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Abstract

The GARCH and stochastic volatility (SV) models are two competing, well-known

and often used models to explain the volatility of financial series. In this paper,

we consider a closed form estimator for a stochastic volatility model and derive its

asymptotic properties. We confirm our theoretical results by a simulation study. In

addition, we propose a set of simple, strongly consistent decision rules to compare

the ability of the GARCH and the SV model to fit the characteristic features ob-

served in high frequency financial data such as high kurtosis and slowly decaying

autocorrelation function of the squared observations. These rules are based on a

number of moment conditions that is allowed to increase with sample size. We

show that our selection procedure leads to choosing the best and simple model with

probability one as the sample size increases. The finite sample size behaviour of our

procedure is analyzed via simulations. Finally, we provide an application to stocks

in the Dow Jones industrial average index.
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1 Introduction

During the last decade there has been an increasing interest in modeling the volatility of

high frequency financial data using GARCH type models introduced by Bollerslev (1986),

and stochastic volatility (SV) models, see Taylor (1986), among others. For surveys on

GARCH models we refer to Bollerslev et al. (1994). Some detailed reviews of SV models

are given by Shephard (1996), Ghysels et al. (1996) and Broto and Ruiz (2004). Note

that for these models the most widely studied specification in this literature consists of

GARCH (1,1) and an SV model of order one with Gaussian log-volatility and zero (or

constant) mean. Basically the SV model assumes two error processes, while the GARCH

model allows for a single error term. This implies that the SV models can be more

flexible than GARCH model in fitting the data. Carnero et al. (2004) find that in the

GARCH model, the parameters explaining persistence and kurtosis are closely linked

whereas these features can be modelled independently in SV models, so the latter can

better represent the empirical regularities often observed in financial time series, see also

Danielsson (1994) and Kim et al. (1998). However the GARCH model is often preferred

in empirical applications. This is mainly due to the problems which arise as a consequence

of the intractability of the likelihood function of the SV model which prohibits its direct

evaluation.

Financial time series are mainly characterized by high persistence in the autocorre-

lation of squared observations and leptokurtosis, see e.g. Taylor (1986). Therefore, the

ability of GARCH and SV models to reproduce such stylized facts is a desirable feature

and failure to do so is most often a criterion to dismiss one specification. The ability

of these models to accommodate and explain the empirical properties observed in real

time series have been analyzed separately by Teräsvirta (1996) and Liesenfeld and Jung

(2000). Kim et al. (1998) tested the models using a simulated likelihood ratio test. Bai

et al. (2003) and Carnero et al. (2004) compared the SV and the GARCH models using

the kurtosis autocorrelation relationship as their benchmark. Gerlach and Tuyl (2006)

compare the empirical fit of both models using Markov Chain Monte Carlo (MCMC)

methods. However, to the best of our knowledge no formal selection procedure between

the GARCH and the SV model based on their ability to represent the observed properties

of the data has been suggested. It should be noted that the models are non-nested, and

this can complicate model comparison. Furthermore, testing two models against each

other does not necessarily lead to a unique choice of a model, since both models may be

rejected or accepted against each other, see Granger el al. (1995).

In this paper a set of strongly consistent decision rules for selecting between the models
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is suggested. More specifically, we assign to each model a goodness of fit statistic which

measures the ability to fit interesting features or moments of the data such as persistence,

variance or kurtosis. The difference between the statistics of the GARCH and the SV

model is denoted by ∆Q̂n and its population counterpart is defined by ∆n. We can

decompose ∆Q̂n as ∆n + (∆Q̂n −∆n), so, information about the best model is given by

the sign of ∆n, whereas the component ∆Q̂n − ∆n involves a noise that disturbs this

information. We may therefore regard ∆n as the signal and ∆Q̂n − ∆n as the noise of

∆Q̂n. We would like to select the model that best fits the data, regardless of whether

or not the models considered are correctly specified. If ∆n converges to zero, we will

prefer the GARCH model because of its relative simplicity. The reason is that volatility

in the GARCH model is a measurable function of observables, whereas it is latent in the

SV model. Thus, even with closed form estimators for the parameters of the SV model,

additional effort has to be spent in practice to estimate the volatility. Therefore, we

suggest the following decision rule: choose the SV model if SCn > 0, otherwise select

the GARCH model, where SCn =
√

n∆Q̂n − cn and cn > 0 is a penalty term which

encourages the selection of the GARCH model when both models are equivalent. We

show that under mild regularity conditions the use of the decision rule leads to selection

of the best or simplest model with probability one (strong consistency of selection) as the

sample size increases. The strong consistency implies that these rules have type I and

type II errors approaching zero asymptotically, or equivalently, the size approaches zero

and the power approaches one.

The consistency property of the selection procedure is obtained by providing an almost

sure bound for ∆Q̂n via the law of iterated logarithm (LIL). Thus, the sequence of penalty

terms should grow with the sample size at an appropriate rate. However, the choice of the

penalty term can be problematic. Two researchers using the same data and models but

different penalty terms can arrive at differing conclusions in finite samples. One way to

avoid such difficulties is to use a strongly consistent estimator of the bound. We suggest

such an estimator which is based on the Newey-West variance estimator of the noise

and show its strong consistency, where in this case we strengthen slightly our regularity

conditions. Decision rules which are based on almost sure bounds to some test statistics

have been suggested by Stinchcombe and White (1998), Corradi (1999), Altissimo and

Corradi (2002, 2003) and Preminger and Wettstein (2005) among others as an alternative

to hypothesis testing. It should be noted, however, that the usage of such selection criteria

is not necessarily optimal in finite samples.

In addition, given the slow decay of autocorrelation of squared data, we allow the num-

ber of moment conditions qn to increase with the sample size. However, as qn increases,
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variation over the moment conditions accumulates and might alter the true signal com-

ing from ∆Q̂n and the strong consistency of the bound estimate may fail. We note that

similar problems occur in GMM estimation when we allow the number of orthogonality

conditions to increase with the sample size (see e.g. Stock and Yogo (2005) and Han

and Phillips (2006)). We shall show that if the order of qn and the signal is controlled

appropriately, the strong consistency of the selection procedure is preserved.

