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Abstract

This paper investigates the asymptotic theory for a factor GARCH model. Suf-

ficient conditions for strict stationarity, existence of certain moments, geometric

ergodicity and β- mixing with exponential decay rates are established. These con-

ditions allow for volatility spill-over and integrated GARCH. We then show the

strong consistency and asymptotic normality of the quasi-maximum likelihood es-

timator (QMLE) of the model parameters. The results are obtained under the

finiteness of the fourth order moment of the innovations.
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1 Introduction

Multivariate GARCH models are becoming more and more popular with the advance

of computing power, in particular to model the dynamic volatilities and correlations of

financial time series. Many different specifications have been proposed recently; see e.g.

the survey by Bauwens et al. (2006). Some of the proposed models such as the Vec or the

BEKK (see Bollerslev et al. (1988) and Engle and Kroner (1995)) suffer from the curse

of dimensionality in the sense that as the dimension increases, the number of parameters

explodes and it becomes unfeasible to estimate these models in high dimensions. To keep

the number of parameters under control, many restricted versions of multivariate GARCH

models have been proposed, of which factor GARCH models are an example. In this paper

we investigate the asymptotic theory for a factor GARCH model which nests some models

proposed in the literature. The factors are assumed to be either directly observed or to

be linear functions of the underlying variables. Examples for models that are nested in

our framework are the orthogonal GARCH model of Alexander (2001), the generalized

orthogonal GARCH model of van der Weide (2002), and the full factor GARCH model

of Vrontos et al. (2003). The factors are assumed to be conditionally orthogonal, but we

allow for Granger causality in variances.

The most commonly employed approach for estimation is based on a quasi-maximum

likelihood estimator (QMLE) in which the innovation process is characterized by a mul-

tivariate normal distribution. Bollerslev and Wooldridge (1992) show that the QMLE

is consistent and asymptotically normal, even if the true DGP is not conditionally nor-

mal. For the univariate GARCH(1,1) case, asymptotic theory for a “local” QMLE1 has

been developed by Lee and Hansen (1994) and Lumsdaine (1996). Their results allow for

integrated or even mildly explosive GARCH process where the existence of moments of

order four or higher of the innovations has been assumed. Under similar assumptions,

the case of GARCH(p, q) was considered by Boussama (2000), Berkes et al. (2003) and

Francq and Zakoian (2004). Asymptotic theory for multivariate GARCH models is not

1Their estimates are “local” in the sense that the likelihood function is maximized in a restricted
neighbourhood of true parameter values.
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yet established generally. Gourieroux (1997) provides theory for a general formulation

using high level assumptions, and Comte and Lieberman (2003) for the BEKK model (see

also Ling and McAleer, 2003) under the assumption that the eighth order moments of the

observed process exist which rules out the possibility of integrated GARCH and can be

inappropriate in some empirical applications.

The main part of this paper investigates the asymptotic theory of the QMLE for the

factor GARCH model under mild regularity conditions which allow for integrated pro-

cesses. Consistency and asymptotic normality are proved under the existence of moments

of order two and four of the innovations, respectively. No conditions on the shape of the

innovation distribution are required other than the existence of moment conditions.

A key ingredient in developing asymptotic theory for QMLE is the existence of a sta-

tionary and ergodic solution for the underlying GARCH process. Bougerol and Picard

(1992b) give necessary and sufficient conditions for strict stationarity and ergodicity of a

univariate GARCH(p, q) model in terms of the top Lyapounov exponent. Their results

generalize Nelson’s (1990) results for the univariate GARCH(1,1) model. Unfortunately,

the approach of Bougerol and Picard (1992b) cannot be extended to the multivariate case

in general. Boussama (1998) gave a counterexample to this extent. For the multivariate

GARCH model, sufficient conditions for geometric ergodicity were given by Boussama

(1998) and Kristensen (2005). Ling and McAleer (2003) provide sufficient conditions un-

der which the CCC model of Bollerslev (1990), has a strictly stationary solution. All of

these results were established under conditions for covariance stationarity for the multi-

variate GARCH model (see e.g. Engle and Kroner, 1995).

We provide sufficient conditions for strict stationarity, geometric ergodicity, regular

mixing with exponential decay rates and existence of higher order moments for the ob-

servations. The existence of moments and the mixing property allow verification of how

the model can fit stylized facts such as the fat tails and the temporal persistence observed

in financial data. Our conditions allow for integrated or even mildly explosive factor

GARCH processes. For the univariate GARCH case, similar results were obtained by

Carrasco and Chen (2002), Meitz and Saikkonen (2004) and Francq and Zakoian (2005).

These results are useful in establishing limit theorems for the processes and for the proofs
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of our asymptotic theory.

The plan of this paper is as follows. In the next section the factor GARCH model

is introduced. In Section 3 we investigate its properties. In Section 4 we establish the

consistency and asymptotic normality of the QMLE. Concluding remarks are offered in

Section 6. All proofs are given in the Appendix.

Throughout the paper we use ‖·‖ as a matrix operator norm induced by some vector

norm. As we use the Euclidean vector norm, ‖·‖ is the spectral norm, i.e. ‖A‖ =max

{
√

λ:λ is eigenvalue of AA′}. O(1) (or o(1)) denotes a series of nonstochastic variables

that are bounded (or converge to zero); OP(1) (or oP(1)) denotes a series of random

variables that are bounded (or converge to zero) in probability. The symbol→a.s. (→D)

denotes convergence almost surely (or in distribution).

2 The model

Let {yt}, yt ∈ RN , t ∈ Z be a stochastic process. We consider the following factor model.

yt = Wft (1)

ft = Σ
1/2
t ξt (2)

where ξt ∼ i.i.d(0, IN). The factors ft are conditionally heteroskedastic with conditional

covariance matrix Σt. The loading matrix W is of dimension N ×N and of full rank. The

model implies that the conditional covariance matrix of yt is given by

Ht = WΣtW
′. (3)

This model can be considered as a full factor model in the terminology of Vrontos et al.

