local influence diagnostics, proposed by Cook (1986), provide a flexible way to assess
the impact of minor model perturbations on key model parameters’ estimates. In this paper,
we apply the local influence idea to the detection of test speededness in a model describing
non-response in test data, and compare this local influence approach to the optimal person
fit index proposed by Drasgow and Levine (1986). The performance of both methods is
illustrated on the Chilean SIMCE mathematics test data.
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1 Introduction

Person fit or appropriateness measurement refers to a collection of statistical techniques for
evaluating the misfit of individual test performances to an item response theory (IRT) model or
other item-score patterns in a sample of persons. Generally, these methods do not allow for the
recovery of the mechanism that created the deviant item-score patterns, and hence can be seen
as the IRT analogues of the global influence diagnostics, see for instance Cook and Weisberg
(1982), and Chatterjee and Hadi (1988). However, some recent contributions explicitly test
against specific violations of a test model assumption or particular types of deviant item-score
patterns. For an up to date overview of the available person fit methodology we refer to Meijer
and Sijtsma (2001).

In the present paper we illustrate the possibilities the local influence diagnostics, introduced
by Cook (1986) as general measures to assess the impact of minor model perturbations, offer
for detecting test speededness, and compare in this respect their performance with the optimal
person fit statistic proposed by Levine and Drasgow (1988). Test speededness refers to testing
situations in which some examinees do not have ample time to answer all questions. Speededness
effects are often detrimental to the intended functioning of the test in the sense that the speed
with which one responds is usually not an important part of the construct of interest, yet
examinees affected by test speededness hurry through, randomly guess on or even fail to complete
items, usually at the end of the test, and hence receive ability estimates that underestimate their
capacities. In this respect it may be interesting to supplement test scores or response profiles
with an index that reflects the examinee’s sensitivity to test speededness. On the other hand,
the item difficulty parameters of items administered late in the test tend to be overestimated
(Douglas et al., 1998 and Oshima, 1994). Item response models accommodating test speededness
were proposed by Yamamoto and Everson (1997), Bolt et al. (2002), Wollack and Cohen (2004)
and Goegebeur et al. (2005a,b). The analysis described in this paper will be based on the model
Goegebeur et al. (2005a) developed for explaining non-response in test data. Under this model,
non-response emerges from a general tendency to omit in case one does not know the answer
and a test speededness effect, both taken to be examinee specific. As this model builds upon
classical IRT models, it is instructive to review some of these.

Let Ypi denote the binary response (correct/incorrect, coded Ypi = 1 and Ypi = 0, respectively)
of examinee p, p = 1, . . . , P , to item i, i = 1, . . . , I. In the classical one-parameter Rasch
model (1PL) (Rasch, 1960) Ypi depends on the examinee’s ability θp and item difficulty βi in
the following way

Ypi|θp ∼ Bern(Pi(θp)),

with

Pi(θp) =
exp(θp − βi)

1 + exp(θp − βi)
, βi, θp ∈ R (1)

and θp ∼ N(0, σ2
θ). Moreover, conditional on θp, all responses of subject p are assumed indepen-

dent, the so-called local item independence condition. The Rasch model has been extended in
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several ways. In the two-parameter logistic model (2PL) (Birnbaum, 1968) the random intercept
is weighted by an item parameter αi:

Pi(θp) =
exp(αi(θp − βi))

1 + exp(αi(θp − βi))
, αi > 0, βi, θp ∈ R (2)

so that the influence of the examinee’s ability on outcome depends on the item. The three-
parameter logistic model (3PL) (Birnbaum, 1968) extends the 2PL with an item-specific guessing
parameter ci:

Pi(θp) = ci + (1− ci)
exp(αi(θp − βi))

1 + exp(αi(θp − βi))
, αi > 0, βi, θp ∈ R, ci ∈ [0, 1).

The guessing parameter ci represents the probability of a correct answer under random guessing.