Unfortunately, the estimation of GARCH and especially SV models can be quite dif-

ficult. One of the most important limitations of SV models is that the exact likelihood

function is difficult to evaluate. A variety of estimation methods for the SV model have

been proposed, the simplest estimator being the method of moments used by, for example,

Taylor (1986), Chesney and Scott (1989) and Andersen and Sorensen (1996). Melino and

Turnbull (1990) used the generalized method of moments (GMM). Duffie and Singleton

(1993) proposed the simulated method of moments (SMM). However, these procedures

have poor finite sample properties and their efficiency is suboptimal with respect to max-

imum likelihood (ML) type estimation methods. Jacquier et al. (1994) find substantial

bias for these estimates and show that the performance of the technique worsens when

there is high persistence and a low coefficient of variation. Furthermore, the GMM crite-

rion surface for the SV model is highly irregular. Therefore, optimization fails to converge,

especially for small sample sizes. Another literature focuses on likelihood-based estima-

tion using importance sampling or MCMC methods, either in a Bayesian setting (see e.g.,

Jacquier et al. (1994) and Wong (2002)) or in a classical setting (see e.g., Danielsson

and Richard (1993), Danielsson 1994; Kim et al. (1998); Liesenfeld and Richard (2003),

Sandmann and Koopman (1998), among others). A good overview of these methods is

provided by Bauwens and Rombouts (2004). Other estimation procedures based on an

auxiliary model also have been applied such as the indirect inference (see Engle and Lee

(1996) and Calzolari et al. (2001)) and the efficient method of moments (EMM) meth-

ods (see Gallant et al. (1997) and Jiang and van der Sluis (2000)). In particular, all

these simulation methods are not widely adopted since they are computationally inten-

sive and rely on assumptions that are hard to check in practice, such as the convergence

of simulated Markov chains to their steady state. Further, it is difficult to establish limit

theorems for these estimators e.g. the LIL. The calculation of the GARCH model requires

the use of numerical optimization procedures which are sensitive to initialization and the

optimization procedure used, see Brooks et al. (2001).

Motivated by the difficulties associated with estimating the SV model, we provide a

simple closed-form estimator for a Gaussian first order SV model and derive its asymp-

totic properties. The estimator is based on the second order properties of the logarithm of
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the squared data. Note that for the SV models, other estimators, based on similar trans-

formation have been suggested see e.g., Harvey et al. (1994), Ruiz (1994). Another closed

form estimator has been recently proposed independently by Dufour and Valéry (2006).

We show that in scenarios where the kurtosis is very large and persistence is high, our

estimator is more efficient than that of Dufour and Valéry (2006). For the GARCH model

we use a closed-form estimator that has recently been proposed by Kristensen and Linton

(2006) which can be easily implemented and neither requires the use of any numerical

optimization procedures nor relies on initial conditions.

The paper is organized as follows. In Section 2 the closed-form estimators of the

GARCH and SV model are described. For the estimator of the SV model, the asymptotic

properties are given. Section 3 introduces the basic set-up for our model selection proce-

dure and establishes its strong consistency. Section 4 reports the results of a simulation

to study on the performance of our procedure. Section 5 applies the procedure to stocks

in Dow Jones industrial index. We conclude in section 6. All proofs are gathered in the

Appendix.

2 Closed form estimators

This section considers closed form estimators both for the SV and the GARCH model.

Note that these estimators are not efficient, but in the usually large samples in financial

applications this should be of minor importance. As our simulation study will demon-

strate, standard errors of parameter estimates are small.

2.1 The stochastic volatility model

Consider the following stochastic volatility (SV) model for the time series {yt}t∈N

yt =
√

htξt (1)

log ht = φ + δ log ht−1 + σεt (2)

where ξt and εt are i.i.d. error terms with joint distribution given by (ξt, εt)
′ ∼ N(0, I2).

Due to the normality assumption, the mean and variance of log(ξt)
2, -1.27 and π2/2, are

known.

Assumption 1 In (2), |δ| < 1 and {ht}t∈N is initialized from its stationary distribution.

Denoting ηt = log ξ2
t + 1.27 and zt = log y2

t , we obtain the following linear state space

representation.

zt = −1.27 + log ht + ηt (3)
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log ht = φ + δ log ht−1 + σεt (4)

The model is characterized by the parameter vector θ1 = (φ, δ, σ2)′ ∈ Θ1.

Now, we can express the autocorrelation function (ACF) of y2
t and the kurtosis of yt as

a function of the model parameters. Denote by ρ(τ, θ1),ψ(θ1) and κ(θ1) the autocorrelation

function (ACF) the variance and kurtosis of y2
t , respectively. For the Gaussian SV model

it can be shown that

ρ(τ, θ1) =
exp

(
σ2

1−δ2 δ
τ
)
− 1

κ− 1
, τ ≥ 1 (5)

ψ(θ1) = exp

(
φ

1− δ
+

σ2

2(1− δ2)

)
(6)

κ(θ1) = 3 exp

(
σ2

1− δ2

)
(7)

The closed form estimator θ̂1
n = (δ̂n, φ̂n, σ̂n)′ is given by

δ̂n =
ϑ̂1n(2)− ϑ̂2

1n

ϑ̂1n(1)− ϑ̂2
1n

(8)

φ̂n = (ϑ̂1n − c)(1− δ̂n) (9)

σ̂2
n =

(
ϑ̂2n − ϑ̂2

1n −
π2

2

)
(1− δ̂2

n) (10)

where, c = −1.27, ϑ̂1n = n−1
∑n

t=1 zt, ϑ̂2n = n−1
∑n

t=1 z2
t and ϑ̂1n(k) = n−1

∑n
t=1 ztzt−k.

Let λ̂1
n ≡ (ϑ̂1n, ϑ̂1n(1), ϑ̂1n(2), ϑ̂2n), λ1

0 = E(λ̂1
n) and Ṽ = limn→∞ var

√
n(λ̂1

n − λ1
0). From

(8)-(10) we can define a continuously differentiable function F1 : <4 → <3 such that

θ̂1
n = F1(λ̂

1
n) and θ1

0 = F1(λ
1
0). After some tedious algebra and by applying the continuous

mapping theorem, we obtain the following result.

Theorem 1 Under Assumption 1,

θ̂1
n →a.s. θ1

0 and
√

n(θ̂1
n − θ1

0) →d N(0, V1),

where V1 =
(

∂F1(λ0
1)

∂λ1

)
Ṽ

(
∂F1(λ0

1)

∂λ1

)′
.

Note that this estimator converges to the true parameter values when the SV model

is the true process. Otherwise, θ̂1
n is the “quasi-true” parameter estimate of an SV model,

which is used to approximate some of the data moments .

The closed form for the SV model which was proposed by Dufour and Valéry (2006)

is given as follows.

δ̃n =
log µ̂2n(1)− log 3− 4 log µ̂2n + log µ̂4n

log µ̂4n − log 3− 2 log µ̂2n

− 1

5



φ̃n =

(
1

2
log 3 + 2 log µ̂2n − 1

2
log µ̂4n

)
(1− δ̃n)

σ̃2
n = (log µ̂4n − log 3− 2 log µ̂2n) (1− δ̃2

n)

where µ̂2n = n−1
∑n

t=1 y2
t , µ̂4n = n−1

∑n
t=1 y4

t and µ̂2n(1) = n−1
∑n

t=1 y2
t y

2
t−1.