(2003), since the factor space has the same dimension as the process space, and there is

no idiosyncratic noise. It includes as special cases e.g. the popular Orthogonal GARCH

model of Alexander (2001), the GO-GARCH model of van der Weide (2002) and the

full factor model of Vrontos et al. (2003). We assume that the factors are conditionally

orthogonal, i.e., Σt is diagonal, but allow for Granger causality in the variances. The
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conditional factor variances are modeled as

σ2
it = 1 +

N∑
j=1

αijf
2
j,t−1 +

N∑
j=1

βijσ
2
j,t−1, i = 1, . . . , N (4)

or in vector form

σ2
t = ι + Af 2

t−1 + Bσ2
t−1 (5)

with ι = (1, . . . , 1)′ an N × 1 vector and A = (αij), B = (βij) being N × N coefficient

matrices such that σ2
t > 0 a.s. The restriction that the constant term in (4) equals 1 is

an identification restriction. Defining ct = ι + Af 2
t−1, we can write

σ2
t = ct + Bσ2

t−1 =
∞∑

j=0

Bjct−j (6)

which will be used later. If A and B are diagonal, a standard univariate GARCH(1,1)

model results for each of the factor variances. Note that under diagonal Σt, (2) is equiv-

alent to fit = σitξit, i = 1, . . . , N . Thus, we can write (5) as

σ2
t = ι + (AΞt + B)σ2

t−1 (7)

where Ξt = diag(ξ2
1t, . . . , ξ

2
Nt), or

σ2
t = ι + Ctσ

2
t−1 = ι +

∞∑
j=0

CtCt−1 · · ·Ct−j ι (8)

with Ct = AΞt + B being a random i.i.d. coefficient matrix.

Note that model (1) is a special case of the Vec model of Bollerslev et al. (1988). To

see this, we can write ht = vec(Ht) as

ht = ω + Ãvec(yt−1y
′
t−1) + B̃ht−1

where2 ω = (W⊗W )PN ι, Ã = (W⊗W )PNAP ′
N(W⊗W )−1 and B̃ = (W⊗W )PNBP ′

N(W⊗
W )−1. Furthermore, if there is no spill-over, that is, A = diag(α1, . . . , αN) and B =

2The N2 × N matrix PN is defined by the property P ′
Nvec(A) = dg(A) for any N × N matrix A,

where the operator dg(·) transforms the diagonal of a matrix into a column vector.
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diag(β1, . . . , βN), then the model is a special case of the BEKK(1, 1, N) model, since it

can be written as

Ht = WW ′ +
N∑

i=1

Aiyt−1y
′
t−1A

′
i + BiHt−1B

′
i,

where Ai =
√

αiwiγ
′
i, Bi =

√
βiwiγ

′
i, γ′i is the i-th row of W−1 and wi is the i-th column of

W . Note that in the BEKK model the matrix W is restricted to be triangular, see Engle

and Kroner (1995).

3 Geometric ergodicity

The factor GARCH model can be expressed as a Markov chain. In what follows, we

provide sufficient conditions which allow us to establish not only that a stationary solu-

tion exists for {yt}, but also that the Markov chain, irrespective of its initialisation will

converge in the total variation norm towards it. The key concept to establish this type

of asymptotic stability is geometric ergodicity. These conditions involve the notion of the

top Lyapounov exponent for a sequence {Ct} of i.i.d. N ×N matrices which is defined as

γ = inf
n∈N

{
1
n
E log ‖Cn · · ·C1‖

}
.

If E log+ ‖C1‖ < ∞, where log+ x = max(0, log(x)), then an application of the subadditive

ergodic theorem (see Kingman (1973)) yields that

γ = lim
n→∞

1
n
E log ‖Cn · · ·C1‖ a.s.

The definition of γ does not depend on the choice of the norm that is used and its value

cannot be calculated explicitly for the model under study. However, the top Lyapounov

exponent can be determined via Monte Carlo simulations of the random matrices Cn. The

work by Goldsheid (1991) even allows us to give asymptotic confidence bands through

a central limit theorem (CLT). Next, we give sufficient conditions for the process to be

geometrically ergodic.
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Assumption 3.1 The sequence {ξt} is i.i.d. on RN . The distribution of ξt has a positive

density that is lower semicontinuous w.r.t. the Lebesgue measure3. The initial condition

σ2
0 is independent of {ξt}.

Assumption 3.2 The top Lyapounov exponent associated with {Ct} is strictly negative.

Assumption 3.3 E|ξt|s < ∞ for some s > 0.

Assumption 3.4 For some r ≥ 1, E|ξt|r < ∞ and E ‖Ct‖r < 1.

The first assumption is satisfied for a wide range of density functions for the innovation

process such as the multivariate Gaussian and Student densities. The i.i.d. assumption

on the error terms makes {yt} a Markov chain. The second assumption is similar to the

top Lyapunov exponent condition imposed by Bougerol and Picard (1992b) in order to

establish the existence of a stationary solution for the univariate GARCH model. However,

in our set-up this condition not only induces stationarity but also geometric ergodicity.

Along with this result we are also able to verify the existence of the r-th order moment.

Based on Feigin and Tweedie (1985) the next theorem is obtained.

Theorem 1 Assume that Assumption 3.1 holds.

a) Under Assumptions 3.2 and 3.3, the process {yt} is geometrically ergodic and E|yt|r <

∞ for some r ∈ (0, s).

b) Under Assumption 3.4, the result of 1.a) holds and E|yt|r < ∞ for r ≥ 1.

Theorem 1.a) implies that if the process starts from its stationary distribution or in

the infinite past {yt} is strictly stationary and ergodic. This result will be used in the

next section to show that the QMLE of the factor GARCH model is strongly consistent

3A function f : RN → R is lower semicontinuous if lim infx→y f(x) ≥ f(y) for all y. The Vitali-
Caratheodory Theorem implies that any function in L1 can be approximated in that space by lower
semicontinuous functions, and hence any distribution that possesses a density may be approximated in
total variation norm by a distribution satisfying Assumption 3.1.
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and asymptotically normal. Next, note that a sufficient condition for strict stationarity

of {yt} is given by

E log ‖Ct‖ < 0 (9)

To show that condition (9) allows for integrated factor GARCH, consider the simple case

N = 2, B = 0 and A = I2. By simulation we find that E log ‖Ct‖ = E log(max(ξ2
1t, ξ

2
2t)) =

−0.1045 < 0.

A particular consequence of geometric ergodicity is that the Markov chain, for any

initial distribution, converges in total variation to its stationary measure with a uniform

geometric rate. This implies that the process is β-mixing with geometric rate (see e.g.

Meyn and Tweedie (1993), Ch.16). Note that besides asymptotic stability of the model,

existence of higher order moments is established in Theorem 1.b). This can be useful in

providing the law of large numbers or the CLT for the process, regardless of the initial

distribution, see e.g. Jones (2004). Furthermore, these limit theorems, and the existence of

analytical expressions for certain moments of data such as the second and fourth moments

can be exploited for a generalized method of moments (GMM) type estimation of the

model parameters.