The remainder of this paper is organized as follows. In Section 2 we introduce a model for omitted
responses and test speededness. This model is derived from a decision tree that describes the
student’s possible states and actions when s/he encounters an item. In Section 3 we illustrate
how the optimal person fit test of Levine and Drasgow (1988) and the local influence diagnostics
of Cook (1986) can be used to highlight examinees affected by test speededness. In Section 4
we illustrate both methods with the Chilean SIMCE mathematics placement test data.

2 A model for test speededness and omitted items

In this section we introduce a model that provides a possible explanation for non-response in
test data. Under the postulated model, non-response arises from a tendency to omit in case one
does not know the answer and a test speededness effect, both taken to be examinee specific. The
proposed model is taken from Goegebeur et al. (2005a), where it proved useful for modeling
test speededness and non-response.

The model can be motivated as follows. When subject p encounters item i s/he is either knowl-
edgeable or ignorant. If knowledgeable the probability of a correct answer, denoted Pi(θp), is
given by (1) or (2). If ignorant, the examinee omits the item with probability Pi(ξ0p, ξ1p) and
guesses at random with probability 1− Pi(ξ0p, ξ1p), where we assume

Pi(ξ0p, ξ1p) =
exp(ξ0p + ξ1p i/I)

1 + exp(ξ0p + ξ1p i/I)
; ξ0p ∈ R, ξ1p > 0. (3)

The random effect ξ0p can be seen as the initial propensity of examinee p to omit items, while ξ1p

reflects the examinee-specific effect of test speededness, where speeding increases the probability
of an omitted response. Speededness is assumed to be a function of the item number, which
explains the covariate i/I. In case the examinee guesses at random, the answer is correct with
probability c. In Figure 1 the process described above is visually represented by a decision tree.

2



(p, i)

¡
¡

¡
¡

@
@

@
@

knows doesn’t know

@
@

@
@

¡
¡

¡
¡

guess no answer

¡
¡

¡
¡

@
@

@
@

correct wrong

c 1− c

Pi(θp) 1− Pi(θp)

Pi(ξ0p, ξ1p)1− Pi(ξ0p, ξ1p)

Figure 1: Decision tree representation of the test speededness model.

Clearly, this decision tree involves a categorical response variable with 3 possible levels: no
answer, wrong answer and correct answer, coded Y ′

pi := (Ypi0, Ypi1) = (1, 0), Y ′
pi = (0, 1), and

Y ′
pi = (0, 0), respectively. The corresponding conditional probabilities will be denoted by πpi0,

πpi1, and πpi2, and have expressions that follow immediately from Figure 1:

πpi0 = [1− Pi(θp)]Pi(ξ0p, ξ1p), (4)
πpi1 = [1− Pi(θp)][1− Pi(ξ0p, ξ1p)](1− c), (5)
πpi2 = [1− Pi(ξ0p, ξ1p)]c + {1− [1− Pi(ξ0p, ξ1p)]c}Pi(θp). (6)

The random effects θp, ξ0p, and log ξ1p are assumed to follow a multivariate normal distribution:



θp

ξ0p

log ξ1p


 ∼ N3(µ,Ω),

with µ′ = (0, µξ0 , µξ1) and Ω a positive definite covariance matrix. Conditional on the random
effects θp, ξ0p and ξ1p, the responses of examinee p to the I items are assumed to be independent.

Some remarks apply. First, the probability of a missing value depends on unobserved informa-
tion (the random effects) and hence missingness is allowed to be missing not at random (MNAR).
Second, the dropout and measurement processes are allowed to have some parameters in com-
mon, turning it into a shared parameter model. This implies that apart from the correct/wrong
answers, also missingness contains information about item difficulty and person ability. Third,
if Pi(ξ0p, ξ1p) = 0 then the proposed model reduces to the 3PL in case Pi(θp) is given by (2) and
to the 1PL extended with guessing (1PLc) if Pi(θp) is given by (1). Fourth, if Pi(ξ0p, ξ1p) > 0,
πpi2 is smaller than the probability of a correct answer under the 3PL or the 1PLc. This follows
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immediately from a simple rearrangement of terms. Under the proposed model the probability
of a correct answer is given by

πpi2 = Pi(θp) + [1− Pi(ξ0p, ξ1p)]c[1− Pi(θp)],

while under the 3PL the success probability is given by

Pi(θp) + c[1− Pi(θp)].