To see how the two estimators behave we do a small Monte Carlo experiment. We

follow Sandmann and Koopman (1998) and Hafner and Herwartz (2000) in specifying

the parameters. Defining the coefficient of variation, CV = var(ht)/E[ht]
2, one obtains

the expression CV = exp(σ2/(1 − δ2)) − 1. The coefficient of variation for this model is

directly related to the kurtosis of yt, which is given by κ = 3(CV + 1). Here, φ is an

irrelevant scaling parameter, but Sandmann and Koopman (1998) determine φ such that

E[ht] = 0.0009, which gives a realistic annualized standard deviation of 22%. Now, we fix

δ at 0.90, 0.95, and 0.98 and CV at 10 and 1. The corresponding kurtosis coefficients are

33 and 6, respectively, where the former could represent a very high frequency (e.g. hourly

samples) and the latter a lower frequency (e.g. daily or weekly) financial time series. This

gives 6 different parameterizations. As sample sizes we use n = 2, 500, and 5,000. Each

process is simulated k = 10, 000 times. Table 1 reports the means of estimates of δ across

the k simulations, together with their standard deviation divided by
√

k. To economize

on space we do not report the results for the other parameters, but they are very similar.

The results suggest that δ̂ is more efficient than δ̃ when the kurtosis κ is large, but worse

if κ is small.

2.2 The GARCH model

The second volatility model we consider is the standard GARCH (1,1) model as proposed

by Bollerslev (1986). It reads

yt =
√

htξt (11)

ht = ω + αy2
t−1 + βht−1 (12)

where ξt ∼ i..i.N(0, 1) and the model parameters are θ2 = (ω, α, β)′ ∈ Θ2. The main

difference to SV models is that here, volatility ht is measurable w.r.t. the information set

at time t − 1. To ensure finiteness of fourth moments we shall throughout assume that

3α2 + 2αβ + β2 < 1. The ACF, variance and kurtosis of yt are given as follows

ρ(1, θ2) =
α(1− β(α + β))

1− β2 − 2αβ
(13)

ρ(τ, θ2) = (α + β)ρ(τ − 1), τ ≥ 2 (14)

ψ(θ2) = ω/(1− α− β) (15)
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n = 2, 500

κ δ δ̂ SE(δ̂) δ̃ SE(δ̃)

33 0.9 0.9001 (0.0007) 0.8962 (0.0016)

33 0.95 0.9502 (0.0006) 0.9467 (0.0015)

33 0.98 0.9816 (0.0006) 0.9776 (0.0014)

6 0.9 0.9268 (0.0041) 0.9113 ( 0.0019)

6 0.95 0.9819 (0.0029) 0.9603 (0.0020)

6 0.98 1.0206 (0.0037) 0.9926 (0.0020)

n = 5, 000

κ δ δ̂ SE(δ̂) δ̃ SE(δ̃)

33 0.9 0.8988 (0.0004) 0.8994 (0.0013)

33 0.95 0.9501 (0.0004) 0.947 (0.0013)

33 0.98 0.9809 (0.0004) 0.979 (0.0012)

6 0.9 0.907 (0.0016) 0.9048 (0.0015)

6 0.95 0.9627 (0.0016) 0.9527 (0.0015)

6 0.98 0.9927 (0.0017) 0.983 (0.0014)

Table 1: Monte Carlo estimation results of the SV model based on 10,000

replications, using the Dufour-Valéry estimator δ̃ and our estimator δ̂.
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κ(θ2) = 3 +
6α2

1− 3α2 − 2αβ − β2
(16)

Estimation of GARCH models is usually done by maximum likelihood, which is much less

complicated than for the SV model. Recently, a closed form estimator for the GARCH

model based on the ACF of y2
t has been proposed by Kristensen and Linton (2006), which

is strongly consistent but less efficient than the ML estimator.

Let ρ̂n(k)and ψ̂n be the sample autocorrelation function and average of y2
t (the sample

variance) respectively, ρ̂n(k) = v̂n(k)/v̂n(0) with

v̂n(k) =
1

n

n∑
t=1

(y2
t − ψ̂n)(y2

t−k − ψ̂n), (17)

ψ̂n =
1

n

n∑
t=1

y2
t . (18)

Given (17)-(18) let ζ̂n = v̂n(2)/v̂n(1), b̂n ≡ ζ̂n+1−2v̂n(1)ζ̂n

ζ̂n−v̂n(1)
and θ̂n =

−b̂n+
√

b̂2n−4

2
assuming

that b̂n > 2. The closed form estimator θ̂2
n = (ω̂n, α̂n, β̂n)′ is given by

α̂n = θ̂n + ζ̂n, β̂n = −θ̂n, ω̂n = ψ̂n(1− ζ̂n). (19)

The parameter ζ̂n is constrained within the unit interval. However in practice it may occur

that ζ̂n < 0 or ζ̂n > 1. To deal with this problem, we set ζ̂n = max(ε, min(1−ε, ζ̂n)) using a

small ε > 0. Furthermore, the parameter can be estimated by ζ̂n =
∑m

j=1 ωj
v̂n(j+1)

v̂n(j)
for any

ωj sequence with
∑m

j=1 ωj = 1, so that a more general class of estimators can be defined.

Kristensen and Linton (2006) show that if ht is strictly stationary and E[(β + αξ2
t )

4] < 1,

these estimators are
√

n-consistent and are asymptotically normal. To obtain this result,

the finiteness of eight moments of innovation ξt is needed, while a slower rate is obtained

if only finite fourth moment is assumed. Since the closed form estimator is not efficient, it

was suggested by Kristensen and Linton (2006) to use these estimates as a starting point

in the numerical optimization of the QMLE or the Whittle estimation procedure.

3 Model Selection

We consider selection between the SV (model 1) model and the GARCH (model 2). Let

ri(θ
i) ≡ (ψ(θi), κ(θi), ρ(1, θi), . . . , ρ(qn, θi)) be variance, kurtosis and the autocorrelations

of y2
t which are implied by the i-th model and let γ̂n ≡ (ψ̂n, κ̂n, ρ̂n(1), . . . , ρ̂n(qn)) be

the corresponding vector of empirical moments and γn ≡ (ψ0, κ0, ρ(1), . . . , ρ(qn)) be its
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population counterpart. The kurtosis is estimated by κ̂n ≡ 1
n

∑n
t=1 y4

t /ψ̂
2
n and v0(k) =

E(v̂n(k)). The distance between γ0 and ri(θ
i
0) is given by

Qin = (ri(θ
i
0)− γ0)

′W (ri(θ
i
0)− γ0), i = 1, 2 (20)

where W = diag(w1, . . . , wqn+2) and W ≥ 0 (where the inequality means that it holds for

each of the elements). This distance measures the ability of the model to fit well some

interesting features of the data such as persistence, variance or kurtosis. The weights in

the matrix W reflect the importance that the researcher assigns to the moments used.