For example, under Assumptions 3.1 and 3.4 for r ≥ 2 (which implies that all eigen-

values of the matrix A + B have a modulus smaller than one), the unconditional co-

variance matrix is given by WE(Σt)W
′, where E(Σt) = diag(σ2

1, . . . , σ
2
N) and the vector

σ2 = (σ2
1, . . . , σ

2
N)′ is given by σ2 = (IN−A−B)−1ι, see also Engle and Kroner (1995). For

the existence of fourth moments of yt and the auto- and cross-correlation of ηt = ft � ft

we can use Assumption 3.4 with r ≥ 4 (which implies that all eigenvalues of the ma-

trix Z = (A ⊗ A)Mξ + A ⊗ B + B ⊗ A + B ⊗ B have a modulus smaller than one).

Let Mξ = E[Ξt ⊗ Ξt], Ση = E(ηtη
′
t), Σσ = E(σ2

t σ
2′
t ). Similar to Hafner (2003), based

on the VARMA representation we can show that the fourth moments of ft and the τ -

autocorrelation of ηt, Γ(τ) = E[(ηt − σ2)(ηt−τ − σ2)], are given by

E[vec(Ση)] = Mξ(IN2 − Z)−1vec{ιι′ + (A + B)σ2ι′ + ισ2′
(A + B)′}

and

Γ(τ) = (A + B)τ−1(AΣη + BΣσ)− (A + B)τσ2σ2′
, τ ≥ 1,
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respectively. Expressions for the fourth moments of yt and the crosscorrelation of yt � yt

can also be derived. For the univariate GARCH model, GMM type estimators based

on the ARMA representation of the squared GARCH process also have been proposed,

see e.g. Baillie and Chung (2001), Kristensen and Linton (2006) and Storti (2006). The

development of such an estimate in the multivariate context is however beyond the scope

of this paper. Note that these estimators are based on the existence of higher order

moments of the observed process, which might be too restrictive in financial applications.

Further, similar to Bougerol and Picard (1992a) and Berkes et al. (2003) we can also

cover the case that (ξt) is a strictly stationary martingale difference sequence, showing

the existence of a stationary solution and r-th order moment for the process. However,

this result is weaker than the geometric ergodicity as discussed above and for simplicity,

in what follows, the i.i.d. assumption is used.

4 Quasi maximum likelihood estimation

We now consider estimation by maximum likelihood assuming that the innovation dis-

tributions are Gaussian. This need not be true, but under quite general conditions we

know that it provides consistent estimates, see e.g. Bollerslev and Wooldridge (1992),

and is commonly called quasi maximum likelihood estimation. The log likelihood, up to

an additive constant, for a sample of n observations takes the form

Ln(θ) = −1
2

n∑
t=1

(log det(Ht(θ) + y′tH
−1
t yt) =

n∑
t=1

lt(θ). (10)

where the starting value H1 is a fixed matrix. Define the QMLE as θ̂n = arg maxθ∈Θ Ln(θ).

Let H̃t denote the covariance process where the starting value is drawn from its stationary

distribution, and let L̃n, l̃t, Σ̃t and σ̃2
t be accordingly. These terms will be used in the

proofs. Note that in practice the use of these values is not possible.

Let us decompose the parameter vector as θ = (θ′1, θ
′
2, θ

′
3), where θ1 = vec(W ), θ2 =

vec(A), θ3 = vec(B) and assume that θ ∈ Θ ⊂ Rp. Furthermore, denote the true

parameter vector by θ0. To simplify the proofs and in order to ensure that σ2
t > 0 a.s., we

assume that all elements of A and B are nonnegative. This assumption is also used by

9



Ling and McAleer (2003)4. It is worth noting that we allow for the possibility that the

process is a pure ARCH process, i.e. B = 0. To identify the model in case of conditional

homoskedasticity (i.e. A = 0), we restrict B = 0 and impose appropriate restrictions such

as triangularity on W . To show strong consistency the following assumptions are made.

Assumption 4.1 The parameter space Θ is compact and ‖B‖ < 1.

Assumption 4.2 Assumption 3.2 holds for θ = θ0.

Assumption 4.3 Assumption 3.1 holds, E|ξt|2 < ∞ (var(ξt) = IN).

Assumption 4.4 The model is identifiable, thus ∀θ, θ0 ∈ Θ, Ht,θ = Ht,θ0 a.s. then

θ = θ0.

Under Assumptions 4.2-4.3 and Theorem 1 we have that the factor GARCH process

converges to a strictly stationary and ergodic solution with some fractional moment. As

was shown in the previous section, these assumptions allow for integrated or even mildly

explosive (||A + B|| > 1) GARCH process for the factors. Assumption 4.3 strengthens

Assumption 3.3, by requiring the existence of second order moment for the innovations.

The requirement that the variance of ξt equals the identity matrix is made to ensure

identifiability and it is not restrictive since E|ξt|2 < ∞. Assumption 4.4 is a high level

identification condition. For this assumption we can apply the identification results in

Engle and Kroner (1995) in the special case of no spill-over. Other primitive conditions

can be found in Jeantheau (1998).

The method underlying the proofs basically consists of two main stages. In the first

stage it is assumed that the process is initiated from its stationary distribution and we

establish the finiteness of various moments of the score and higher order derivatives of the

likelihood function. This part is justified by the second stage in which we show that the

choice of the initial values does not matter for the asymptotic properties of the estimator.

Our first result is given as follows.

4We can also allow that some rows of A are zero, in which case our model reduces to a model with
K conditionally heteroskedastic factors, and N −K conditionally homoskedastic factors, see Lanne and
Saikkonen (2005).
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Theorem 2 Under Assumptions 4.1-4.4, θ̂n →a.s. θ0.

Next we state results for the asymptotic distribution.

Assumption 4.5 θ0 is an interior point.

Assumption 4.6 E|ξt|4 < ∞.

Assumption 4.5 is needed to establish asymptotic normality. Otherwise, if the pa-

rameters are on the boundary, other methods and assumptions should be used and the

asymptotic distribution of the parameters is not standard. Andrews (1999) studied in

detail the distribution of the QMLE for the univariate GARCH (1,q) model, see also

Francq and Zakoian (2006). This issue is beyond the scope of this paper. Assumption 4.6

strengthens Assumption 4.3 to the existence of the fourth order moment of the error term.

This assumption is needed to establish that the variance of the score function exists. Note

that for our asymptotic theory, no conditions on the shape of the innovation distribution

are required. The next theorem establishes the asymptotic normality.

Theorem 3 Under Assumptions 4.1-4.6,
√

n(θ̂n − θ0) →D N(0, J−1V J−1), where

V = E

(
∂l̃t(θ0)

∂θ

∂l̃t(θ0)

∂θ′

)
and J = −E

(
∂2l̃t(θ0)

∂θ∂θ′

)

Using Lemma 1 in Comte and Lieberman (2003), we have that if εt ∼ i.i.N(0, IN),

then
√

n(θ̂n − θ0) → N(0, J−1). Let Ĵn and V̂n be the sample counterpart of J and V

where θ̂n is used. Under our assumptions and as a by-product of the proof of Theorem 3,

it is straightforward to show that J−1
n VnJ

−1
n is a strongly consistent estimate of J−1V J−1.