As a direct consequence, the lower asymptote (for θp → −∞) of the proposed model, given by
[1− Pi(ξ0p, ξ1p)]c, is smaller than the lower asymptote of the 3PL or the 1PLc (which is c).

Since the purpose of the paper is to identify examinees with response profiles affected by test
speededness effects, we will need to compare two models: a model without test speededness (the
reduced model, also referred to as the null model) and a test speededness model. To facilitate
the comparison and to introduce a generic formulation, we extend the model by including weight
parameters ωp, p = 1, . . . , P , in the probability of an omitted item in the following way

Pi(ξ0p, ξ1p|ωp) =
exp(ξ0p + ωpξ1p i/I)

1 + exp(ξ0p + ωpξ1p i/I)
. (7)

Under this parametrization, the reduced model is obtained for ωp = 0, p = 1, . . . , P , whereas
the test speededness model results from setting ωp = 1, p = 1, . . . , P , see also Goegebeur et al.
(2005a).

3 Person fit for test speededness

3.1 Optimal person fit test

Drasgow and Levine (1986) and Levine and Drasgow (1988) used the Neyman-Pearson lemma to
construct optimal person fit indices. In this, optimal means that for a given level of significance
no other procedure can attain a higher probability of detecting aberrant response patterns. The
basic idea is to compute the probability of a response vector Y p under two competing models,
describing normal and aberrant test taking behavior, respectively, followed by a decision on
the basis of their ratio. In their work, Drasgow and Levine (1986), and Levine and Drasgow
(1988) concentrated mainly on the detection of spuriously low (e.g. due to alignment errors,
atypical education) and high (copying answers, cheating) response patterns, but of course the
procedure can be equally well applied to detect other forms of aberrant behavior. In the current
paper, normal test taking behavior refers to non-speeded examinees whereas aberrant test taking
behavior refers to examinees affected by test speededness effects. In this respect, for the model
proposed in Section 2 and denoting Y p = (Y p1, . . . ,Y pI)′, the decision about the nature of test
taking behavior will be based on the ratio

Λp =
P (Y p = yp | aberrant )
P (Y p = yp | normal )

(8)
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with

P (Y p = yp | aberrant ) =
∫

R2

∫ ∞

0
Ap(1)f(θp, ξ0p, ξ1p)dξ1pdξ0pdθp,

P (Y p = yp | normal ) =
∫

R2

∫ ∞

0
Ap(0)f(θp, ξ0p, ξ1p)dξ1pdξ0pdθp,

=
∫

R2

Ap(0)f(θp, ξ0p)dξ0pdθp,

and

Ap(ωp) = P (Y p = yp|θp, ξ0p, ξ1p, ωp)

=
I∏

i=1

P (Y pi = ypi|θp, ξ0p, ξ1p, ωp)

=
I∏

i=1

[πpi0(ωp)]ypi0 [πpi1(ωp)]ypi1 [πpi2(ωp)]1−ypi0−ypi1 , (9)

where f denotes the joint density function of the random effects. In (9), πpi0(ωp), πpi1(ωp) and
πpi2(ωp) are given by (4), (5) and (6), respectively, with Pi(ξ0p, ξ1p) replaced by Pi(ξ0p, ξ1p|ωp).
The hypothesis of normal test behavior of examinee p is rejected at level α in favor of aberrant
test behavior, in casu speeded test behavior, if Λp is too large, or formally, if

log Λp > cα,

where cα is quantile 1− α of the null distribution of log Λp.

Note that the likelihood ratio statistic depends on unknown model parameters that hence need
to be estimated. Moreover, application of (8) requires that both the reduced and the test
speededness model are fitted to the available data. This can be done by using for instance
the SAS NLMIXED procedure; example SAS code is given in the appendix. For the actual
computation of Λp the authors developed a Fortran program. In this program the numerical
integrations are performed by the NAG library subroutines D01BBF and D01FBF (NAG, 1993).

