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Summary. In the analyses of incomplete longitudinal clinical trial data, there

has been a shift, away from simple methods that are valid only if the data are

missing completely at random (MCAR), to more principled ignorable analyses,

which are valid under the less restrictive missing at random (MAR) assumption.

The availability of the necessary standard statistical software nowadays allows

for such analyses in practice. While the possibility of data missing not at random

(MNAR) cannot be ruled out, it is argued that analyses valid under MNAR are

not well suited for the primary analysis in clinical trials. Rather than either

forgetting about or blindly shifting to an MNAR framework, the optimal place

for MNAR analyses is within a sensitivity analysis context. One such route

for sensitivity analysis is to consider, next to selection models, pattern-mixture

models or shared-parameter models. The latter can also be extended to a latent-

class mixture model, the route taken in this paper. The so-obtained flexible model

is submitted to the test in simulations and applied to data from a depression trial.

Key Words: Latent class, Nonrandom missingness, Random effect, Shared

parameter
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1 Introduction

Data arising from studies with observations made repeatedly over time are often prone

to incompleteness. In the context of such longitudinal studies, missingness predominantly

occurs in the form of dropouts, in which subjects fail to complete the study for one reason

or another.

The nature of the dropout mechanism can affect the results from analyses of incomplete data.

Since one can never be certain about the dropout mechanism, certain assumptions have to be

made. When referring to the missingness process, we will use the terminology introduced by

Rubin (1976). A non-response process is said to be missing completely at random (MCAR) if

the missingness is independent of both unobserved and observed data, and missing at random

(MAR) if, conditional on the observed data, the missingness is independent of the unobserved

measurements. A process that is neither MCAR nor MAR is termed non-random (MNAR).

In the context of likelihood inference, and when the parameters describing the measurement

process are functionally independent of the parameters describing the missingness process,

MCAR and MAR are ignorable, in which case the missingness process can be ignored when

interest is in inference for the longitudinal process only, whereas an MNAR process is non-

ignorable. In contrast, for frequentist inference, the stronger condition of MCAR is required

to ensure ignorability.

Simple methods to tackle incomplete longitudinal data, such as complete case analysis,

last observation carried forward analysis, and other forms of single imputation, have been

popular. However, a major drawback is that such methods are valid only under the restrictive

MCAR assumption or even more stringent conditions. Hence, the primary analyses should

move from such simple methods to an analysis valid under the MAR assumption, which is

not more difficult to conduct (Molenberghs et al., 2004; Jansen et al., 2006). For example,

likelihood-based analyses using linear mixed or generalized linear mixed models are valid

under MAR, and can be conducted using standard statistical software. Further, since non-

random methods allow the missingness to depend on the unobserved or missing values, it is

clear that the MNAR assumption is not verifiable (Laird, 1994; Molenberghs, Kenward and
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Lesaffre, 1997). Therefore, fitting a single MNAR model will not be trustworthy. However,

this does not mean we should ignore such models, rather we should use them in a sensitivity

analysis framework.

The distinction between the three different missingness mechanisms, as described above,

is made within the framework of selection models. Another form of sensitivity analysis,

besides fitting several plausible M(N)AR models, consists of using pattern-mixture or shared-

parameter models, which are introduced in the next section.

In this paper, we propose a so-called latent-class mixture model, bringing together features of

the selection, pattern-mixture, and shared-parameter model frameworks. Precisely, informa-

tion from the location and evolution of the response profiles, a selection model concept, and

from the dropout patterns, a pattern-mixture idea, is used simultaneously to define latent

groups and variables, a shared-parameter feature. This approach has a number of appealing

features. First, it allows for using the information in a more symmetric and therefore more

elegant way. Second, apart from providing a more flexible modeling tool, the new frame-

work is ideally suited to be used as a sensitivity analysis instrument. Third, a strong added

advantage over existing methods is that we now will be able to classify subjects into latent

groups. While this has to be done with due caution, it can enhance substantive knowledge

and generate hypotheses for further research. Fourth, while computational burden evidently

increases, fitting the proposed method is remarkably stable and falls within acceptable time

limits for applications of the type considered here and for simulations reported in this paper.

The reader should be aware that neither the proposed model nor any other alternative can

be seen as a tool to, for example, definitively test the null hypothesis of MAR versus the

MNAR alternative, a fact amply documented in the sensitivity analysis literature. This is

why the method’s use lies predominantly within the sensitivity analysis context. Such a

sensitivity analysis is clearly useful when the more elaborate model modifies the results from

the simpler alternative. However, even when it confirms earlier results, as will be the case

in our data analysis, it will typically increase confidence in the conclusions reached.
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The general latent-class mixture model is presented in Section 2. To show the performance

of this model, a simulations study is considered in Section 5. Finally, in Section 6, data from

a depression clinical trial are analyzed using a latent-class mixture model within a sensitivity

analysis.

2 Latent-Class Mixture Models

Let the random variable Yij denote the response of interest, for the ith individual, designed

to be measured at time tij, i = 1, . . . , N , j = 1, . . . , ni. The outcomes can be grouped into

a vector Y i = (Yi1, . . . , Yini
)′. In addition, define a dropout indicator Di for the occasion

at which dropout occurs, i.e., Ydi
is the first missing value, and apply the convention that

Di = ni + 1 for a complete sequence. It is often convenient to split the vector Y i into

observed (Y o
i ) and missing (Y m

i ) components, respectively.

In principle, one would like to consider the density of the full data f(yi, di|θ,ψ), where the

parameter vectors θ and ψ describe the measurement and missingness processes, respec-

tively. Covariates are assumed to be measured, but have been suppressed from notation for

simplicity.

This full density function can be factorized in different ways, each leading to a different

framework. The selection model framework is based on the following factorization (Rubin,

1976; Little and Rubin, 1987):

f(yi, di|θ,ψ) = f(yi|θ)f(di|yi,ψ).

The first factor is the marginal density of the measurement process and the second one is the

density of the missingness process, conditional on the outcomes. As an alternative, one can

consider so-called pattern-mixture models (Little, 1993, 1994) using the reversed factorization

f(yi, di|θ,ψ) = f(yi|di, θ)f(di|ψ).

This can be seen as a mixture of different populations, characterized by the observed pattern

of missingness.
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Instead of using the selection modelling or pattern-mixture modelling framework, the mea-

surement and the dropout process can be jointly modelled by using a shared-parameter

model as it is introduced in Wu and Carrol (1988), Ten Have et al. (1998), Wu and Bailey

(1989), Mori, Woodworth and Woolson (1992), Follmann and Wu (1995), and Little (1995).