Note that the QMLE here is the global maximum over the whole parameter set. In

Theorem 3 we have shown that the score function obeys the standard CLT. However, as

in Lee and Hansen (1996) and Preminger and Storti (2006), it is possible to establish

the functional central limit theorem and law of iterated logarithm, respectively, for the

score function. These additional results come at no cost and could be useful in other

applications.
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Under the results above the Gaussian QMLE is
√

n consistent for the true parameter

values. However, in the presence of non-Gaussian innovations, this estimator can fail to

produce asymptotically efficient estimates. Assuming a non-normal distribution for the

likelihood function entails the risk of inconsistent parameter estimation if the distribution

is misspecified. Given the results of Theorems 2-3 and mild regularity conditions on the

innovation terms which appear in Hafner and Rombouts (2006), we can construct semi-

parametric estimators which are asymptotically more efficient than the QMLE. Hafner

and Rombouts (2006) show that for the CCC model of Bollerslev (1990), one can even

attain the parametric lower bound for the parameters describing the volatility dynamics.

Whether or not this so-called adaptive estimation is possible in the current model frame-

work is left for future research. It seems that a direct application of Corollary 3.1 of Drost

et al. (1997) does not yield the result in our factor model, so other methods should be

investigated.

5 Conclusions

In this paper, we investigate the asymptotic theory for a factor GARCH model. We start

by providing sufficient conditions for strict stationarity, geometric ergodicity and existence

of certain moments. All of our conditions are expressed in terms of the model parameters

and can be easily checked. Using these results and other mild regularity conditions, we

proceed to show consistency and asymptotic normality of the QMLE. Our conditions do

not involve the existence of second order moments for the process, which is particularly

appealing in financial applications. The improvement of the efficiency of the QMLE via

a semi-parametric approach is discussed. Our method could also be applied to establish

the asymptotic theory for the CCC model of Bollerslev (1990). However, in general we

can not apply our results to other classes of multivariate GARCH models and this issue

should be investigated in future work. In addition, the small sample properties of the

QMLE should be studied via Monte Carlo simulation. In our setting we have assumed

that the innovations are independent and identically distributed, but this can probably

be weakened by assuming that they are strictly stationary, ergodic and a martingale
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difference sequence. This is also left for future research.
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Appendix

Proof of Theorem 1.

a) The process (8) forms a homogenous Markov chain with state space (RN
+ ,B), where

R+ = (0,∞), B is a Borel σ-algebra on RN
+ . By an application of the dominated con-

vergence theorem we can show that the Markov chain is Feller. Given Assumptions 3.1

and 3.2, we can show similarly to Bougerol and Picard (1992a) that the infinite series (8)

converges a.s. to a stationary solution. Let µ be the stationary measure of the process

on (RN
+ ,B). It follows that for all x ∈ RN

+ there exists an n ≥ 1 such that Pn(x,A) > 0

whenever µ(A) > 0. Hence the chain is µ-irreducible (here Pn(x,A) denotes the n-

step transition probability from σ2
0 = x to σ2

n ∈ A). Assumption 3.2 implies that for

n sufficiently large, S = E log ‖
∏n

l=0 Cn−l‖ < 0. Let h(δ) = E ‖
∏n

l=0 Cn−l‖δ
and since

S = h′(0) < 0, h(δ) is decreasing in a neighborhood of zero and h(0) = 1, it follows that

h(r) < 1 for some small 0 < r < s. Next, consider the drift function g(·) = 1 + | · |r and

by solving (8) recursively we obtain that

Eg(σ2
n|σ2

0 = x) ≤ 1 + E

[∥∥∥∥∥
n∏

l=0

Cn−l

∥∥∥∥∥
r]
|x|r + E

[
n∑

l=0

‖Cn · · ·Cn−l+1‖

]r

Since the second term on the RHS is bounded by Assumption 3.3, we have that for some

compact set A with µ(A) > 0, Eg(σ2
n|σ2

0 = x) ≤ ηg(x) for all x ∈ AC and some η ∈ (0, 1).

Therefore, {σ2
t } is geometrically ergodic and E|σ2

t |r < ∞ by Theorems 1 and 2 of Feigin

and Tweedie (1985) and Lemma A.2 of Hansen and Rahbek (1998). Hence, by Meitz and

Saikkonen (2004) we also have that {yt} is geometrically ergodic and E|yt|r < ∞.

b) Repeating the arguments of part (a) of the theorem and using Assumption 3.4 with

the drift function g(·) = 1 + | · |r provides the desired result.

Proof of Theorem 2.

We first note that ∀t and ∀θ ∈ Θ,

det(H̃t) = det(W Σ̃tW
′) = det(W )2

N∏
i=1

Σ̃ii > 0
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see Lütkepohl (p.48, 1996). Next, leting λ̃i(θ0) be the eigenvalues of H̃t(θ0), we have for

some r > 0

E log det(H̃t,θ0) ≤ E| det(H̃t,θ0)|r/N ≤ E
N∏

i=1

λ̃
r/N
i (θ0) ≤ CE

∥∥∥H̃t,θ0

∥∥∥r

where C > 0 and E
∥∥∥H̃t,θ0

∥∥∥r

is bounded by Assumptions 4.2, 4.3 and Theorem 1. Given

these results and Assumptions 4.1-4.4 and by using similar arguments as in Jeantheau

(1998), Proposition 2.1, we can show that θ0 is identifiable. Further, similar to Francq

and Zakoian (2004), we can show that for any θ 6= θ0 there exists a neighborhood N(θ)

such that

lim sup
n→∞

sup
θ̄∈N(θ)∩Θ

1

n
Ln(θ) < El̃t(θ0).

In order to complete the proof it is sufficient to show that supθ∈Θ
1
n
|Ln − L̃n| → 0 a.s.

By Cesaro’s mean theorem it suffices to check that E supθ∈Θ |lt − l̃t|r is bounded by a

summable sequence in t for some r > 0. Then the desired result follows by the Markov

inequality and the Borel-Cantelli Lemma. We have

Ht − H̃t = W (Σt − Σ̃t)W
′ = W (diag(σ2

t − σ̃2
t ))W

′. (11)

Since diag(Btx) ≤ Bt(x, x, . . . , x) for some positive vector x and ‖(x, x, . . . , x)‖ ≤ |x|,
we obtain ∥∥∥Ht − H̃t

∥∥∥ ≤ C ‖W‖2
∥∥Bt

∥∥ |σ̃2
0 − σ2

0|.