3.2 Local influence diagnostics

Global influence diagnostics are based on a case-deletion approach (Chatterjee and Hadi, 1988).
Broadly, all or part of a subject’s measurements are deleted and key aspects of the model refitted,
such as the likelihood value, parameter estimates, etc. When the distance between the overall
and the refitted measure is large in a precisely defined sense, a case is considered influential.
Global influence or case-deletion diagnostics have been well developed, for example, for linear
regression and explicit forms derived. One of the main problems with the method applied to
more general settings is (1) that the application of the method can be computer-intensive since
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no closed form expressions exist and (2) it may be difficult to gain further insight as to why a
certain subject, observation, or set of observations is influential.

To overcome these limitations, local influence methods have been suggested, see Cook (1986).
The principle of these is to investigate how the results of an analysis change under infinitesimal
perturbations of the model. For instance, Beckman et al. (1987) used local influence to assess
the impact of perturbing the error variances, the random effect variances and the response vector
in the linear mixed model. In the same context, Lesaffre and Verbeke (1998) illustrated that the
local influence approach is also useful for the detection of influential subjects in a longitudinal
analysis.

In the present context, we use local influence diagnostics to assess the impact introducing a
random test speededness effect has on the key model parameter estimates. This can be done by
considering (7) as the mechanism describing non-response in case one does not know the answer
to a particular item. Indeed, the case ωp = 0, p = 1, . . . , P , corresponds to a model without
a test speededness effect. If a small perturbation of a particular ωp leads to large differences
in the parameter estimates, then examinee p exerts an unusually large impact on the model.
We will now sketch the basic principles of local influence analysis and apply these to our test
speededness problem. In this we assume Pi(θp) is modeled by a 1PL.

The log-likelihood function of the perturbed model is given by

`(θ|ω) =
P∑

p=1

`p(θ|ωp)

in which `p(θ|ωp) denotes the log-likelihood contribution of examinee p, i.e.

`p(θ|ωp) = lnP (Y p = yp|ωp),

with

P (Y p = yp|ωp) =
∫

R2

∫ ∞

0
Ap(ωp)f(θp, ξ0p, ξ1p)dξ1pdξ0pdθp,

Ap(ωp) is given by (9), ω′ = (ω1, . . . , ωP ), θ′ = (β1, . . . , βI , σ
2
θ , µξ0 , σ

2
ξ0

, σ12, c) and where σ12 =
Cov(θ, ξ0). It is assumed that ω belongs to an open subset Ω̃ of RP . For ω equal to ω0 =
(0, . . . , 0)′, with ω0 ∈ Ω̃, `(θ|ω0) corresponds to a model without test speededness effects, and
this for all values of θ.

Let θ̂ be the maximum likelihood estimator for θ, obtained by maximizing `(θ|ω0), and let
θ̂ω denote the maximum likelihood estimator for θ under `(θ|ω). The local influence approach
compares θ̂ and θ̂ω. Similar estimates indicate that the parameter estimates are stable with
respect to the proposed perturbations of the postulated model. Strongly different estimates
indicate that the estimation procedure is highly sensitive with respect to perturbations. Cook
(1986) proposed to measure the distance between θ̂ and θ̂ω by the likelihood displacement,
defined by

LD(ω) = 2[`(θ̂|ω0)− `(θ̂ω|ω0)]. (10)
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Note that the log-likelihood function of the postulated model is evaluated in both θ̂ and θ̂ω and
hence LD(ω) ≥ 0. Note also that the likelihood displacement takes the variability of θ̂ into
account. Indeed, LD(ω) will be large if `(θ|ω0) is strongly curved at θ̂, which means that θ
is estimated with high precision. From this perspective, a graph of LD(ω) versus ω contains
essential information on the influence of the perturbation scheme of interest. It is useful to view
this graph as the geometric surface formed by the P + 1 dimensional vector

α(ω) =
(

ω
LD(ω)