These methods assume there exists a vector of random effects bi, conditional upon which

the measurement and dropout processes are independent. This shared-parameter model can

be formulated by the following factorization

f(yi, di|bi, θ,ψ) = f(yi|bi, θ)f(di|bi,ψ).

We propose an extension of this shared parameter model capturing possible heterogeneity

between the subjects, which is not measured through a covariate, but rather through a latent

variable. We call this model a latent-class mixture model. Next to one or more random

effects, or so-called shared parameters, bi, such a model contains a latent variable, Qi,

dividing the population in g subgroups. This latent variable is a vector of group indicators

Qi = (Qi1, . . . , Qig), defined as Qik = 1, if subject i belongs to group k, and 0 otherwise.

The measurement process as well as the dropout process depend on this latent variable,

not only directly, but also through the subject-specific effects bi. The distribution of Qi is

multinomial and defined by P (Qik = 1) = πk, where k ranges from 1 to g and πk denotes

the group or component probability. Note that the component probabilities are restricted

through
∑g

k=1 πk = 1. In what follows, πk will also be called the prior probability for any

observation to belong to the kth component of the mixture.

The measurement process will be modelled by a heterogeneity linear mixed model proposed

by Verbeke and Lesaffre (1996) and also described by Verbeke and Molenberghs (2000,

Chapter 12), i.e.,

Y i|qik = 1, bi ∼ N(X iβk +Zibi,Σ
(k)
i ),

where X i and Zi are design matrices, βk are fixed effects, possibly depending on the group

components, bi denote the shared parameters, following a mixture of g normal distributions

with mean vectors µk and covariance matrices Dk, i.e.,

bi|qik = 1 ∼ N(µk,Dk),
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and thus

bi ∼
g∑

k=1

πkN(µk,Dk).

The measurement error terms εi follow a normal distribution with mean zero and covariance

matrix Σ
(k)
i and are independent of the shared parameters. The mean and the variance of

Y i can be derived as:

E(Y i) = X i

g∑

k=1

πkβk +Zi

g∑

k=1

πkµk, (1)

Var(Y i) = Z ′
i




g∑

k=1

πkµ
2
k −

( g∑

k=1

πkµk

)2

+
g∑

k=1

πkDk


Zi +

g∑

k=1

πkΣ
(k)
i . (2)

Further, we have to assume that the shared effects are ‘calibrated’, i.e.,
∑g

k=1 πkµk = 0, then

(1) and (2) simplify to:

E(Y i) = X i

g∑

k=1

πkβk,

Var(Y i) = Z ′
i

[ g∑

k=1

πkµ
2
k +

g∑

k=1

πkDk

]
Zi +

g∑

k=1

πkΣ
(k)
i .

Assuming that the first measurement Yi1 is obtained for every subject in the study, the model

for the dropout process is based on a logistic regression for the probability of dropout at

occasion j, given the subject was still in the study up to occasion j, given the random effects

bi, and given that the subject belonged to the kth component of the mixture. We denote

this probability by gij(wij, bi, qik), in which wij is a vector containing all relevant covariates:

gij(wij, bi, qik) = P (Di = j|Di ≥ j,wij, bi, qik = 1). We then assume that gij(wij, bi, qik)

satisfies logit[gij(wij, bi, qik)] = wijγk + λbi. Now, the joint likelihood of the measurement

and dropout processes will take the form:

f(yi, di) =
g∑

k=1

P (qik = 1)f(yi, di|qik = 1)

=
g∑

k=1

πk

∫
f(yi, di|qik = 1, bi)fk(bi)dbi

=
g∑

k=1

πk

∫
f(yi|qik = 1, bi,X i,Zi)f(di|qik = 1, bi,wi)fk(bi)dbi, (3)
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with f(yi|qik = 1, bi,X i,Zi) the density function of the normal distribution N(X iβk +

Zibi,Σ
(k)
i ), fk(bi) is the density function of N(µk,Dk), and

f(di|qik = 1, bi,wi) =





gidi
(widi

, bi, qik) ×
di−1∏

j=2

[1 − gij(wij, bi, qik)] if incomplete,

ni∏

j=2

[1 − gij(wij, bi, qik)] if complete.

Whereas selection models and pattern-mixture models derive from two different factoriza-

tions of the joint density of the measurement and dropout processes, the latent-class mixture

model is based on assuming an additional latent structure. The selection model lends itself

naturally to formulate such concepts as MAR and ignorability, even though they can be

considered in the pattern-mixture framework as well (Molenberghs et al., 1998; Kenward,

Molenberghs, and Thijs, 2003). In the pattern-mixture model, the observed dropout patterns

are taken into account when modeling the measurement process. The latent-class mixture

models modify this idea by grouping the subjects by means of a latent variable, thereby

accounting for inter-group differences both in terms of their dropout pattern as well as their

measurement profiles.

3 Likelihood Function and Estimation

Estimation of the unknown parameters in the latent-class mixture model described in the

previous section will be based on the maximum likelihood principle. To this end, the likeli-

hood function of the latent-class mixture model is formulated in Section 3.1. Since it would

be very cumbersome to maximize this likelihood function analytically, the EM algorithm

(Dempster, Laird and Rubin, 1977) is proposed as it is a practical tool for maximum likeli-

hood estimation in the case of finite mixtures (Redner and Walker, 1984).

3.1 The Likelihood Function

Let π be the vector of component probabilities π′ = (π1, . . . , πg) and group all other unknown

parameters of the measurement process in the vector θ, of the dropout process in ψ, and
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of the mixture distribution in α. If σ denotes the vector of covariance parameters of all

Σ
(k)
i , δ the covariance parameters of all Dk, µ

′ = (µ1, . . . ,µg), and γ ′ = (γ1, . . . ,γg), then

θ = (β,σ), ψ = (γ,λ) and α = (µ, δ). Now, the vector Ω will be the vector containing all

unknown parameters in the model, i.e., Ω′ = (π′, θ′,ψ′,α′).

Estimation and inference for the Ω will now be based on the observed data likelihood,

L(Ω|yo,d), obtained by integrating the unobserved data out of the joint distribution of

measurement and dropout process and expressed by:

L(Ω|yo,d) =
N∏

i=1

f(yo
i , di|Ω) =

N∏

i=1

∫
f(yi, di|Ω) dym

i

=
N∏

i=1

∫ { g∑

k=1

πk

∫
f(yi|θ, bi, qik = 1)f(di|ψ, bi, qik = 1)fk(bi|α)dbi

}
dym

i

=
N∏

i=1

g∑

k=1

πk

∫ {∫
f(yi|θ, bi, qik = 1) dym

i

}
f(di|ψ, bi, qik = 1)fk(bi|α)dbi

=
N∏

i=1

g∑

k=1

πk

∫
f(yo

i |θ, bi, qik = 1)f(di|ψ, bi, qik = 1)fk(bi|α)dbi, (4)

where yo′ = (yo
1, . . . ,y

o
N) is the vector containing all observed response values and d =

(d1, . . . , dN) is the vector of all values of the dropout indicator.