Now supθ∈Θ ‖B‖ < 1 implies that there exists a ρ ∈ (0, 1) such that supθ∈Θ ‖Bt‖ = O(ρt).

Thus, by the cr inequality and the compactness assumption

E sup
θ∈Θ

∥∥∥Ht − H̃t

∥∥∥r

= O(ρt) (12)

for some r > 0. From (6), the cr inequality and supθ∈Θ ‖B‖ < 1 it is straightforward that

E sup
θ∈Θ

‖Ht‖r < ∞, E sup
θ∈Θ

∥∥∥H̃t

∥∥∥r

< ∞ (13)

From (10) and a first order Taylor expansion we have that

sup
θ∈Θ

|lt(θ)− l̃t(θ)|r ≤
{
|yt|2r

∥∥∥H̃−1
t ⊗ H̃−1

t

∥∥∥r

+
∥∥vec(H̄−1

t )
∥∥r
}∥∥∥Ht − H̃t

∥∥∥r

15



where H̄t is evaluated on the chord between Ht and H̃t. Compactness of Θ, (12) and (13)

imply the desired result.

Proof of Theorem 3.

By the mean-value theorem we obtain that for the score function around θ0,

0 =
1√
n

n∑
t=1

∂lt
∂θ

∣∣∣∣
θ=θ̂n

=
1√
n

n∑
t=1

(
∂lt
∂θ

− ∂l̃t
∂θ

)∣∣∣∣∣
θ=θ0

+
1√
n

n∑
t=1

∂l̃t
∂θ

∣∣∣∣∣
θ=θ0

+

(
1

n

n∑
t=1

∂2l̃t
∂θ∂θ′

∣∣∣∣∣
θ=θ0

− J

)
√

n(θ̂n − θ0)

+

(
1

n

n∑
t=1

∂2lt
∂θ∂θ′

∣∣∣∣
θ=θ̃n

− 1

n

n∑
t=1

∂2l̃t
∂θ∂θ′

∣∣∣∣∣
∣∣∣∣∣
θ=θ0

)
√

n(θ̂n − θ0) + J
√

n(θ̂n − θ0) (14)

for some θ̃n ∈ (θ̂n, θ0). We first show that 1√
n

∑n
t=1

∂l̃t(θ0)
∂θ

obeys the CLT. Under Assump-

tion 4.2 the score function is strictly stationary and ergodic. Using (1)-(3), we have that

E
[

∂l̃t(θ0)
∂θ

|Ft−1

]
= 0, where Ft is the σ-field generated by the past values of yt’s and ft’s,

i.e. Ft ≡ σ(yt, ft, yt−1, ft−1, . . .). Thus, the score is also a martingale difference sequence.

Therefore, if E
∥∥∥∂l̃t(θ0)

∂θ
∂l̃t(θ0)

∂θ

′∥∥∥ is finite, we can apply the CLT of Scott (1973) and the

Cramér-Wold device to establish the asymptotic normality of the score function.

We proceed by calculating the components of the score function. The score with

respect to the i-th component of the parameter vector θ = (vec(W )′, vec(A)′, vec(B)′)′ is

given by

−2
∂l̃t(θ)

∂θi

= Tr[(In − yty
′
tH̃

−1
t ) ˙̃H t,iH̃

−1
t ],

using the notation ˙̃H t,i = ∂H̃t/∂θi. We have

∂H̃t

∂Wij

= JijΣ̃tW
′ + W Σ̃tJ

′
ij (15)

∂H̃t

∂αij

= W
∂Σ̃t

∂αij

W ′,
∂H̃t

∂βij

= W
∂Σ̃t

∂βij

W ′ (16)

∂σ̃2
t

∂αij

=
∞∑

k=0

BkJijf
2
t−k−1 ≤ C

∞∑
k=0

BkAf 2
t−k−1 (17)

16



∂σ̃2
t

∂βij

=
∞∑

k=1

(
k∑

l=1

Bl−1JijB
k−l

)
ct−k ≤ C

∞∑
k=1

kBkct−k (18)

where Jij is an N × N matrix containing a one at the ij-th position and zeros else-

where. Eq. (17)-(18) use the fact that AijJij ≤ A and BijJij ≤ B. Note that σ2
t =∑∞

j=0 Bjct−j ≥ ι + Bjct−j∀j ≥ 1 and for (17) and (18) we show that∥∥∥ ˙̃H t,iH̃
−1
t

∥∥∥ ≤
∥∥∥ ˙̃H t,i

∥∥∥∥∥∥H̃−1
t

∥∥∥
=

∥∥∥W ˙̃Σt,iW
′
∥∥∥∥∥∥W ′−1Σ̃−1

t W−1
∥∥∥

≤ C
∥∥∥ ˙̃Σt,i

∥∥∥∥∥∥Σ̃−1
t

∥∥∥ , i = N2 + 1, . . . , 3N2, (19)

with C = ‖W‖2 ‖W−1‖2
< ∞ and where we use the definition of Ht in (3).

Next we show

A. E supθ∈N(θ0)

∥∥∥ ˙̃H t,iH̃
−1
t

∥∥∥d

< ∞, d ≥ 1

B. E supθ∈N(θ0)

∥∥∥yty
′
tH̃

−1
t

∥∥∥d

< ∞, d = 2,

where N(θ0) is some arbitrarily small neighborhood around θ0. This result is stronger

than needed, but we will use it later.

We see immediately that the derivatives w.r.t. the elements of W multiplied by
∥∥∥Σ̃−1

t

∥∥∥,
are naturally bounded. Now we will consider the score w.r.t. αij. Using (17), (19), and

the compactness of the parameter space, we obtain that

sup
θ∈N(θ0)

∥∥∥ ˙̃Σt,i

∥∥∥∥∥∥Σ̃−1
t

∥∥∥ ≤ C sup
θ∈N(θ0)

∑∞
k=0 [BkAf 2

t−k−1]j∑∞
k=0 1 + [Bkct−k]j′

≤ C sup
θ∈N(θ0)

∑∞
k=0 [Bk(ι + Af 2

t−k−1)]j∑∞
k=0 [Bkct−k]j′

≤ C sup
θ∈N(θ0)

σ̃2
jt

σ̃2
j′t

≤ C sup
θ∈N(θ0)

β̄
∑N

i=1 σ̃2
i,t−1 + ᾱ

∑N
i=1 σ̃2

i,t−1ξ
2
it

β
∑N

i=1 σ̃2
i,t−1 + α

∑N
i=1 σ̃2

i,t−1ξ
2
it

≤ C

(
β̄

β
− ᾱ

α

)
< ∞ (20)
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where in (20) j and j′ are the indices of the maximum and minimum components, re-

spectively, of the vector Bk−1Af 2
t−k−1. The third and fourth inequalities use (6) and (7)

respectively, where ᾱ = max(αij), β̄ = max(βij), α = min(αij), β = min(βij). Due to

Assumption 4.5 and Theorem 2, β > 0 and α > 0.