)

as ω varies throughout Ω̃. Since this surface, the so-called influence graph, can only be depicted
when P ≤ 2, Cook (1986) proposed to look at normal curvatures of α(ω) in ω0 in a direction l,
with l a P dimensional vector of unit length. These normal curvatures can be easily calculated
as

Cl = 2|l′∆′L̈−1∆l|, (11)

with

L̈ =
∂2`(θ|ω0)

∂θ∂θ′

∣∣∣∣
θ=bθ

and ∆ a (I + 5)× P matrix of which the p−th column ∆p is given by

∆p =
∂2`p(θ|ωp)

∂θ∂ωp

∣∣∣∣
θ=bθ,ωp=0

.

The normal curvature (11) can be used in several ways to study the influence graph α(ω), each
one corresponding to a particular direction l in Ω̃. One evident choice is the vector lp which
has a one on position p and zeros elsewhere, corresponding to a perturbation of the postulated
model by weight ωp only. In this case (11) reduces to

Cp = 2|∆′
pL̈

−1∆p|. (12)

Other important directions are the directions of minimal and maximal curvature, denoted lmin

and lmax, respectively, obtained as solutions to the minimization and maximization, respectively,
of Cl over the space of all vectors of unit length. It can be shown that Clmin

and Clmax correspond
to the smallest and largest eigenvalues of −2∆′L̈−1∆ and lmin and lmax are the corresponding
eigenvectors. Note that, compared to Λp, the computation of Cp requires only a null model fit,
yielding significant gains in computation time, especially on large data sets.

The calculation of the local influence measures can be carried out as soon as expressions for L̈
and ∆ have been obtained. The elements of L̈ are not computed analytically as these can be
easily obtained from the maximization of `(θ|ω0), for instance by using the SAS NLMIXED
procedure. The elements of the columns ∆p of ∆ and some theoretical properties thereof are
given in Goegebeur et al. (2005a) and will not be repeated here. The authors developed a
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Fortran program to compute the elements of ∆, the normal curvatures Cl, and the direction of
maximal curvature lmax. In this program, the numerical integrations are performed by the NAG
library subroutines D01BBF and D01FBF, and the direction of maximal curvature is computed
using subroutine F02FCF (NAG, 1993).

Note that the perturbation scheme as defined above involves, besides θ, also the parameters µξ1 ,
σ2

ξ1
, σ13 and σ23, where σ13 = Cov(θ, ξ1) and σ23 = Cov(ξ0, ξ1). These additional parameters

have to be fixed by the user since a null model fit only produces estimates for the components
of θ. However, this more general parametrization allows to assess the impact of perturbing the
null model with an extra random effect, in particular a random test speededness effect, that may
be correlated with the random effects in the null model. If one is only interested in the effect of
perturbing the model with a fixed, i.e. non-random, test speededness effect, one simply fixes σ13

and σ23 at zero. Doing so, the mean of ξ1p appears as a common scale factor in the expressions
for the elements of ∆, and hence can be safely ignored, see Goegebeur et al. (2005a).

So far, the discussion of local influence diagnostics was focused on the complete θ vector. Similar
principles can be applied to obtain the local influence of perturbations on subsets of θ, see Cook
(1986), Verbeke et al. (2001) and Goegebeur et al. (2005a). This will not be pursued in the
current paper.

4 SIMCE mathematics test data

The SIMCE (Sistema de Medición de la Calidad de la Educación) project in Chile has developed
mandatory language and mathematics tests to assess on a regular basis the educational progress
in three levels: 4th, 8th and 10th graders. All students in the grade level in the country (public,
private and mixed support schools) are expected to take the tests when they are scheduled (every
3 or 4 years). In this paper we will consider the data from the 2001 administration of the SIMCE
mathematics test to the 10th graders in public schools. The mathematics test contains 48 items,
each having 4 response alternatives, and covers topics such as problem formulation, functions,
simple algebra, geometry and probability. For instance, simplifying 4