For example wj = 0 for some j suggest that some moments are negligible. Also we can

set wj = 1/j which indicate that more weights are given to the variance, kurtosis and the

first elements of the ACF and so on. The number of weights\moment conditions qn + 2

is non-decreasing in n. We throughout assume that the Qin’s are finite, thus the models

are comparable (see Rivers and Vuong (2002)).

Our goal is to select the model that fits the data best according to the goodness of

fit measure given in equation (20). In case that both models fit the data equally well,

we will prefer the GARCH model because of its relative simplicity. Since we provide an

asymptotic theory below, we now introduce the precise notion of better and equal fits

accordingly. Let ∆n = Q2n − Q1n, if lim infn→∞ ∆n > 0, we say that the SV model is

asymptotically better than the GARCH model and vice versa when lim supn→∞ ∆n < 0. If

instead limn→∞ ∆n = 0, we say that the two models are asymptotically equivalent. When

∆n = 0 for each sample size, the two models are called equivalent. For simplicity and

without loss of generality we assume that the series is strictly stationary. If the number

of moments does not depend on the sample size (qn = q), we have that ∆n = ∆ and the

notion of the asymptotic equivalence reduces to the equivalence.

We construct the following selection criteria (SC).

SCn =
√

n∆Q̂n − cn (21)

where ∆Q̂n = Q̂2n − Q̂1n, Q̂in = (ri(θ̂
i
n) − γ̂n)′W (ri(θ̂

i
n) − γ̂n) for i = 1, 2 and cn > 0

imposes a penalty which encourages the selection of the GARCH model when both models

are asymptotically equivalent. The penalty terms can be a sequence of non-stochastic

numbers. The selection procedure works as follows: select the GARCH model if SCn ≤ 0,

otherwise select the SV model.

Next, we need to introduce some notation. Let λ̂2
n ≡ (ψ̂n, ψ̂

2
nκ̂n, v̂n(1), . . . , v̂n(qn)), τ̂n ≡

diag( 1, 1, 1, 1, 1, ψ̂−2
n , v̂n(0)−1, . . . v̂n(0)−1), λ̂n ≡ (λ̂1

n, λ̂2
n) and λ2

0, λ0,τ0 be their population

counterparts, respectively. Given (19), we can define a continuously differentiable function

F2 : <3 → <3 such that θ̂2
n = F2(γ̂

1
n, γ̂3

n, γ̂4
n), and θ2

0 = F2(γ
1
0 , γ

3
0 , γ

4
0), where γ̂j

n and γj
0
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denote the j-th element of γ̂n and γ0, respectively. Let F3 : <qn+2 → <qn+2 be the identity

function (that is, F3(γ) ≡ γ). We can now define the function F : <qn+6 → <qn+8, where

F (Z) ≡ [F1(·)′, F2(·)′, F3(·)′] ′ and Z ≡ (λ1′
0 , γ′)′.

If qn = q < ∞, using a first order Taylor expansion of (20) we have that

Q̂2n − Q̂1n = ∆ + 2A(θ̄1
n, θ̄

2
n, γ̄n)




θ̂1
n − θ1

0

θ̂2
n − θ2

0

γ̂n − γ0




(qn+8)×1

(22)

where θ̄1
n, θ̄2

n, γ̄n lie on the chord between θ̂1
n, θ̂

2
n, γ̂n and θ1

0, θ
2
0, γ0 and

A(θ1, θ2, γ) ≡
[
(γ − r1(θ

1))′W
∂r1

∂θ1′ (θ
1), (r2(θ

2)− γ)′W
∂r2

∂θ2′ (θ
2), (r1(θ

1)− r2(θ
2))′W

]

Using the smoothness of F (·), under mild regularity conditions, we further have

∆Q̂n = ∆ + B0 · (λ̂n − λ0) + oa.s.(1) = ∆ + oa.s.(1) (23)

where, B0 = 2A(θ1
0, θ

2
0, γ0)

∂F
∂Z

∣∣
Z=(λ1

0,γ0)
τ0 and

∂F

∂Z
=




∂F1

/
∂λ1′ 03×1 03×1 03×1 03×1 . . . 03×1

03×4 ∂F2/∂γ1 03×1 ∂F2/∂γ3 ∂F2/∂γ4 . . . 03×1

01×4

... I(qn + 2)

01×4




and where (I(qn + 2) is (qn + 2)× (qn + 2) identity matrix).

Therefore, if ∆ > 0, and cn = oa.s.(
√

n), then the SV model will be selected almost

surely. If the models are equivalent, under more regularity conditions which allow us to

apply the law of iterated logarithm (LIL) we have that

√
n∆Q̂n ≤ an

√
2B′

0V0B0 + oa.s.(1) (24)

where an ≡
√

log log n and V0 = Var
√

n(λ̂n − λ0), so in order to ensure that the GARCH

model will be selected it is sufficient to impose that cn ≥ an

√
2B̂′

nV̂nB̂n, where B̂n is a

strongly consistent estimator of B0 and is given by B̂n = 2A(θ̂1
n, θ̂

2
n, γ̂n) ∂F

∂Z

∣∣
Z=(λ̂1

n,γ̂n)
τ̂n.

Furthermore, V̂n is a strongly consistent estimate of V0 which is given below.

Let xt denote the summands of
√

n(λ̂n−λ0) assuming that ψ̂n is replaced by ψ0 in λ̂n,

that is, xt = xt(λ0, ψ0), and we seek to estimate V0 = E(xtx
′
t) + 2

∑∞
s=1 (1− s

n
)E(xtx

′
s).

10



However, in practice we will have to use x̂t = x̂t(λ̂n, ψ̂n), in which λ0 and ψ0 are replaced

by λ̂n and ψ̂n. We apply the Newey and West (1987) statistic,

V̂n =
1

n

n∑
t=1

x̂tx̂
′
t +

2

n

`n∑
τ=1

$(τ)
n∑

t=i+1

x̂tx̂t−τ
′ (25)

with $(τ) = 1 − τ
1+`n

and `n is non decreasing in the sample size n and `n → ∞ as the

sample size grows. Let V̂ i
n and V i

0 be the true and the estimated variance of the i-element

of 1√
n

∑n
t=1 xt. In order to formally establish the strong consistency of our selection criteria

when qn = q < ∞, we will need the following assumption.