In the following consider the score w.r.t. βij. Equations (19) and (20) imply

E sup
θ∈N(θ0)

∣∣∣∥∥∥ ˙̃Σt,i

∥∥∥∥∥∥Σ̃−1
t

∥∥∥∣∣∣d ≤ C1E sup
θ∈N(θ0)

∣∣∣∣∣
∞∑

k=1

k[Bkct−k]j
1 + [Bkct−k]j′

∣∣∣∣∣
d

(21)

≤ C1E sup
θ∈N(θ0)

∣∣∣∣∣
∞∑

k=1

k[Bkct−k]j′

1 + [Bkct−k]j′

[Bkct−k]j
[Bkct−k]j′

∣∣∣∣∣
d

≤ C1E sup
θ∈N(θ0)

∣∣∣∣∣
∞∑

k=1

k[Bkct−k]
s/d
j′

maxuv[B
k]uv|ct−k|

minuv[Bk]uv|ct−k|

∣∣∣∣∣
d

≤ C2

∣∣∣∣∣∣
∞∑

k=1

k

(
E sup

θ∈N(θ0)

∥∥Bkct−k

∥∥s

)1/d
∣∣∣∣∣∣
d

≤ C3

∣∣∣∣∣∣
m̄∑

k=1

k
∥∥Bk

∥∥(E sup
θ∈N(θ0)

‖ct−k‖s

)1/d

+
∞∑

k=m̄+1

kρks

(
E sup

θ∈N(θ0)

‖ct−k‖s

)1/d
∣∣∣∣∣∣
d

≤ C4

∣∣∣∣∣∣
m̄∑

k=1

k
∥∥Bk

∥∥(E sup
θ∈N(θ0)

‖ct−k‖s

)1/d
∣∣∣∣∣∣
d

+ C5

∣∣∣∣∣∣
∞∑

k=m̄+1

kρks

(
E sup

θ∈N(θ0)

‖ct−k‖s

)1/d
∣∣∣∣∣∣
d

< ∞

where in (21) j and j′ are the indices of the maximum and minimum components, respec-

tively, of the vector Bkct−k. The first and second inequalities are due to direct calculations.

The third inequality uses the fact that for x ≥ 0, x/(x + 1) < xs/d for some s ∈ (0, 1) and

d ≥ 1. Note that even though Bk = O(ρk), the ratio of maxuv[B
k]uv to minuv[B

k]uv is

O(1). The fourth inequality is implied by the Minkowski inequality. The fact that there

exists an m̄ ≥ 1 and ρ ∈ (0, 1) s.t. supθ∈Θ ‖Bm‖ ≤ Cρm for all m > m̄, the compactness

of parameter set, the cr inequality and Assumption 4.3 imply the last two inequalities.

Hence, A. is established.
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Next we show B. We can write (1) as

yt = H̃
1/2
t ξt = W Σ̃

1/2
0t ξt, (22)

and therefore

yty
′
tH̃

−1
t = (W Σ̃

1/2
0t ξtξ

′
tΣ

1/2
0t W ′)H̃−1

t . (23)

Since by Theorem 2, θ̂n →a.s. θ0, we can define an arbitrary small neighborhood N(θ0)

around θ0 such that βij/β0,ij ≤ (1 + δ), δ > 0 and (1 + δ)ρ < 1, where ρ = supθ∈Θ ‖B‖
and β0,ij is the true parameter value of βij. Using that

∥∥∥H̃−1
t

∥∥∥ ≤ C
∥∥∥Σ̃−1

t

∥∥∥ ,

sup
θ∈N(θ0)

∥∥∥WΣ
1/2
0t ξtξ

′
tΣ̃

1/2
0t W ′

∥∥∥∥∥H−1
t

∥∥ ≤ sup
θ∈N(θ0)

C
∥∥∥Σ̃0t

∥∥∥ |ξt|2
∥∥∥Σ̃−1

t

∥∥∥
and for some s ∈ (0, 1), we get

sup
θ∈N(θ0)

∥∥∥Σ̃0t

∥∥∥∥∥∥Σ̃−1
t

∥∥∥ ≤ sup
θ∈N(θ0)

∞∑
k=0

[Bk
0ct−k]j

1 + [Bkct−k]j′

= sup
θ∈N(θ0)

∞∑
k=0

[Bkct−k]j
1 + [Bkct−k]j′

[Bk
0ct−k]j

[Bkct−k]j

≤ sup
θ∈N(θ0)

∞∑
k=0

[Bkct−k]j′

ι + [Bkct−k]j′

maxuv[B
k]uv|ct−k|

minuv[Bk]uv|ct−k|
(1 + δ)k

≤ sup
θ∈N(θ0)

C
∞∑

k=0

[Bkct−k]
s
j′(1 + δ)k

≤ C

∞∑
k=0

[ρ(1 + δ)]k sup
θ∈N(θ0)

|ct−k|s. (24)

By choosing s > 0 such that E|ct|2s < ∞, we have that E supθ∈N(θ0)

∥∥∥Σ̃0t

∥∥∥2 ∥∥∥Σ̃−1
t

∥∥∥2

< ∞
and the desired results is implied by Assumptions 4.3 and 4.6.

We have that

E

∣∣∣∣∣∂l̃t(θ0)

∂θi

∂l̃t(θ0)

∂θj

∣∣∣∣∣ ≤ CE

(∥∥∥yty
′
tH̃

−1
t,θ0

∥∥∥2 ∥∥∥H̃t,i,θ0H̃
−1
0t

∥∥∥∥∥∥H̃t,j,θ0H̃
−1
t,θ0

∥∥∥) (25)
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≤ CE

(∥∥∥H̃1/2
t,θ0

ξtξ
′
tH̃

−1/2
t,θ0

∥∥∥2 ∥∥∥H̃t,i,θ0H̃
−1
t,θ0

∥∥∥∥∥∥H̃t,j,θ0H̃
−1
t,θ0

∥∥∥)

≤ CE(|ξt|4)
(

E
(∥∥∥H̃t,i,θ0H̃

−1
t,θ0

∥∥∥)2
)1/2(

E
(∥∥∥H̃t,j,θ0H̃

−1
t,θ0

∥∥∥)2
)1/2

< ∞

The first inequality uses the fact that if A and B are d × d matrices, then |tr(AB)| ≤
d||A|| · ||B|| see Lütkepohl (1996, p.111). The second inequality results from (22) and we

note that
∥∥∥H1/2

t ξtξ
′
tH

−1/2
t

∥∥∥2

≤ C1 ‖ξtξ
′
t‖

2 ≤ C2 |ξt|4 a.s., see Lütkepohl (1996, pp. 42-44).