x2 / 2
x , or computing 30%

of USD 2,000 in the context of an applied problem. The test is administered under a fixed
time limit of 90 minutes. The database under consideration contains response profiles of 36,118
examinees. To illustrate the use of the normal curvatures and the likelihood ratio statistic
we will use a sample of 3,000 examinees randomly drawn from this database. In Figure 2, the
sample is summarized by plotting the proportions of omitted answers (solid line), wrong answers
(dashed line) and correct answers (dashed-dotted line) as a function of the item number. The
proportions of omitted answers vary between 0.0020 and 0.0537 with mean 0.0176 and standard
deviation 0.0117. Out of the 3,000 examinees, 626 (20.87%) have a response profile with at least
one omitted answer. Note also that the proportion of omitted items slightly increases with the
item number, an effect that may be due to the fixed time limit administration of the test. The
proportions of wrong answers are in the range [0.1600, 0.7889] with mean 0.4745 and standard
deviation 0.1589. Finally, the proportions of correct answers are between 0.1913 and 0.8380 with
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mean 0.5079 and standard deviation 0.1660.

Item
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0
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0

Figure 2: Proportion of missing data (solid line), wrong answers (dashed line) and correct
answers (dashed-dotted line) together with the estimated theoretical proportion under the test
speededness model (dotted line).

In Table 1 the reduced model and the test speededness model are compared on the basis of
−2`, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). All
the analyses are performed under the assumption of independent random effects. Note that the
reduced model is nested in the test speededness model and hence will always have a larger −2`
value. The difference of the −2` values can be used to construct a likelihood ratio test for the
null hypothesis of the reduced model. Given a difference of 530, there is overwhelming evidence
in favor of the test speededness model. Also the AIC and BIC indicate the test speededness
model as the most appropriate one to describe the SIMCE mathematics test data. Table 2
shows the estimates of the parameters related to the random effects and the random guessing
parameter c, under both the reduced model and the test speededness model. Figure 3 contains
for both models the estimates of the item difficulty parameters.

To obtain an indication about the fit of the test speededness model to the SIMCE mathematics
data, we show in Figure 2 also the estimated theoretical proportions of omissions, wrong answers
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Table 1: Goodness-of-fit statistics for the reduced and the test speededness model.

Reduced model Speeded model
−2` 184,526 183,996
AIC 184,630 184,104
BIC 184,943 184,428

Table 2: Parameter estimates under the reduced model and the test speededness model.

Reduced model Speeded model
Parameter estimate standard error estimate standard error

σ2
θ 0.9928 0.0324 1.0155 0.0330

µξ0 -5.3783 0.0750 -5.7481 0.0965
σ2

ξ0
3.4854 0.1083 3.4794 0.1372

µξ1 - - -1.7657 0.2845
σ2

ξ1
- - 1.7933 0.2558

c 0.1472 0.0050 0.1524 0.0049

and correct answers (dotted lines), given by

P (Ypi0 = 1, Ypi1 = 0) =
∫

R2

∫ ∞

0

[1− Pi(θp)]Pi(ξ0p, ξ1p)dF3(ξ1p)dF2(ξ0p)dF1(θp),

P (Ypi0 = 0, Ypi1 = 1) = (1− c)
∫

R2

∫ ∞

0

[1− Pi(θp)][1− Pi(ξ0p, ξ1p)]dF3(ξ1p)dF2(ξ0p)dF1(θp),

P (Ypi0 = 0, Ypi1 = 0) = c

∫

R

∫ ∞

0

[1− Pi(ξ0p, ξ1p)]dF3(ξ1p)dF2(ξ0p) +
∫

R2

∫ ∞

0

{1− [1− Pi(ξ0p, ξ1p)]c}Pi(θp)dF3(ξ1p)dF2(ξ0p)dF1(θp),

with F1, F2 and F3 denoting the distribution functions of examinee ability, initial propensity
to omit and examinee-specific effect of test speededness, respectively, and with the unknown
parameters replaced by their respective maximum likelihood estimate, as a function of item
number. As is clear from Figure 2, the empirical and estimated theoretical proportions agree
quite well, indicating a good fit of the test speededness model.