Assumption 2.

1. The observed process is strictly stationary, ergodic and strong mixing with mixing

coefficients α(m) satisfying that
∑∞

m=0 α(m)2(1/r−1/p) < ∞, where r ∈ (2, 4], p ≥ r

and |∆n| < ∞.

2. E(|y2p
t |) < ∞ for i) p ≥ 2 ii) p ≥ 4 iii) E(|y4p

t |) < ∞ for p ≥ r > 2

3. `n = O(n1/2−1/r(log n)−1/r−η) for some η > 0.

Assumptions 2.1 and 2.2 are standard memory and moments conditions. In 2.1 the

positive constants α(m) specify the decay rates for the mixing coefficients; the condition is

implied if α(m) = −rp/2(p− r) and it is automatically satisfied if the mixing coefficients

decay at geometric rates. This assumption implies that the ACF sequence is absolutely

summable and under sufficient restrictions on the parameter sets Θ1 and Θ2 (see section

2-3) we can show the same for the ACF in (5) and (14). Hence, the models are com-

parable and |∆n| < ∞. Using Carrasco and Chen (2002) results for GARCH and SV

we can derive primitive conditions underlying Assumptions 2.1-2.2. For example, for the

lognormal stochastic volatility, which is widely used among the stochastic volatility mod-

els, Assumption 1 above implies that the process is β-mixing with geometric decay and

that the moment requirements in Assumption 2.2 are satisfied. The existence of fourth

moments of yt is sufficient to show that the best model will be selected with probability

one by the law of large numbers (LLN). However, when the models are equivalent we need

the eighth moment of yt in order to establish (24) via the LIL. To estimate the almost

sure sharper bound we need to show that V̂n →a.s. V0, hence, we strengthen slightly the

moment requirements and add Assumption 2.3. In this assumption, we note the usual

trade-off between the sufficient moment restrictions and the rate of divergence for the

bandwidth parameter (see Hansen (1992)). The sequence of weights used in our Newey-

West estimator is related to the Bartlett (1950) sequence. However, other choices for the

11



weighting function $(τ) in (25) are possible (see Assumptions 1.1 and 1.4 in De Jong

(2000)).

Theorem 2 Suppose that qn = q < ∞ and Assumption 2.1 holds.

1. If ∆ > 0, cn = oa.s.(
√

n) and 2.2(i) hold, then P (limn→∞ SCn > 0) = 1.

2. Suppose that the models are equivalent, cn/an →∞, and 2.2(ii) hold, then

P (limn→∞ SCn ≤ 0) = 1.

3. Suppose that the models are equivalent, cn ≥ an

√
2B̂′

nV̂nB̂n 2.2(iii) and 2.3 hold,

then P (limn→∞ SCn ≤ 0) = 1.

Theorem 2.1 shows that when the penalty terms grows slower than
√

n the SCn tends

to select the best model, once the sample size becomes large. For the case that the models

are equivalent, the conditions imposed in Theorem 2.2 and 2.3 ensure that
√

n∆Q̂n =

Oa.s.(an), which is asymptotically dominated by the penalty term, so that the GARCH

model is selected with probability one.

We note that in order to obtain the strong consistent decision rule we require the

existence of the eighth moments. This assumption is relatively strong for the GARCH

model. However, similar moment conditions are often required in order to derive the

asymptotic properties of the GARCH estimator, see e.g. Baillie and Chung (2001), Comte

and Lieberman (2003) and Storti (2006). On the other hand, for the SV model the

existence of higher moments does not pose any problem. Furthermore, we should note

that the models compared are more likely to be misspecified and are used just to fit some

features of the data.

We note that instead of weighting the moments, our selection procedure can be de-

composed into q different decision rules. For example, we can check if the SV model

fits the kurtosis of the data better than the GARCH and we can then examine if the

same is implied for the first order autocorrelation and so on. Since each decision rule is

strongly consistent, the proposed procedure is also strongly consistent. This is equivalent

to performing a joint test with q different hypotheses on the ability of the GARCH and

SV to fit different moments of the data. However, in this case, standard tests cannot be

applied in the usual way because repeated application of such tests yields a procedure

that rejects the true null hypothesis with probability approaching one as the number of

applications grows. Therefore, the critical values have to be allowed to grow with the

sample size in order to control the asymptotic size as the test is repeated (see e.g. Bai

(1999) and Altissimo and Corradi (2003)).

12



Theorem 2 implies that if the number of moment conditions employed is fixed, the

noise is eliminated asymptotically by the action LLN, and the LIL can be used to bound

the noise in (24) if the models are equivalent. So our decision rules are strongly consistent.

However empirical evidence suggests that in financial data sample autocorrelations of the

squared data decay more slowly than the exponential rate prescribed by the GARCH or

the SV models. It is desirable to allow the number of moment conditions (qn + 2) to

increase with the sample size. As qn increases, the second term on the RHS of (23) may

dominate ∆n since the number of elements in {λ̂n − λ0}n∈N is allowed to grow with the

sample size. Also, there exist no triangular LIL which can be used in this case; hence the

LIL is used for xi
t , i = 1, . . . , qn, changing the a.s. bounds in 3(iii) slightly. In order to

establish the strong consistency of selection in this case we add the following assumptions.

Hence, in order to establish the strong consistency of selection in this case we add the

following assumptions.

Assumption 3.

1. E(|y2p
t |) < ∞ for p ≥ r

2. qn = O(n1/2−1/r(log n)−1/r−η) for some η > 0.

Theorem 3 Suppose that Assumption 2.1 holds.

1. If lim infn→∞ ∆n > 0, cn = oa.s.(
√

n), Assumptions 3.1 and 3.2 hold, then

P (limn→∞ SCn > 0) = 1.

2. Suppose that
√

n∆n = O(anqn), qn = o(
√

n/an), cn/(anqn) → ∞, and Assumption

2.2(ii) hold, then P (limn→∞ SCn ≤ 0) = 1.

3. Suppose that
√

n∆n = o(anqn), qn = o(
√

n/an), and cn ≥ an

∑qn

i=1

√
V̂ i

n|B̂i
n|,

where B̂i
n is the i-th element of B̂n. If Assumptions 2.2(iii) and 2.3 hold, then

P (limn→∞ SCn ≤ 0) = 1.

The theorem is based on providing mixingale-type bounds for the products xi
tx

i
t−j and

ytyt−j and applying results of De Jong (2000). We see that when the SV model is asymp-

totically better than the GARCH model, the growth rate of qn is restricted. In Theorem

3.2 and 3.3, the models are asymptotically equivalent as long as the order of qn is carefully

determined.