Note that this likelihood function is invariant under the g! possible permutations of the

parameters corresponding to each of the g mixture components. However, we can put some

constraints on the parameters, such that this problem of lack of identifiability disappears.

We will use the constraint suggested by Aitkin and Rubin (1985), π1 ≥ π2 ≥ . . . ≥ πg.

More generally, identifiability is an important but tricky issue. While it has been settled in a

number of relatively simple settings, such as a two-component mixture of normals, arguably

such a treatment is next to impossible in such complicated settings as ours, where apart from

latent classes, also latent variables (random effects), and latency due to missingness arises.

The best, admittedly pragmatic, piece of advice is to consider a variety of slight variations to

the target model. The likelihood values, parameter estimates, and the information matrices

can then be studied in view of identifiability.
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The log-likelihood function corresponding to likelihood function (4) is

`(Ω|yo,d) =
N∑

i=1

ln

{ g∑

k=1

πk

∫
f(yo

i |θ, bi, qik = 1)f(di|ψ, bi, qik = 1)fk(bi|α)dbi

}
. (5)

To maximize (5) with respect to Ω, we will need a numerical iterative procedure. The EM

algorithm is designed for maximum likelihood estimation in situations with missing data

(Dempster et al., 1977). Here, the underlying latent variable Qi, representing component

membership, will be considered missing. Thus, the response vector Y o
i and the dropout

indicator Di, together with the (unobserved) population indicators Qi can be seen as the

augmented data, whereas vectors Y o
i and Di alone are the observed data.

The likelihood function L(Ω|yo,d) still corresponds to the incomplete data. Since the joint

density of Y o
i , Di and Qi equals

fi(y
o
i , di, Qi1 = qi1, . . . , Qig = qig)

= fi(y
o
i , di|Qi1 = qi1, . . . , Qig = qig) × P (Qi1 = qi1, . . . , Qig = qig)

=

{ g∏

k=1

[fik(y
o
i , di|θ,ψ,α)]qik

}
·
{ g∏

k=1

πqik
k

}

=
g∏

k=1

[πkfik(y
o
i , di|θ,ψ,α)]qik ,

the joint likelihood L(Ω|yo,d, q) of the augmented data, i.e., the likelihood function that

would have been obtained if the values qi = (qi1, . . . , qig)
′ of the population indicators Qi

had been observed, will be

L(Ω|yo,d, q) =
N∏

i=1

g∏

k=1

[πkfik(y
o
i , di|θ,ψ,α)]qik , (6)

with q = (q1, . . . , qn)′ the vector of all hypothetically observed population indicators. The

log-likelihood function corresponding to likelihood function (6) will be of the form

`(Ω|y,d, q) =
N∑

i=1

g∑

k=1

qik {ln πk + ln fik(y
o
i , di|θ,ψ,α)} . (7)
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3.2 Estimation Using The EM Algorithm

Maximizing `(Ω|yo,d, q) will be analytically and computationally easier than maximizing

the log-likelihood `(Ω|yo,d). However, the estimates obtained from maximizing `(Ω|yo,d, q)

with respect to Ω, will depend on the unobserved indicators q. Therefore, the EM algorithm

will be used, since this will maximize the expected value of `(Ω|yo,d, q) with respect to

Ω, where the expectation is taken over all unobserved q, i.e., E[`(Ω|yo,d,Q)|y,d]. This

conditional expectation of `(Ω|yo,d, q) given yo and d, is calculated within the expectation

(E) step of each iteration of the EM algorithm. In the maximization (M) step of the EM

algorithm the expected log-likelihood function obtained from the E step is then maximized.

We will denote the expected log-likelihood function by O and call it the objective function.

The EM algorithm is an iterative procedure, i.e., it starts from an initial value Ω(0) for Ω,

and then constructs a series of estimates Ω(t), which converges to the maximum likelihood

estimator Ω̂ of Ω. Initial values can be obtained from considering separate models for the

measurement and dropout processes. Given Ω(t), the current estimate for Ω, the updated

estimate Ω(t+1) is obtained through one iteration of the EM algorithm, i.e., through one E

step and one M step. The procedure keeps iterating between the E step and the M step until

convergence is attained, i.e., until

∣∣∣`(Ω(t+1)|yo,d) − `(Ω(t)|yo,d)
∣∣∣ < ε,

for some small, pre-specified ε > 0. More details on the EM algorithm can be found in

Appendix A.

4 Classification

After fitting the latent-class mixture model to an incomplete set of repeated measurements,

one could also classify the subjects examined into the different mixture components of the

fitted model, i.e., into the different latent subgroups of the population. Through the structure

of the latent-class mixture model, the subdivision of the population in latent groups depends

on the number of observed measurements, i.e., on the dropout indicator or pattern, as well as

on the values of the observed response measurements. Therefore, the classification of subjects
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into different latent groups can be useful to assess the coherence between the dropout process

and the measurement process. In certain cases such latent groups can have a biological

or otherwise substantive meaning. For instance, subjects of one group could have higher

response values and drop out earlier in the study, whereas subjects of another group have

lower values but remain longer in the study.

The decision to which component of the mixture, or equivalently to which subgroup of the

population, a specific subject is most likely to belong will be based on posterior probabilities.

Recall that the group indicators Qik, for i = 1, . . . , N and k = 1, . . . , g, take the value 1 if

subject i belongs to group k, and 0 otherwise. We have that P (Qik = 1) = πk, thus the

component probabilities πk, k = 1, . . . , g, express how likely the ith subject is to belong to

group k without taking into account either the observed response values yo
i or the dropout

indicator di for that subject. For this reason, the component probabilities are often called

prior probabilities.

The posterior probability for subject i to belong to the kth group is given by

πik = P (Qik = 1|yo
i , di) =

fi (y
o
i , di|Qik = 1)P (Qik = 1)

fi(yo
i , di)

∣∣∣∣∣
Ω̂

=
πkfik(y

o
i , di|θ,ψ,α)

g∑

k=1

πkfik(y
o
i , di|θ,ψ,α)

∣∣∣∣∣∣∣∣∣∣∣
Ω̂

,

where Ω̂ is the vector of parameter estimates resulting from the EM algorithm. This expresses

how likely the ith subject is to belong to group k, taking into account the observed response

yi as well as the dropout indicator di of that subject. Using these posterior probabilities, we

can apply the following classification rule

Classify subject i into component k ⇐⇒ πik = max
j

{πij},

assigning subject i into the component to which it is most likely to belong.