We now try to identify the examinees with response profiles affected by test speededness ef-
fects. This is performed by computing the likelihood ratio test statistic (8), with unknown
parameters replaced by their maximum likelihood estimates, and the normal curvature (12),
for p = 1, . . . , 3000. Since interest is in the extreme cases, i.e. the most significant likelihood
ratio test and largest normal curvatures, we examine the 20 largest values of both. In Figure
4 we show the response profiles in the intersection of the sets of examinees with the 20 largest
observations for Cp and Λp. This intersection contains 10 response profiles, of which all clearly
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Figure 3: Estimated item difficulties under the reduced (solid line) and the test speededness
model (dashed line).

contain a large number of omissions near the end of the test. Moreover, the transition from
responses (correct or wrong) to omissions is quite abrupt. With the exception of one profile
(examinee 1536), the same holds for the 10 non-overlapping cases of Λp, see Figure 5. Based on
Figure 6, the remaining non-overlapping cases identified by Cp still contain a lot of omissions,
especially near the end of the test, but the transition from responses to omissions is no longer
always clear cut. A possible explanation for this phenomenon could be that, given the relatively
high variability of the item difficulties, examinees with quite variable response profiles contain
more information about θ, i.e. have a log-likelihood contribution that is more strongly curved
at θ̂, than those with less variable profiles, and hence will be more likely to be included in the
set of extreme Cp measures.

To assess the correspondence between the sets of extreme cases, identified by the two procedures,
we computed the proportion of overlap in the highlighted examinees for the largest k values of
Cp and Λp, with k = 5, . . . , 300, see Figure 7. As is clear from this figure, the overlap varies
between 40% and 60%, indicating that the methods agree quite well in the identification of
examinees affected by test speededness.
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Figure 4: Intersection of the sets of examinees with the 20 largest values for Cp and Λp: (a)
examinee 99, (b) examinee 192, (c) examinee 497, (d) examinee 827, (e) examinee 846, (f)
examinee 866, (g) examinee 1637, (h) examinee 2013, (i) examinee 2377 and (j) examinee 2769.

5 Discussion and conclusion

In this paper we compared the performance of the optimal appropriateness statistic proposed
by Drasgow and Levine (1986) and the local influence approach of Cook (1986) with respect to
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Figure 5: Likelihood ratio - non-overlapping cases: (a) examinee 48, (b) examinee 826, (c)
examinee 1027, (d) examinee 1181, (e) examinee 1267, (f) examinee 1536, (g) examinee 1821,
(h) examinee 1945, (i) examinee 2216 and (j) examinee 2946.

the detection of test scores affected by test speededness effects. The framework for this person
fit analysis was the model for omitted responses in test data recently proposed by Goegebeur et
al. (2005a). Under this model, non-response emerges from a general tendency to omit answers
in case one does not know the answer, and a test speededness effect, both taken to be examinee
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Figure 6: Normal curvatures - non-overlapping cases: (a) examinee 188, (b) examinee 193, (c)
examinee 215, (d) examinee 554, (e) examinee 1133, (f) examinee 1753, (g) examinee 1767, (h)
examinee 2322, (i) examinee 2330 and (j) examinee 2489.

specific. Under the optimal appropriateness approach, two models are compared, a model with
and one without test speededness, and the decision about the nature of an examinee’s test
taking behavior is based on the ratio of the response profile probabilities under both models.
This approach is optimal in the sense that no other procedure with the same size can yield a
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Figure 7: Proportion of overlap in the largest k values of Cp and Λp.

higher detection rate. On the other hand, the local influence approach starts from a postulated
model, here a model without a test speededness effect, and looks at the impact minor model
perturbations have on the parameter estimates. Although the statistics considered are developed
for quite different purposes, hypothesis testing in case of the optimal person fit test versus
assessment of local influence in case of the normal curvatures, the results obtained on the
SIMCE test data showed that both offer promising perspectives with respect to detecting test
speededness. To get a better understanding of the true virtues of these methods in this respect,
a more thorough examination is needed, for instance on the basis of an extensive simulation
study. Work on this is in progress.