The penalty term can be interpreted as a critical value, i.e. the associated size of

the implicit test that the GARCH and the SV fit the data equally well under the null
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hypothesis. Furthermore, from (24), given mild regularity conditions which allow us to

use the LIL, we see that under the null hypothesis lim supn→∞ dn(B̂′
nV̂nB̂n)−0.5∆Q̂n ≤ 1

a.s., where dn = an

√
0.5n. Note that in the standard framework of hypothesis testing, dn

is replaced by
√

n (see e.g. Gallant and White (1988), White (1994)). However, in this

case the inference procedure is consistent in the sense that asymptotically it has zero size

and unit power (see also Altissimo and Corradi (1997, 2002)).

We note that although the paper concentrates on statistics of the form (21), it is

straightforward to apply our results to statistics of the form g(
√

n∆Q̂n)−g(cn) where g(·)
is a sign preserving continuous (a.s) function. Such statistics may have some advantages

in terms of power or size in small samples; this is left for future research. In this paper we

use estimators that are based on data moments. However, our results can be generalized

to any estimator of the form θ̂i
n − θi

0 = Bn ×Hn, where Bn is (k × q) with Bn →a.s. B0,

B0 is a matrix of rank k, Hn = 1
n

∑n
t=1 ht(θ

i
0) for (q × 1) orthogonality conditions ht(θ

i
0)

and a random diagonal matrix, Ŵn, if Ŵn →a.s. W .

4 A simulation study

We now show in a Monte Carlo simulation study how the derived model selection proce-

dure works for reasonable sample sizes. We use the criterion (21) with cn = an

√
2B̂′

nV̂nB̂n.

One has to determine the number of moments q that influence the selection criterion. As

we use moderate to large sample sizes, we decided to fix q = 10. This seems to be a com-

mon value, also considering for example the common use of ten lags in Portmanteau-type

statistics. However, in very large samples one should probably increase this value.

To investigate the selection performance we consider the following three possible sce-

narios: the first is given by a true SV model, the second by equivalence between SV and

GARCH (in which case we prefer GARCH), and the third one by a true GARCH model.

4.1 SV is true model

To consider a realistic SV model for which we know that our closed form estimator works

well, we let φ = −0.411, δ = 0.95, σ = 0.484. This is one of the processes investigated

above in the simulation comparison between two closed form estimators of the SV model.

We saw there that our estimator is more efficient than the one of Dufour and Valéry for

this parameterization. Recall that this process is characterized by high persistence (i.e.

δ is close to one) and a high kurtosis of 33. These are typical values for high frequency

financial returns. We set the weight matrix to the identity matrix, which puts enough
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weight on the kurtosis such that the true model, SV will be picked asymptotically. The

SV process was generated k times for sample size n ranging from 100 to 10,000. Table

2 reports the number of times the SV and GARCH models were selected. To shed light

on the average magnitude of the selection criterion, we also report the median over the k

replications.

n k SV GARCH med(SCn)

100 10,000 327 9673 -671.26

200 10,000 256 9744 -786.10

500 1,000 102 898 -264.02

750 1,000 274 726 -466.69

1,000 1,000 390 610 -225.95

2,000 1,000 667 333 576.47

5,000 1,000 786 214 3078.63

10,000 1,000 848 152 7600.80

Table 2: Monte Carlo results. Reported are the number of times the GARCH

or SV models are selected, out of k replications of a generated SV process of

length n. The weight matrix is W = Iq, such that the SV model should be

preferred. The last column reports the median of the selection criterion over

the k replications.

As a result one can state that the model selection procedure is selecting the correct

model in most cases when the sample size is moderate to large, although the convergence

seems to be relatively slow. The reason is the penalty term that encourages selection

of the GARCH model and that is dominated by the goodness-of-fit term for sufficiently

large samples. Recall also that the penalty term depends on the estimation of moments

of order eight, which is highly erratic in small samples. This can explain the positive

finite sample bias of the estimated penalty term, which implies the slow convergence of

the selection procedure if the SV model is true.

4.2 SV and GARCH are equivalent

The same process is generated: SV with φ = −0.411, δ = 0.95, σ = 0.484, but now with

W equal to zero except for: W11 = 1, W33 = 1 and W44 = 1. As the variance, the first

and second order autocorrelations are used in the estimation of GARCH, these moments

will asymptotically be the same as the true ones, given by the SV model. Thus, we have
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equivalence. The pseudo-true parameters of the GARCH model are ω = 0.00010749,

α = 0.1834 and β = 0.6965. Results are reported in Table 3.

n k SV GARCH med(SCn)

100 10,000 4 9996 -2.15

200 10,000 16 9984 -1.98

500 1,000 2 998 -1.75

1,000 1,000 3 997 -1.66

2,000 1,000 5 995 -1.58

5,000 1,000 3 997 -1.74

Table 3: Monte Carlo results. Reported are the number of times the GARCH

or SV models are selected, out of k replications of a generated SV process of

length n. The weight matrix is chosen such that both models are equivalent,

so that we should prefer the GARCH model. The last column reports the

median of the selection criterion over the k replications.

We conclude that the GARCH model is selected for all sample sizes in almost all cases.

4.3 GARCH is true model

We generate a GARCH(1,1) model with α = 0.1, β = 0.85 and ω = 0.0009(1 − α − β).

This generates the same persistence (α + β = 0.95) as the previous SV model. Again we

use W = Iq. Table 4 shows the results.

To conclude, if the GARCH model is true, then using our selection criterion gives

a clear preference for the GARCH model, even in small samples. Thus, our simulation

study confirms that the proposed model selection criterion is consistent and working well

in moderate to large sample sizes. The imposed preference for GARCH under equivalence

implies that convergence of the selection if the SV model is true is slower than convergence

if the GARCH model is true.

5 Empirical Application

We now apply our selection procedure to 26 daily stock returns of the New York Stock

Exchange (NYSE), contained in the Dow Jones Industrial Average index. The investigated

period is January 2, 1973 to May 13, 2003. Cases where the estimated GARCH or SV

models implied nonstationarity or infinite fourth moments were discarded. The sample
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n k SV GARCH med(SCn)

100 10,000 1 9999 -17453

200 10,000 1 9999 -18786

500 1,000 1 999 -14945

1,000 1,000 1 999 -12778

2,000 1,000 0 1000 -10280

5,000 1,000 0 1000 -7736

10,000 1,000 0 1000 -7696

20,000 1,000 0 1000 -2281

Table 4: Monte Carlo results. Reported are the number of times the GARCH

or SV models are selected, out of k replications of a generated GARCH process

of length n. The weight matrix is W = Iq, so that we should prefer the

GARCH model. The last column reports the median of the selection criterion

over the k replications.

size in most cases is n = 7667. Again we fix q = 10 and set the weight matrix to identity,

W = Iq. Table 5 reports the results, where the selection criterion SCn is decomposed into

the goodness-of-fit term and the penalty term.