However, we should be cautious with the resulting classification into latent subgroups based

on the latter classification rule, since for a particular subject i, the vector of posterior prob-
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abilities is given by πi = (πi1, . . . , πig) with
∑g

k=1 πik = 1. Ideally, one of these posterior

probabilities for subject i would lie close to 1, in which case the classification of this subject

is obvious and likely to be correct. However, another scenario would be that two or more

posterior probabilities are almost equal, of which one is the maximum of all posterior proba-

bilities for that particular subject. For example, suppose we have g = 2 latent subgroups and

subject i has posterior probabilities (πi1, πi2) = (0.55, 0.45). In this case subject i would be

classified into group 1 using the classification rule. However, since its probability to belong

to this first group is only 10 percent more than its probability to belong the the second one,

classification is not so obvious anymore and it is likely that subject i is classified into group

1, while actually it should be in group 2. We could assert this subject is in between both

groups, being in a sense an outlier, or almost an ‘in-lier’ in the dataset. Therefore, apart

from considering only the classification of subjects into the latent subgroups using the poste-

rior probabilities, it is instructive to inspect the posterior probabilities in full. Furthermore,

we can vary the number of latent groups g and explore in this way the sensitivity of the

classification to the number of latent subgroups considered.

5 Simulation Study

An advantage of the latent-class mixture model is its flexible structure, which makes the

model a helpful tool for analyzing incomplete longitudinal data. However, as already seen in

Section 3.2, the estimation of the model parameters is based on a doubly iterative method,

which we might expect to be computationally intensive. To check whether this disadvantage

counterbalances the advantage of model flexibility, and to further assess performance, we

conduct a simulation study. First, Section 5.1 describes a simplification of the latent-class

mixture model which is used in the simulation study as well as later in the application in

Section 6. The design and results of the simulation study are displayed in Sections 5.2

and 5.3, respectively.
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5.1 A Simplification of the Latent-Class Mixture Model

In what follows, we will assume equal covariance matrices for the different mixture compo-

nents, i.e., D1 = . . . = Dg = D, as well as equal residual covariance matrices, i.e., Σ
(1)
i = . . . =

Σ
(g)
i = Σi, which leads to Y i|qik = 1, bi ∼ N(Xiβ + Zibi,Σi), with bi ∼

∑g
k=1 πkN(µk, D).

Further, we will simplify the general latent-class mixture model in two steps. First, it is

assumed that there is only one subject-specific effect bi, a shared intercept, which only

influences the measurement process, not the dropout process. Second, the measurement

process is assumed to depend on the latent variable, not in a direct way, but only through

the shared intercept.

5.2 Design of the Simulation Study

We simulated 250 datasets, each containing measurements and covariate information of 100

subjects. The latent variable in the model is assumed to split the subjects into two latent

subgroups with component probabilities π1 = 0.6 and π2 = 1 − π1 = 0.4, respectively.

Measurements of a continuous outcome are simulated at five time points. Further, these

longitudinal data are assumed to follow a linear trend over time with intercept β0 = 9.4

and slope β1 = 2.25. The shared intercept follows a mixture of two normal distributions

with different means for both latent groups: µ1 = −4.4 and µ2 = −π1µ1

π2
= 6.6. In line with

Section 5.1, the variances of these two normal distributions are assumed to be equal and

are denoted by d2. Finally, the second source of variation is the measurement error, with a

variance σ2.

Four different settings will be considered, based on varying these two variance parameters.

In the first setting both variance parameters are chosen to be relatively small, d = 2.0 and

σ = 0.25. While only the measurement error variance is increased in the second setting,

σ = 0.75, both variance parameters are increased in the third setting, d = 3.5 and σ = 1.00.

Up to the third setting, the chosen parameters result in a bimodal mixture distribution and

consequently the simulated data of both latent groups are well separated. Since this might
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improve estimation of the parameters, we consider a fourth setting with d = 6 and σ = 2

leading to a unimodal distribution of the data.

Finally, in the dropout model, the logistic regression is based on an intercept only, which

differs for both groups, namely, γ1 = −2.5 and γ2 = −1.25, respectively, with corresponding

probabilities 0.73 and 0.45 of completing the study.

The latent-class mixture model can now be formulated as follows. For a subject i =

1, . . . , 100, belonging to latent group k = 1, 2, the measurement at time j = 1, . . . , 5 is

modelled by

Yij = β0 + β1 timej + bi + ε
(k)
ij , (8)

with

bi ∼ π1N
(
µ1, d

2
)

+ π2N
(
µ2, d

2
)

and ε
(k)
i ∼ N

(
0, σ2I5

)
. (9)

Further, the dropout model is expressed as logit[gij(wij, bi, qik)] = γk.

5.3 Results of the Simulation Study

To provide insight in the nature of the four simulation settings, we randomly picked a

dataset out of the 250 simulated datasets, one for each setting. The individual profiles of

these datasets are shown in Figure 1. Further, Table 1 contains the results of the simulation

study. Besides comparing the mean estimates and true values of the parameters through

the bias, we also consider the mean squared error (MSE), simultaneously involving bias and

precision.

Let us discuss the three simulation settings in turn. For the first one, Figure 1(a) shows a

clear distinction between both groups, which owes to the small variance, d2, of the mixture

distribution, relative to the systematic difference between the mean of both groups, µ1 −µ2.

Further, the small measurement error variance, σ2, ensures the within-subject variability to

be small, resulting in almost straight individual profiles. From Table 1, the mean estimates

of the parameters are close to the true values, with biases of the order 10−2 or less. Together

with small mean squared error values, of which the magnitude does not exceed 10−4, this

14



indicates the fit of the latent-class mixture model is very close to the simulated data. This

was expected due to earlier observations.

Increasing the measurement error variance in the second simulation setting leads to an

increased within-subject variability. The discrepancy between both latent groups is still

very obvious (Figure 1(b)). The bias increases slightly, but remains of the same order. For

the MSE values, we observe a small increase, but its magnitude does not exceed 10−3. So,

we can conclude the model fits the data well, even with a larger within-subject variability.

In the penultimate simulation setting, not only the measurement error variance is increased,

but also the variance in the mixture components. In Figure 1(c), we observe that on top

of the larger within-subject variability, the gap between both latent groups now vanishes.

The discrepancy between the groups seems to have vanished, and profiles appear to be

homogeneous. Let us look at the results in Table 1 to see whether this has an influence on

the model fit. For some of the parameters, the mean estimates deviates little from the true

value. However, bias and MSE values remain small, the order of magnitude not exceeding

10−1 and 10−3, respectively. Thus the latent-class mixture model does fit the simulated data

well.