The local influence approach offers a very general and flexible framework for assessing the local
impact of model perturbations and the possibility to define these perturbations on an examinee
basis entails virtually unlimited capacities for tackling person fit problems. In fact, every aspect
of the fit of a postulated model can be scrutinized by introducing perturbation parameters
on the appropriate places in this model. Doing so on an examinee basis allows to identify
examinees that have a considerable impact on the key model parameter estimates when the
model under consideration is slightly altered in the direction of an alternative description of
test-taking behavior.
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Appendix: Example SAS code

Model without test speededness effect

data geg;
infile ’e:\simce\simce1.txt’;
input y i person x1-x48;
run;

ods output CovMatParmEst=covm ParameterEstimates=estimates
Hessian=hessian ;

proc nlmixed data=geg method=gauss technique=newrap noad
maxiter=5000 maxfu=500000 qpoints=5 cov hess;

parms b1-b48=-1 s2=1 mxi1=0 vxi1=1 c=.25;

bounds 0 < c < .5;

b = b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7+b8*x8+b9*x9+b10*x10+
b11*x11+b12*x12+b13*x13+b14*x14+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19+b20*x20+
b21*x21+b22*x22+b23*x23+b24*x24+b25*x25+b26*x26+b27*x27+b28*x28+b29*x29+b30*x30+
b31*x31+b32*x32+b33*x33+b34*x34+b35*x35+b36*x36+b37*x37+b38*x38+b39*x39+b40*x40+
b41*x41+b42*x42+b43*x43+b44*x44+b45*x45+b46*x46+b47*x47+b48*x48;

pi = exp(xi1)/(1+exp(xi1));

p = exp(theta-b)/(1+exp(theta-b));

if (y=0) then prob=(1-p)*pi; else if (y=1) then
prob=(1-p)*(1-pi)*(1-c); else if (y=2) then
prob=(1-pi)*c+(1-(1-pi)*c)*p;

ll=log(prob);

model y ~ general(ll);

random theta xi1 ~ normal([0,mxi1],[s2,0,vxi1]) subject=person;

run;
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Test speededness model

data geg;
infile ’e:\simce\simce1.txt’;
input y i person x1-x48;
run;

ods output CovMatParmEst=covm ParameterEstimates=estimates
Hessian=hessian ;

proc nlmixed data=geg method=gauss technique=newrap noad
maxiter=5000 maxfu=500000 qpoints=5 cov hess;

parms b1-b48=-1 s2=1 mxi1=0 vxi1=1 mxi2=0 vxi2=1 c=.25;

bounds 0 < c < .5;

b = b1*x1+b2*x2+b3*x3+b4*x4+b5*x5+b6*x6+b7*x7+b8*x8+b9*x9+b10*x10+
b11*x11+b12*x12+b13*x13+b14*x14+b15*x15+b16*x16+b17*x17+b18*x18+b19*x19+b20*x20+
b21*x21+b22*x22+b23*x23+b24*x24+b25*x25+b26*x26+b27*x27+b28*x28+b29*x29+b30*x30+
b31*x31+b32*x32+b33*x33+b34*x34+b35*x35+b36*x36+b37*x37+b38*x38+b39*x39+b40*x40+
b41*x41+b42*x42+b43*x43+b44*x44+b45*x45+b46*x46+b47*x47+b48*x48;

xi2s=exp(xi2);
pi = exp(xi1+xi2s*i/48)/(1+exp(xi1+xi2s*i/48));

p = exp(theta-b)/(1+exp(theta-b));

if (y=0) then prob=(1-p)*pi; else if (y=1) then
prob=(1-p)*(1-pi)*(1-c); else if (y=2) then
prob=(1-pi)*c+(1-(1-pi)*c)*p;

ll=log(prob);

model y ~ general(ll);

random theta xi1 xi2 ~ normal([0,mxi1,mxi2],[s2,0,vxi1,0,0,vxi2])
subject=person;

run;
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