As a result, the GARCH model is selected in all cases. Note however that only looking

at the goodness-of-fit term would give a preference for the SV model in all cases, except

for one (Merck). A possible interpretation is that the advantage of the SV model in terms

of goodness-of-fit is not precise enough, so that the penalty term that depends on the

variation of sample moments takes large values. As a consequence, one would prefer the

GARCH model because the risk of model equivalence (or even misspecification) would

otherwise be too large. It seems that the SV model, although being more flexible and

providing a better fit to the data, suffers from the high variability of sample moments,

especially the second moments of log y2
t , and that a preference for SV models would only

become apparent for even larger sample sizes. Recall also from the simulation study that

even in the case of a true SV model and n = 5000, there is still a misclassification rate of

21% in favor of GARCH.

6 Conclusions

In this paper we proposed a simple model selection procedure to select between a GARCH

and a stochastic volatility (SV) model. We have shown that this procedure is strongly con-
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Stock
√

n(Q̂2n − Q̂1n) cn SCn

Caterpillar 3418 7103 -3684

Citibank 8107 22411 -14303

Cocacola 14486 37137 -22651

Dupont 1402 5924 -4521

Ekodak 53775 128455 -74679

Exxon 1932 42908 -40975

GenMotors 2151 3891 -1740

Homedepot 6120 17530 -11410

Honeywell 4120 40507 -36387

HP 2490 2698 -208

IBM 1923 46362 -44439

Johnson 2969 9116 -6146

JP Morgan 3623 15248 -11625

McDonalds 4920 12709 -7789

Merck -406 4848 -5255

MMM 1451 34521 -33070

PhMorris 2280 52706 -50426

ProcterGamble 13686 193295 -179609

SBC 315 4711 -4395

Table 5: Empirical application of the model selection to stocks in the Dow

Jones index at NYSE.
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sistent, meaning that we find the correct model asymptotically with probability one. Un-

der model equivalence we prefer the GARCH model due to its simplicity and widespread

availability in software packages. The selection is based on closed form estimators that

avoid typical problems of numerical optimization and dependence on initial values.

Finally, we would like to emphasize that the proposed model selection procedure is of

course more generally applicable to the selection of non-nested models. We have focused

in this paper on the GARCH and SV models mainly for the sake of illustration and for

practical relevance, as it is a well-known problem in financial econometrics. For example,

the same model selection procedure could be applied to the selection between the autore-

gressive conditional duration (ACD) model of Engle and Russell (1998) and the stochastic

conditional duration model of Bauwens and Veredas (2003).
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Appendix

Proof of Theorem 1

By Proposition 15 of Carrasco and Chen (2002), Assumption 1 implies that {ht}t∈N

and {yt}t∈N is strictly stationary and β-mixing with exponential decay. As {zt}t∈N is

a measurable function of {yt}t∈N, this implies by Theorem 14.1 of Davidson (1994) that it

is also strictly stationary, ergodic and exponential β-mixing. By the ergodic theorem (e.g.

theorem 13.12 of Davidson, 1994), z̄ →a.s. E(zt) = c0 + φ0/(1− δ0). Thus, the numerator

of (8) can be approximated almost surely by
∑n

t=3 zt−2(zt− c−φ0/(1− δ0)). Substituting

zt by (3), straightforward calculations show that

δ̂n = δ0 +
n−1

∑n
t=3 zt−2(ηt − δ0ηt−1 + σ0εt)

n−1
∑n

t=3 zt−2(zt−1 − z̄)
+ oa.s.(1) (26)

Note that zt−2 and ηt− δηt−1 + εt are independent with mean zero, so that the numerator

of the second term of (26) converges to zero almost surely. It remains to show that the

denominator converges a.s. to a positive limit. Note that {ztzt−1}t∈N is strictly stationary

and ergodic by Theorem 14.1 of Davidson (1994). Now, E(ztzt−1) = (c + φ0/(1− δ0))
2 +
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σ2
0/(1 − δ2

0) > 0, so that the denominator of the second term of (26) converges a.s. to

σ2
0/(1 − δ2

0) > 0. This proves that the second term of (26) converges a.s. to zero, and

that δ̂n → δ0 a.s. Second, note that φ̂n is a continuous function of two strongly consistent

estimators, so that φ̂n →a.s. (E[zt] − c)(1 − δ0). Since E[zt] = c + φ0

1−δ0
, this means that

φ̂n →a.s. φ0 as stated. Finally, var(zt) = var(log ht) + var(ηt) due to the independence

of ηt and ht, and var(log ht) = σ2
0/(1 − δ2

0). Again using Theorem 14.1 of Davidson

(1994), {z2
t }t∈N is strictly stationary and ergodic, which implies that a strong law of large

numbers holds for the mean of z2
t . Together with strong consistency of δ̂n, z̄, it follows

that σ̂2
n →a.s. σ2

0. Now, since {zt}t∈N is β-mixing with exponential decay that is bounded

in L2-norm, it is also an adapted L2-mixingale of size −1 with respect to the subfields

Gt = σ(zt, zt−1, . . .), see Davidson (1994), Theorem 14.2. Therefore, we can apply the

CLT of Scott (1973) to show that
√

n(λ̂1
n − λ1

0) ∼ N(0, Ṽ ) and the desired result follows

by the continuous mapping theorem.

Proof of Theorem 2

1. Assumptions 2.1 and 2.2, allow us to show that λ̂n →a.s. λ0, θ̂1
n →a.s. θ1

0 and θ̂2
n →a.s. θ2

0

by Slutsky’s theorem and the ergodic theorem. Further, the smoothness of F and A,

Slutsky’s theorem and (22) imply that

SCn =
√

n(∆ + oa.s.(1))

and the desired result therefore follows.