This result and the Cauchy-Schwarz inequality imply the third inequality. Assumption

4.6, B and that ξt is independent of H̃t and its derivatives imply the last inequality. These

results also imply that V exists. Hence, the second term in (14) converges in distribution

to the normal distribution.

Now, we show that the third term in (14) converges a.s. to zero. The second derivative

is given by

−2
∂2l̃t(θ)

∂θi∂θj

= Tr[(IN − yty
′
tH̃

−1
t )( ¨̃H t,ijH̃

−1
t − ˙̃H t,iH̃

−1
t

˙̃H t,jH̃
−1
t ) + yty

′
tH̃

−1
t

˙̃H t,jH̃
−1
t

˙̃H t,iH̃
−1
t ]

(26)

where we use the notation ¨̃H t,ij = ∂2H̃t

∂θi∂θj
.

The components of ¨̃H t,ij are given in the following.

∂2H̃t

∂Wij∂Wrs

= JijΣ̃tJ
′
rs + JrsΣ̃tJ

′
ij (27)

∂2H̃t

∂Xij∂Wrs

= Jrs
∂Σ̃t

∂Xij

W ′ + W
∂Σ̃t

∂Xij

J ′ij (28)

∂2H̃t

∂Xij∂Yrs

= W
∂2Σ̃t

∂Xij∂Yrs

W ′ (29)

∂2σ̃2
t

∂αij∂αrs

= 0 (30)

∂2σ̃2
t

∂αij∂βrs

=
∞∑

k=2

(
k−1∑
l=1

Bl−1JrsB
k−l−1

)
Jijf

2
t−k ≤ C

∞∑
k=2

(k − 1)Bk−1Af 2
t−k (31)
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∂2σ̃2
t

∂βij∂βrs

=
∞∑

k=2

[
k∑

l=2

(
l−1∑
t=1

Bt−1JrsB
l−1−t

)
JijB

k−l+
k−1∑
l=1

Bl−1Jij

(
k−l∑
t=1

Bt−1JrsB
k−l−t

)]
ct−k

(32)

≤ C
∞∑

k=2

k(k − 1)Bkct−k

where X, Y = α, β.

It is straightforward to see that (27), when multiplied by
∥∥∥Σ̃−1

t

∥∥∥ is naturally bounded.

We will show that

C. E supθ∈N(θ0)

∥∥∥ ¨̃H t,ijH̃
−1
t

∥∥∥d

< ∞, d ≥ 1

The proof is similar to the one used to establish A., and hence omitted. Note that this

result is stronger than needed, but will be used later. We have by (26), A-C, the Cauchy-

Schwarz inequality and the Minkowski inequality that

E

∣∣∣∣∣∂2l̃t(θ0)

∂θi∂θj

∣∣∣∣∣ ≤ CE
[∥∥∥yty

′
tH̃

−1
t,θ0

∥∥∥(∥∥∥ ¨̃H t,ij,θ0H̃
−1
t,θ0

∥∥∥+ 2
∥∥∥ ˙̃H t,i,θ0H̃

−1
t,θ0

∥∥∥ · ∥∥∥ ˙̃H t,j,θ0H̃
−1
t,θ0

∥∥∥)] (33)

≤ C

{(
E

(∥∥∥yty
′
tH̃

−1
t,θ0

∥∥∥2
))1/2

[(
E

(∥∥∥ ¨̃H t,ij,θ0H̃
−1
t,θ0

∥∥∥2
))1/2

+

2

(
E

(∥∥∥ ˙̃H t,i,θ0H̃
−1
t,θ0

∥∥∥4
))1/4

·
(

E

(∥∥∥ ˙̃H t,j,θ0H̃
−1
t,θ0

∥∥∥4
))1/4

]
< ∞

and the desired result follows from the ergodic theorem. Now we show that E∂2 l̃t(θ0)
∂θ∂θ′ is

positive definite (p.d.). Note that E(∂2 l̃t(θ0)
∂θ∂θ′ |Ft−1) = Tr( ˙̃H t,iH̃

−1
t

˙̃H t,jH̃
−1
t ). Comte and

Lieberman (2003) show that this matrix is positive definite almost surely, as otherwise

the model is not identifiable. We proceed by establishing that∥∥∥∥ 1
n

n∑
t=1

∂2 l̃t
∂θ∂θ′

∣∣∣
θ=θ̃n

− 1
n

n∑
t=1

∂2 l̃t
∂θ∂θ′

∣∣∣
θ=θ0

∥∥∥∥→a.s. 0 (34)

By using Theorem 2 and similar arguments as in Francq and Zakoian (2004), a sufficient

condition is given by

E sup
θ∈N(θ0)

∣∣∣∣∣ ∂3l̃t(θ)

∂θi∂θj∂θk

∣∣∣∣∣ < ∞ ∀ i, j, k. (35)
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Next, we take the third derivatives.

−2
∂3l̃t(θ)

∂θi∂θj∂θk

= Tr [(IN − yty
′
t H̃−1

t )

{ ···
H̃ t,ijk H̃−1

t − ˙̃H t,iH̃
−1
t

¨̃H t,jkH̃
−1
t

− ¨̃H t,ikH̃
−1
t

˙̃H t,jH̃
−1
t − ¨̃H t,ijH̃

−1
t

˙̃H t,kH̃
−1
t

+ ˙̃H t,iH̃
−1
t

˙̃H t,kH̃
−1
t

˙̃H t,jH̃
−1
t + ˙̃H t,iH̃

−1
t

˙̃H t,jH̃
−1
t

˙̃H t,kH̃
−1
t

}
+yty

′
tH̃

−1
t

{
¨̃H t,jk H̃−1

t
˙̃H t,iH̃

−1
t + ˙̃H t,kH̃

−1
t

¨̃H t,ijH̃
−1
t

− ˙̃H t,kH̃
−1
t

˙̃H t,jH̃
−1
t

˙̃H t,iH̃
−1
t − ˙̃H t,jH̃

−1
t

˙̃H t,kH̃
−1
t

˙̃H t,iH̃
−1
t

− ˙̃H t,jH̃
−1
t

˙̃H t,iH̃
−1
t

˙̃H t,kH̃
−1
t − ˙̃H t,kH̃

−1
t

˙̃H t,iH̃
−1
t

˙̃H t,jH̃
−1
t

}]
(36)

where we use the notation
···
H̃ t,ijk=

∂3H̃t

∂θi∂θj∂θk
with components of

···
H̃ t,ijk given by

∂3H̃t

∂Wij∂Wrs∂Wuv

= 0 (37)