Finally, in the last simulation setting, in which even larger values for both variance parame-

ters result in simulated data following an unimodal mixture distribution, profiles again seem

to be homogeneous (Figure 1(d)). Remarkably, even in this setting, bias and MSE values

remain small, both with order of magnitude below 10−1.

From the four simulation settings we conclude that, whenever the model is correctly specified,

it fits very well; so, this applies even when the mixture distribution is unimodal. This suggests

that, for a real application, the fit is likely to be good in cases where the researcher has decent

insight into the true mean structure.

Computation time increased from about 30 minutes for fitting the latent-class mixture model

to a simulated dataset of the first setting, to a bit over two hours for fitting one of the
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later settings. Thus, fitting the latent-class mixture model is not unreasonable in terms of

computation time, perhaps against initial expectation.

6 Analysis of Depression Trial Data

We apply the latent-class mixture model to a depression trial, arising from a randomized,

double-blind psychiatric clinical trial, conducted in the United States. The primary objective

of this trial was to compare the efficacy of an experimental anti-depressant with placebo to

support a New Drug Application. In these retrospective analyses, data from 170 patients

are considered. The Hamilton Depression Rating Scale (HAMD17) is used to measure the

depression status of the patients. For each patient, a baseline assessment is available, as

well as 5 post-baseline visits going from visit 4 to 8. Individual profiles of the change in

HAMD17 score from baseline for this depression trial are shown in Figure 2.

In the two subsequent sections, a latent-class mixture model is fitted to the depression trial

and a sensitivity analysis performed. The latter will establish the latent-class mixture model

as a viable sensitivity tool.

6.1 Formulating a Latent-Class Mixture Model

The latent-class mixture model framework is used to analyze the depression trial, assuming

the patients can be split into g latent subgroups.

The mean structure is determined based on an exploratory analysis. As a result, the het-

erogeneity linear mixed model for the change in HAMD17 score includes as fixed effects

an intercept, the treatment variable, the baseline HAMD17 score, the linear and quadratic

time variable, and the interaction between treatment and time. In the latent-class mixture

model with two group, the parameter values for these fixed effects are assumed to be equal

for both latent subgroups. The measurement error terms are assumed to be independent

and to follow a normal distribution with mean 0 and variance σ2.
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A shared intercept, bi, is included in the measurement model, which follows a mixture of g

normal distributions with different means, µ1, . . . , µg respectively, but with equal variance d2.

Further, the dropout process is modelled based on a logistic regression, including and inter-

cept and time variable, which, in case of the two-group latent-class model, can differ between

both latent subgroups (γ0,1, . . . , γ0,g corresponding to the intercept, and γ1,1, . . . , γ1,g corre-

sponding to the slope).

At first, the same simplification as used in the simulation study in Section 5 is considered,

i.e., the shared intercept is only included in the measurement model, not in the dropout

model. Afterwards, we extend the model by adding the shared intercept to the dropout

model as well, meaning the dropout model changes from

logit[gij(wij, bi, qik)] = γ0,k + γ1,k tj (10)

to

logit[gij(wij, bi, qik)] = γ0,k + γ1,k tj + λ bi, (11)

where tj is the jth visit.

An overview of the models considered is given in Table 2. Since assessing the number of

components by a classical likelihood ratio test is not valid in the mixture model framework

(McLachlan and Peel, 2000), we calculated the Akaike’s Information Criterion (AIC) and

Bayesian Information Criterion (BIC) for all models.

A model building exercise is performed starting with fitting a one-component latent-class

mixture model, which comes down to a classical shared parameter model, as well as a two-

component latent-class mixture model. Next, we compare these models using the AIC and

BIC criteria, and depending on the choice made by both criteria, we decide whether we fit

a latent-class mixture model with three latent subgroups.

Table 2 shows that when assuming dropout model (10), AIC opts for the model with two

latent subgroups (Model 2), whereas BIC gives preference to the shared-parameter model
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(Model 1). Further, in case of dropout model (11) however, both information criteria select

the shared-parameter model (Model 4). Note that, since the dropout model in Model 1 does

not depend on the shared intercept, the dropout model and the measurement model are

independent, resulting in the MCAR assumption, whereas in Model 2, the dropout model is

linked to the measurement model through the latent classes (MNAR).

Overall, the AIC criterion prefers Model 2, the 2-component latent-class mixture model with

no random effect in the dropout model, whereas BIC picks Model 4, the classical shared

parameter model. Since both criteria select a different model, we will take a more detailed

look at the latent-class mixture model with two components, indicated by AIC, whereas

we will consider the classical shared-parameter model in a sensitivity analysis in the next

section.

Parameter estimates with corresponding standard errors and p-values of the two-component

latent-class mixture model are shown in Table 3.

Once this latent-class mixture model has been fitted to the depression trial data, the posterior

probabilities can be used to classify the patients into two subgroups as shown in Section 4.

The 170 patients split into 79 and 91 patients classified into the first and second group,

respectively. In Figure 3, the left panel represents the individual profiles of patients classified

into the first latent group, and the right one represents the individual profiles of patients

classified into the second group. Clearly, the first group corresponds to patients with lower

HAMD17 scores, that continue to decrease over time. This means these are the patients

getting better. On the other hand, the second group contains patients with a higher change

versus baseline compared to the patients from the first group. Their changes of HAMD17

score fluctuate around 0, more specifically somewhere in the region between −10 and 10.

In addition, without taking into account the within-subject variability, their profiles appear

more or less time-constant. A more formal comparison of both latent groups regarding their

change of HAMD17 score versus baseline confirms this association between the classification

and the profile over time. Furthermore, a formal test for association of baseline values and

group classification is not significant, indicating similar baseline HAMD17 scores for patients
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in both groups.

Based on this difference in location of the profiles between both groups, this classification of

subjects can be interpreted as being a split into acute versus chronic depression. Patients in

both the acute and chronic groups enter the study with a baseline value indicating depression.

However, the profiles of the patients in the acute group show recovery during the trial,

whereas the depression score of patients in the chronic group remains more or less level.

Further, this difference between both latent groups is not due to treatment, since the classi-

fication of subjects in latent subgroups is independent of their treatment allocation. Indeed,

the estimated odds ratio between the latent classification variable and the treatment allo-

cation is 0.75, which was expected since the observed treatment groups are included in the

mean structure of the measurement model. Moreover, when the treatment variable would

be included in the dropout model, this independence would even increase.

Regarding the incompleteness of the patients in both latent groups, we notice a clear dif-

ference, which is confirmed by chi-square tests for independence, implying a significant as-

sociation between the dropout pattern and the latent classification. The first latent group

mainly contains patients who complete the study, 62 in total. Of the 17 patients who drop

out, merely 2 drop out at visit 6, 3 more at visit 7, and 12 patients missed the last visit only.