2. Similar to Theorem 2.1 we can show that τ̂n →a.s. τ0 and by using a mean value

expansion, we have that

√
n(Q̂2n−Q̂1n) = 2

[
A(θ1

0, θ
2
0, γ0) + oa.s.(1)

] [
∂F

∂Z
+ oa.s.(1)

]
(τ0+oa.s.(1))

1√
n

n∑
t=1

xt(λ0, ψ̂n),

where ∂F/∂Z is evaluated at Z = (λ1
0, γ0). Assumptions 2.1, 2.2(ii), McLeish α-mixing

inequality (McLeish (1975)), and Cauchy-Schwartz inequality imply that the centred series

{xt(λ0, ψ0)}t∈N is an adapted L2-mixingale of size −1
2

with respect to the subfields Ft =

σ(yt, yt−1, . . .). The stationarity and ergodicity properties of {yt}t∈N are preserved by any

continuous transformation, so {xt(λ0, ψ0)}t∈N and {y2
t }t∈N are also ergodic and strictly

stationary processes (see White (2001), Theorem 3.35). Hence, we can apply Corollary

AIII.3 of Sin and White (1992) to establish the LIL for this process. This implies that

|ψ̂n − ψ0| = Oa.s.(ann
−0.5) and

∣∣∣ 1√
n

∑n
t=1 xt(λ0, ψ0)

∣∣∣ = Oa.s.(an), where | · | denotes the

Euclidean norm. By a mean value expansion

1√
n

n∑
t=1

xt(λ0, ψ̂n) =
1√
n

n∑
t=1

xt(λ0, ψ0) + (ψ̂n − ψ0)
1√
n

n∑
t=1

[
∂xt

∂ψ
(λ0, ψ0) + oa.s.(1)]
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where
1√
n

n∑
t=1

xt(·, ψ0) + oa.s.(an) = Oa.s.(an)

and hence,

√
n(Q̂2n − Q̂1n) = B0

1√
n

n∑
t=1

xt(λ0, ψ0) + oa.s.(an) = Oa.s.(an) (27)

and SCn = Oa.s.(an) − cn = −cn(1 + oa.s.(1)). Thus, SCn is negative almost surely and

the desired result follows.

3. From (27) we have

SCn = an

[
B0

1√
n

n∑
t=1

xt(λ0, ψ0)/an − C0 + oa.s.(1)

]
−an

[
cn/an − Ĉn + (Ĉn − C0)

]
(28)

where C0 =
√

2B′
0V0B0 and Ĉn =

√
2B̂′

nVnB̂n. By the LIL, the first term on the RHS is

non-positive, so if Ĉn−C0 →a.s. 0 and cn ≥ anĈn then SCn ≤ 0 a.s. The strong consistency

of (λ̂n, θ̂1
n, θ̂2

n) and the smoothness of A(·) and F (·) imply that B̂n − B0 →a.s. 0. Thus,

it suffices to show that
∑

(u,s) (V̂ us
n − V us

0 ) = oa.s.(1) where V̂ us
n and V us

0 are the (u, s)

elements of V̂n and V0, respectively. Using the LIL we can show similarly to 2.2 that each

element of (λ̂n−λ0) is Oa.s.(ann−0.5). This result combined with Assumptions 2.1, 2.2(iii),

2.3 and the cr inequality imply that V̂n − V0 →a.s. 0 element-wise by Theorem 3 of De

Jong (2000), and the desired result follows.

Proof of Theorem 3

1. The proof follows Theorem 1 in De Jong (2000) with some changes to accommodate

the absence of the kernel weighting function. We need to show that the second term on

the RHS of (23) is oa.s.(1). As in Theorem 2.1 and 2.2, we can show that θ̂1
n, θ̂2

n and λ̂n are

strongly consistent estimates, and it suffices to establish that
∑qn

j=1 v̂n(j)− v0(j) →a.s. 0.

Let zt = (y2
t −ψ0) and ṽn(j) = 1

n

∑n
t=1 ztzt−j and let ‖X‖δ = (E|X|δ)1/δ. We begin by

establishing that
∑qn

j=1 ṽn(j)− v0(j) →a.s. 0. Consider the adapted mixingale {ztzt−j}t∈N

with respect to the subfields Ft = σ(yt, yt−1, . . .). Similar to Hansen (1992), we can show

that for j ≥ 0, and ϕ > δ ≥ 1

||E(ztzt−j|Ft−m)− E(ztzt−j)||δ ≤ {4α(m− i)1/δ−1/ϕI(m > j) + 2I(m ≤ j)}||y2
t ||22ϕ

where I(·) is the indicator function. Therefore, using Lemma 2 of Hansen (1991),
∥∥∥∥∥ max

2m≤n≤2m+1

∣∣∣∣∣
n∑

t=1

ztzt−j − E(ztzt−j)

∣∣∣∣∣

∥∥∥∥∥
r/2

≤ C2(C1 + 2j)2(m+1)2/r (29)
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for some C1, C2 > 0. Hence,

∥∥∥∥∥ max
2m≤n≤2m+1

∣∣∣∣∣
qn−2∑
j=1

ṽn(j)− v0(j)

∣∣∣∣∣

∥∥∥∥∥

r/2

r/2

≤
∥∥∥∥∥ max

2m≤n≤2m+1

qn∑
j=1

1

n

∣∣∣∣∣
n∑

t=1

ztzt−j − E(ztzt−j)

∣∣∣∣∣

∥∥∥∥∥

r/2

r/2

≤



q2m+1∑
j=1

2−m

∥∥∥∥∥ max
2m≤n≤2m+1

∣∣∣∣∣
n∑

t=1

ztzt−j − E(ztzt−j)

∣∣∣∣∣

∥∥∥∥∥
r/2




r/2

≤
(q2m+1∑

j=1

2−mC2(C1 + 2j)2(m+1)2/r

)r/2

= O(2m(1−r/2)qr
2m+1)

The last inequality uses (29) and since qn = O(n1/2−1/r(log n)−1/r−η) for some η > 0,∑∞
m=0 2m(1−r/2)qr

2m+1 < ∞. Hence we can apply Lemma 1 of De Jong (2000) to show that∣∣∣ ∑qn

j=1 ṽn(j)− v0(j)
∣∣∣ = oa.s.(1). After some algebra

qn∑
j=1

v̂n(j)− ṽn(j) =

qn∑
j=1

1

n

n∑
t=1

(y2
t + y2

t−j + ψ0 + oa.s.(1))(ψ̂n − ψ0)

= Oa.s.(qnann
−1/2) = oa.s.(1)

which implies that SCn =
√

n(∆n + oa.s.(1)) and because lim supn→∞ ∆n < 0, the desired

result follows.

2. By using similar arguments as in the proof of Theorem 2.1 and 2.2 we can apply the

LIL to xt element–wise, so that
√

nSCn =
√

n∆n + Oa.s.(qnan) − cn = −cn(1 + oa.s.(1)),

and the desired result follows.

3. By applying the LIL element-wise, we can bound ∆Q̂n/an by C̃0 =
∑qn

i=1 V i
0 |Bi

0| and

√
nSCn = anqn

[√
n∆n/anqn + oa.s.(1)− cn/anqn + Ĉn/qn − (C̃n − C̃0)/qn

]

and since 1
qn

∑qn

i=1 (V̂ i
n − V i

0 ) = oa.s.(1) (note that C̃0 = O(qn) and ∆n = o(anqnn−0.5)),

the desired result follows.
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