∂3H̃t

∂Xij∂Wrs∂Wuv

= Jrs
∂Σ̃t

∂Xij

J ′uv + Juv
∂Σ̃t

∂Xij

J ′rs (38)

∂3H̃t

∂Xij∂Yrs∂Wuv

= Juv
∂2Σ̃t

∂Xij∂Yrs

W ′ + W
∂2Σ̃t

∂Xij∂Yrs

J ′uv (39)

∂3H̃t

∂Xij∂Yrs∂Zuv

= W
∂3Σ̃t

∂Xij∂Yrs∂Zuv

W ′ ∂3σ̃2
t

∂αij∂βrs∂βuv

(40)

=
∞∑

k=2

[
k∑

l=2

{
l−1∑
t=1

Bt−1JuvB
l−1−t

}
JrsB

k−l

+
k−1∑
l=1

Bl−1Jrs

{
k−l∑
t=1

Bt−1JuvB
k−l−t

}]
Jijf

2
t−k

≤ C

∞∑
k=1

(k − 1)(k − 2)Bk−1Af 2
t−k (41)

∂3σ̃2
t

∂βij∂βrs∂βuv

=
∞∑

k=3

[
k∑

l=3

(
l−1∑
t=2

{
t−1∑
n=1

Bn−1JuvB
t−1−n

}
JrsB

l−1−t
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+
l−2∑
t=1

Bt−1Jrs

{
l−1−t∑
n=1

Bn−1JuvB
l−1−t−n

})
JijB

k−1

+
k−1∑
l=3

{
l−1∑
t=1

Bt−1JrsB
l−1−t

}
Jij

{
k−l∑
n=1

Bn−1JuvB
k−l−n

}

+
k−1∑
l=2

{
l−1∑
n=1

Bn−1JuvB
l−1−n

}
Jij

{
k−l∑
t=1

Bt−1JrsB
k−l−t

}

+
k−1∑
l=1

Bl−1Jij

(
k−l∑
t=1

{
t−1∑
n=1

Bn−1JuvB
t−1−n

}
JrsB

k−l−t

+
k−l−1∑

t=1

Bt−1Jrs

{
k−l−t∑
n=1

Bn−1JuvB
k−l−t−n

})]
ct−k ≤ C

∞∑
k=3

k(k − 1)(k − 2)Bkct−k (42)

where X,Y, Z = α, β.

Using similar arguments which were already used to prove A. and C., we can show

that

D. E supθ∈N(θ0)

∥∥∥H̃t,ijkH̃
−1
t

∥∥∥d

< ∞, d ≥ 1

where A.-D., (36), repeated applications of the Cauchy-Schwarz inequality and the Minkowski

inequality and some tedious calculations allow us to establish (35).

Now we show that for some r > 0, there exists a ρ ∈ (0, 1) such that

E

∣∣∣∣∣∂lt(θ0)

∂θi

− ∂l̃t(θ0)

∂θi

∣∣∣∣∣
r

= O(ρt). (43)

Given the score function, we have that (the argument θ0 is omitted for simplicity).∥∥∥Ḣt,iH
−1
t (IN − yty

′
tH

−1
t )− ˙̃H t,iH

−1
t (IN − yty

′
tH

−1
t )
∥∥∥

=
∥∥∥(Ḣt,iH

−1
t − ˙̃H t,iH̃

−1
t )(IN − yty

′
tH

−1
t ) + ˙̃H t,iH̃

−1
t yty

′
t(H̃

−1
t −H−1

t )
∥∥∥

=
∥∥∥[(Ḣt,i − ˙̃H t,i)H

−1
t + ˙̃H t,i(H

−1
t − H̃−1

t )
]
(IN − yty

′
tH

−1
t ) + ˙̃H t,iH̃

−1
t yty

′
t(H̃

−1
t −H−1

t )
∥∥∥

=
∥∥∥ [(Ḣt,i − ˙̃H t,i)H

−1
t + ˙̃H t,iH̃

−1
t (H̃t −Ht)H

−1
t

]
(IN − yty

′
tH

−1
t )

+ ˙̃H t,iH̃
−1
t yty

′
tH

−1
t (Ht − H̃t)H̃

−1
t

∥∥∥ (44)

23



Now from (11) and (17), we get∥∥∥Ḣt,i − ˙̃H t,i

∥∥∥ = ‖W‖2

∥∥∥∥∂Bt

∂βij

∥∥∥∥∥∥σ2
0 − σ̃2

0

∥∥ ≤ Cρt a.s. (45)

In addition, note that if λ is an eigenvalue of a nonsingular matrix A, then λ−1 is

an eigenvalue of A−1 see Lütkepohl (1996, p. 64). Let λ1(A), . . . , λm(A) denote the

eigenvalues of an m×m matrix A in ascending order. Then,∥∥H−1
t

∥∥ = λ−1
1 (WΣtW

′) < ∞ (46)

since WΣtW
′ is positive definite and, hence, λ1(WΣtW

′) > 0. Similarly, we can show

that
∥∥∥H̃−1

t

∥∥∥ is bounded and under Assumptions 4.1-4.3 for some r > 0, E|yt|2r is finite.

These results, the cr inequality, A.-B., (12), (44) and (45) imply (43). The Markov

inequality and (43) imply that∣∣∣∣∣n−1/2

n∑
t=1

∂lt(θ0)

∂θi

− ∂l̃t(θ0)

∂θi

∣∣∣∣∣ = oP(1) (47)

The same method can be applied to show

E sup
θ∈N(θ0)

∣∣∣∣∣∂2lt(θ)

∂θ∂θ′
− ∂2l̃t(θ)

∂θ∂θ′

∣∣∣∣∣ = O(ρt).

Using similar arguments as in Theorem 2, we can establish that

E sup
θ∈N(θ0)

∣∣∣∣∣ 1n
n∑

t=1

∂2lt(θ)

∂θ∂θ′
− ∂2l̃t(θ)

∂θ∂θ′

∣∣∣∣∣ = oa.s.(1) (48)

Theorem 2, (33), (34), (47) and (48) imply that the first term in (14) is oP(1) and the

third and fourth terms are oa.s.(1). Since we have shown that the second term in (14)

obeys the CLT, the desired result follows from the Slutsky Theorem.
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