The dropout percentage in the second latent group is larger, 48.4% compared to 21.5% in

the first group, or 44 out of 91 patients. Of these incompleters, 17 drop out after the first

visit, 10 more at visit 6, 11 at the penultimate visit, and 6 more at the last visit.

Finally, the latent groups can also be compared by focussing on demographic characteristics

such as age, gender, and origin, yielding no association between the latent classification with

either gender or origin, but a significant association with age. Consequently, patients in the

acute group are younger than the patients in the chronic group, with a mean age of 38.5 and

42.4, and corresponding 95% confidence intervals [36.1, 41.0] and [40.0, 44.7],respectively.

However, as mentioned in Section 4, using this classification rule does not render insight into
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how sure the classification is in one of the two groups. This will depend on the magnitude

of the maximal posterior probability. Since the latent-class mixture model considered here

only contains two latent groups, we merely need to look at one of the posterior probabilities,

e.g., at the posterior probability that the subject belongs to group 1, πi1. Based on this πi1,

the subjects can be classified following the guidelines of Table 4. If the posterior probability

πi1 lies between 0.45 and 0.55, it is uncertain to which group the subject can be classified.

Only 8 out of 170 patients in the depression trial are in this situation. For most patients, 152

or 89.4%, it is clear into which group they can be classified, since their maximal posterior

probability is above 0.60. Furthermore, aforementioned association of the latent classification

with the location of profiles, the dropout pattern, and patient’s age as well as independence

of baseline values and patient’s origin and gender, is confirmed by testing the independence of

these variables with the posterior probabilities, which can be viewed as continuous variables

ranging from 0 to 1.

6.2 A Sensitivity Analysis

In this section, we apply latent-class mixture models as a sensitivity analysis tool. In ad-

dition to the two-component latent-class mixture model shown in Section 6.1, a classical

shared-parameter model will be fitted to the depression trial, as well as a pattern-mixture

model, and two selection models, based on the selection models introduced by Diggle and

Kenward (1994). All models contain the same fixed effects as in the two-component latent-

class mixture model, i.e., intercept, treatment, time, baseline, time2, and treatment-by-time

interaction.

The classical shared-parameter model, selected by the BIC criterion in Section 6.1, includes

a shared intercept bi ∼ N(0, d2), conditional upon which the measurement model follows a

normal distribution Yi|bi ∼ N(X iβ + bi, σ
2Ini

), and the dropout process is based on (11).

Next, the Diggle-Kenward (DK) model combines a multivariate normal model for the mea-

surement process with a logistic regression model for the dropout process. More specifically,

the measurement model assumes that the vector Yi of repeated measurements for the ith
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subject satisfies the linear regression model Yi ∼ N(X iβ,V i), i = 1, . . . , N . The matrix

V i can be left unstructured or assumed of a specific form. For the depression trial, the

linear mixed model (Verbeke and Molenberghs, 2000) is used to model the measurement

process, with an unstructured covariance matrix. Further, let hij = (yi1, . . . , yi;j−1) denote

the observed history of subject i up to time ti,j−1. The DK model for the dropout process

allows the conditional probability for dropout at occasion j, given that the subject was still

observed at the previous occasion, to depend on the history hij and the possibly unobserved

current outcome yij, but not on future outcomes yik, k > j. In the two models considered

for the depression trial, the logistic dropout model will take the form

logit [P (Di = j | Di ≥ j,hij, yij,Ω)] = ψ0 + ψ1yi,j−1 + ψ2yij. (12)

Regarding the missingness mechanism, the first selection model assumes the MAR assump-

tion to hold, yielding ψ2 = 0, whereas the second one assumes MNAR.

Finally, a pattern-mixture model is fitted by adding pattern-specific intercepts and slopes to

the same multivariate normal model as used in the DK models. Notice that the classification

function in the latent-class mixture model is a data driven approach to define groups, whereas

pattern-mixture models use the assumptions to define groups in function of dropout patterns.

Since the main interest of the depression trial was in the treatment effect at the last visit,

Table 5 shows the estimates, standard errors, and p-values for this effect under the five fitted

models. Clearly, the p-values resulting from all five models are very similar and between

around 0.07 and 0.11, yielding the same conclusion for the treatment effect at visit 8. Thus,

the significance results are not sensitive to the model used, and hence more trust can be put

into the conclusion. This is because a deflated estimate is combined with a reduced standard

error. However, note that using both the two-component latent-class mixture model and the

classical shared-parameter model, the standard error is reduced by 0.3 units, compared to

either selection model, or pattern-mixture model, resulting in a more accurate confidence

interval for the treatment effect at the last visit.

Furthermore, we explore the sensitivity of the treatment-by-time interaction by comparing
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the estimates, standard errors and p-values under the five fitted models in Table 5. The

p-values are clearly moving around the significance level of 0.05. Whereas under the latent-

class mixture model and the shared-parameter model the p-value is about 0.03, the p-value

under both selection models and the pattern-mixture model is around 0.07. While one should

be cautious with over-interpretation of p-values, there are contexts, such as regulated clinical

trials, where strict decision rules are implemented. In such a case and when in addition the

treatment by time interaction is the primary effect, the latent-class mixture model and the

shared-parameter model would lead to a claim of significance, whereas this would not be

justified with neither the selection models nor the pattern-mixture model.

7 Concluding Remarks

We have proposed latent-class mixture models to analyze incomplete longitudinal data in

which incompleteness is due to dropout of subjects. Through its structure, the model cap-

tures unobserved heterogeneity between latent subgroups of the population. It in an exten-

sion of the shared-parameter model, in the sense that both the measurement and dropout

processes are allowed to share a set of random effects, conditional upon which both processes

are assumed to be independent. It can, at the same time, be seen as an extension of the

pattern-mixture model, now with latent rather than explicitly observed groups. As shown

in the simulation study, the flexibility of such latent-class mixture models outweighs the

expected modelling complexity.

Our proposal can be used for flexible modeling, as a sensitivity analysis instrument, and

for further exploration of the latent class membership. Of course, care has to be taken

when interpreting latent classes, since in some applications they may merely be artifacts,

without any substantive grounds. In others, there may be more basis for their existence.

We believe, together with mental health scientists, the two-component classification in our

example, refers to the natural split of the patients, regardless of which treatment they were

allocated to, into the more chronic and the more acute ones. An additional word of caution

is needed regarding the number of latent classes to be considered. This is a tricky but well
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documented problem (McLachlan and Peel 2000). A practical way out is to consider several

choices for the number of components, pick the most reasonable one, and assess whether

alternative choices would substantially alter the conclusions.

Evidently, the computational burden of the LCMM increases over non-latent-class models,

but is still reasonable. For example, whereas the MNAR version of the Diggle and Kenward

model takes around one hour and the one-component mixture needs about the same amount

of time, the two-component mixture increases needs around one order of magnitude more.

Furthermore, the performance of the algorithm is remarkably computationally stable, given

sensible starting values (e.g., built from non-mixture classical models). Details on starting

value selection are embedded in the companion manual, to be found alongside the software

code on the authors’ web pages.
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A Appendix: Details on the EM Algorithm

A.1 The E Step

Let us describe the iteration step t + 1, where the estimate is updated to Ω(t+1), using the

obtained estimate from iteration step t, Ω(t). The E step consists of the calculation of the

conditional expectation of `(Ω|yo,d, q), given yo and d, which is given by

O(Ω|Ω(t)) = E
[
`(Ω|yo,d,Q)

∣∣∣yo,d,Ω(t)
]
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= E

[
N∑

i=1

g∑

k=1

Qik {ln πk + ln fik(y
o
i , di|θ,ψ,α)}

∣∣∣∣∣y
o,d,Ω(t)

]

=
N∑

i=1

g∑

k=1

E
[
Qik

∣∣∣yo,d,Ω(t)
]
{lnπk + ln fik(y

o
i , di|θ,ψ,α)} .

Thus, we need to calculate E
[
Qik

∣∣∣yo,d,Ω(t)
]
:

E
[
Qik

∣∣∣yo,d,Ω(t)
]

= P
(
Qik = 1|yo,d,Ω(t)

)
=

fi (y
o
i , di|Qik = 1)P (Qik = 1)

fi(yo
i , di)

∣∣∣∣∣
Ω(t)

=
πkfik(y

o
i , di|θ,ψ,α)

g∑

k=1

πkfik(y
o
i , di|θ,ψ,α)

∣∣∣∣∣∣∣∣∣∣∣
Ω(t)

= πik(Ω
(t)),

where πik(Ω
(t)) is the posterior probability for the ith subject to belong to the kth compo-

nent of the mixture. This means the E step reduces to the calculation of posterior proba-

bilities πik(Ω
(t)), for i = 1, . . . , N and k = 1, . . . , g. Note that this also requires calculation

of fik(y
o
i , di|θ,ψ,α), and consequently integration over the unknown mixture component

membership to calculate, which is done numerically using Gauss-Legendre quadrature.

A.2 The M Step

The updated estimate Ω(t+1) is now obtained from maximizing O(Ω|Ω(t)) with respect to

Ω. From the E step we know that O equals

O(Ω|Ω(t)) =
N∑

i=1

g∑

k=1

πik(Ω
(t)) {ln πk + ln fik(y

o
i , di|θ,ψ,α)}

=
N∑

i=1

g∑

k=1

πik(Ω
(t)) ln πk

︸ ︷︷ ︸
= O1(π|Ω(t)

)

+
N∑

i=1

g∑

k=1

πik(Ω
(t)) ln fik(y

o
i , di|θ,ψ,α)

︸ ︷︷ ︸
= O2(θ,ψ,α|Ω(t)

)

= O1(π|Ω(t)) + O2(θ,ψ|Ω(t)). (13)

The first term in (13) only depends on π, whereas the second one only depends on θ, ψ,

and α. Hence, to find the maximum of the O function with respect to Ω′ = (π′, θ′,ψ′,α′),

we can maximize both terms separately.
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Let us first maximize the O function with respect to π. This requires the maximization of

O1, since O2 is independent of π. Under the restriction
∑g

k=1 πk = 1, we can rewrite O1 as

follows

O1(π|Ω(t)) =
N∑

i=1

g−1∑

k=1

πik(Ω
(t)) ln πk +

N∑

i=1

πig(Ω
(t)) ln


1 −

g−1∑

k=1

πk


 .

If we now set all first-order derivatives with respect to π1, . . . , πg−1 equal to zero, this yields

the updated estimate to satisfy

∂O1

∂πk

= 0 ⇔
N∑

i=1

πik(Ω
(t))

π
(t+1)
k

−
N∑

i=1

πig(Ω
(t))

1 −∑g−1
k=1 π

(t+1)
k

= 0

⇔
N∑

i=1

πik(Ω
(t))

π
(t+1)
k

=
N∑

i=1

πig(Ω
(t))

π
(t+1)
g

⇔ π
(t+1)
k

π
(t+1)
g

=

N∑

i=1

πik(Ω
(t))

N∑

i=1

πig(Ω
(t))

. (14)

This in turn implies that

1 =
g∑

k=1

π
(t+1)
k =

g∑

k=1

π(t+1)
g

N∑

i=1

πik(Ω
(t))

N∑

i=1

πig(Ω
(t))

=

π(t+1)
g

N∑

i=1

= 1︷ ︸︸ ︷
g∑

k=1

πik(Ω
(t))

N∑

i=1

πig(Ω
(t))

=
N π(t+1)

g

N∑

i=1

πig(Ω
(t))

,

and hence

π(t+1)
g =

1

N

N∑

i=1

πig(Ω
(t)). (15)

From (14) and (15) it follows that the updated estimates π
(t+1)
k , k = 1, . . . , g, are given by

π
(t+1)
k =

1

N

N∑

i=1

πik(Ω
(t)),

i.e., the updated mixture component probabilities are equal to the average posterior proba-

bilities.
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Next, to find the maximization of the O function with respect to θ, ψ, and α, we need to

maximize

O2(θ,ψ,α|Ω(t)) =
N∑

i=1

g∑

k=1

πik(Ω
(t)) ln fik(y

o
i , di|θ,ψ,α)

with respect to these parameters. However, in general, this cannot be done analytically.

Therefore, a classical numerical maximization procedure such as, for example, Newton-

Raphson is needed. Note that in such cases, the EM algorithm is doubly iterative, which

might have an impact on the computation time.

A.3 Some Remarks Regarding the EM Algorithm

It can be shown that an EM step cannot decrease the likelihood value `(Ω|yo,d), i.e.,

`(Ω(t+1)|yo,d) > `(Ω(t)|yo,d) for all t.

This is called the monotonicity property of the EM algorithm, guaranteeing convergence of

the iterative procedure, provided a finite maximum exists. However, this convergence can

be painfully slow. With poorly selected starting values, such slow convergence can lead to

long computation times. Apart from the local maxima resulting from the non-identifiability

problem, there may be local maxima yielding different likelihood values (Böhning, 1999).

This suggests that in practice multiple sets of starting values should be used. If the likelihood

will have a region where it is flat, we say the likelihood has a ridge. Now, the EM algorithm

is capable of converging to some particular point on that ridge, which is not the case for

many other, more classical, maximization algorithms.
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Figure 1: Simulation Study. Individual profiles for one dataset randomly chosen out of
250 simulated datasets, for each of the three simulation settings. Dotted lines correspond to
subjects from the first latent group, dashed lines to subjects from the second one.
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Table 1: Simulation Study. Results of the simulation study: mean and true value, bias, and mean squared error (MSE) of the
parameters, under the three simulations settings.

Setting 1 Setting 2

Effect Mean True Bias MSE Effect Mean True Bias MSE

Measurement Model Measurement Model

β0 9.37 9.40 −2.84 × 10−2 8.07 × 10−4 β0 9.34 9.40 −5.75 × 10−2 3.31 × 10−3

β1 2.25 2.25 1.30 × 10−4 1.68 × 10−8 β1 2.25 2.25 7.56 × 10−4 5.72 × 10−7

σ 0.25 0.25 −2.49 × 10−4 6.18 × 10−8 σ 0.75 0.75 6.27 × 10−4 3.93 × 10−7

µ1 -4.39 -4.40 1.31 × 10−2 1.73 × 10−8 µ1 -4.36 -4.40 4.48 × 10−2 2.00 × 10−3

d 1.98 2.00 −1.70 × 10−2 2.89 × 10−4 d 1.97 2.00 −2.53 × 10−2 6.38 × 10−4

π1 0.60 0.60 4.60 × 10−4 2.12 × 10−7 π1 0.60 0.60 4.22 × 10−3 1.79 × 10−5

Dropout Model Dropout Model

γ1 -2.52 -2.50 −2.28 × 10−2 5.19 × 10−4 γ1 -2.51 -2.50 −1.26 × 10−2 1.58 × 10−4

γ2 -1.26 -1.25 −1.23 × 10−2 1.53 × 10−4 γ2 -1.27 -1.25 −2.30 × 10−2 5.27 × 10−4

Setting 3 Setting 4

Effect Mean True Bias MSE Effect Mean True Bias MSE

Measurement Model Measurement Model

β0 9.44 9.40 3.83 × 10−2 1.46 × 10−3 β0 9.59 9.40 1.92 × 10−1 3.70 × 10−3

β1 2.25 2.25 1.91 × 10−4 3.66 × 10−8 β1 2.24 2.25 −1.44 × 10−2 2.06 × 10−4

σ 0.99 1.00 −5.45 × 10−3 2.06 × 10−5 σ 2.01 2.00 6.07 × 10−3 3.69 × 10−5

µ1 -4.69 -4.40 −2.86 × 10−1 8.18 × 10−2 µ1 -4.84 -4.40 −4.39 × 10−1 1.93 × 10−1

d 3.43 3.50 −7.00 × 10−2 4.90 × 10−3 d 6.02 6.00 2.03 × 10−2 4.10 × 10−4

π1 0.57 0.60 3.36 × 10−2 1.13 × 10−3 π1 0.52 0.60 −8.06 × 10−2 6.50 × 10−3

Dropout Model Dropout Model

γ1 -2.61 -2.50 −1.07 × 10−1 1.14 × 10−2 γ1 -2.97 -2.50 −4.73 × 10−1 2.23 × 10−1

γ2 -1.27 -1.25 −2.04 × 10−2 4.17 × 10−4 γ2 -1.29 -1.25 −3.89 × 10−2 1.51 × 10−3
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Table 2: Depression Trial. Information criteria AIC and BIC, for models with dropout model
(10) or (11), and g = 1, 2, 3.

Model Dropout Model g # Par −2` AIC BIC

1 γ0,k + γ1,k tj 1 10 4676.07 4696.08 4727.44

2 γ0,k + γ1,k tj 2 14 4662.37 4690.37 4734.27

3 γ0,k + γ1,k tj 3 18 4662.03 4698.03 4754.48

4 γ0,k + γ1,k tj + λ bi 1 11 4669.12 4691.12 4725.61

5 γ0,k + γ1,k tj + λ bi 2 15 4662.02 4692.02 4739.06
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Figure 2: Depression Trial. Individual profiles (left panel) and mean profiles by treatment
arm (right panel) of the depression trial.
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Figure 3: Depression Trial. Classification of the subjects of the depression trial based on a
latent-class mixture model. Solid lines correspond to patients classified into first group (left
panel), dashed lines to patients classified into second one (right panel).
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Table 3: Depression Trial. Parameter estimates, standard errors, and p-values for the latent-
class mixture model applied to the depression trial.

Effect Estimate s.e. p-value

Measurement Model

Intercept : β0 23.17 3.75 < 0.0001

Treatment : β1 2.69 1.49 0.072

Time : β2 -6.18 1.18 < 0.0001

Time × Treatment : β3 -0.52 0.24 0.028

Baseline : β4 -0.42 0.07 < 0.0001

Time × Time : β5 0.41 0.10 < 0.0001

Measurement Error : σ 4.24 0.13 < 0.0001

Dropout Model

Intercept Group 1 : γ0,1 -8.58 3.57 0.009

Time Group 1 : γ1,1 0.83 0.44 0.056

Intercept Group 2 : γ0,2 -1.35 1.28 0.292

Time Group 1 : γ1,2 -0.05 0.20 0.793

Shared Effects

Mean Shared Intercept Group 1 : µ1 -3.64 0.43 < 0.0001

Variance Shared Intercept : d 2.67 0.50 < 0.0001

Prior probability Group 1 : π1 = π 0.48 0.10 < 0.0001

Loglikelihood -2331.18

Table 4: Depression Trial. Classification of subjects based on the magnitude of posterior
probabilities πi1.

πi1 Classification # Patients

0.80 → 1.00 Clearly Group 1 61

0.60 → 0.80 Group 1 8

0.55 → 0.60 Doubtful, more likely Group 1 5

0.45 → 0.55 Uncertain 8

0.40 → 0.45 Doubtful, more likely Group 2 5

0.20 → 0.40 Group 2 19

0.00 → 0.20 Clearly Group 2 64
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Table 5: Depression Trial. Estimates, standard errors, and p-values for the treatment effect
at visit 8, as well as the treatment-by-time interaction, for the latent-class mixture model
and both selection models, assuming either MAR or MNAR.

Treatment at Endpoint Treatment × Time

Model Estimate s.e. p-value Estimate s.e. p-value

Latent-Class Mixture Model -1.44 0.91 0.114 -0.52 0.23 0.028

Shared-Parameter Model -1.69 0.93 0.069 -0.50 0.24 0.035

Pattern-Mixture Model -2.01 1.20 0.096 -0.55 0.31 0.077

MAR Selection Model -2.17 1.25 0.082 -0.58 0.32 0.068

MNAR Selection Model -2.16 1.24 0.081 -0.57 0.31 0.068
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