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Abstract

A prognostic factor analysis is performed to derive, for a particular patient population and
for a particular disease, a progunostic index which is used o predict a patient’s prognosis
and thus aid in determining the most appropriate treatment strategy. A major issue
when proposing a new prognostic index is its generalisibility to daily clinical practice. It
is therefore recognised that validation is required to assess the generalisibility of a new
prognostic index. Validation often consists in assessing how well the prognostic index
performs in a new sample of patients (validation sample}. However common validation
techniques usually only consider whether “on the average” the results obtained by the
prognostic index in classifying the patients are the same in the construction set and
the validation set. We introduce a new important aspect of the generalisibility of the
prognostic index in this paper, namely the homogeneity of the prognostic index risk groups
hazard ratios over different centers. If the variability between centers is substantial, the
prognostic index may have no discrimination capability in a proportion of the centers. To
model such heterogeneity we use a Cox proportional hazards model that includes a random
center effect and a random prognostic index by center interaction. Statistical inference
for this frailty model is based on a Bayesian approach using a Laplacian approximation
for the marginal posterior distribution of the variances of the random effects. Particular

attention is drawn to summarizing the information available from this marginal posterior

distribution. Our approach is applied to a commonly used prognostic index for bladder

cancer patients.



1 Introduction

Prognostic factor models investigate the relationship between patient characteristics and
the outcome of the patient. These are typically regression models and the variables found
to be associated with the outcome of patients are called progunostic factars. One of the
common objectives when identifying such prognostic factors is to determine a prognostic
index or score, i.e., a new variable combining information from the identified prognostic
factors and whose value can be used to classify patients in different risk groups according
to the probability of the event of interest. Such a prognostic index usually takes the form
of a weighted sum of the prognostic factors, the weights being derived from the regression
coefficients of the model including the identified prognostic factors. For a specific disease,
an appropriate prognostic index can then be used by clinicians to adapt the treatment
strategy of future patients, e.g., offering a more aggressive treatment to patients at high

risk of recurrence.

No widely accepted methodology exists for the design, analysis and Interpretation of
prognostic factor studies. Numerous issues may cause poor performance of a prognostic
index in a new sample of patients {Simon and Altman, 1994; Altman and Royston, 2000).
Apart from methodological flaws, it is important to keep in mind that in day-to-day prac-
tice a particular prognostic index is rarely used in exactly the same setting as the one
in which it has been developed. Therefore, the generalisability of the prognostic index
needs to be assessed, a process usually refered to as validation (see Legrand (2005) for an
overview of validation techniques). The validation of a prognostic index is a multi-step

procedure: the more numerous and diverse the settings in which the prognostic index is




shown to perform well, the more the prognostic index is considered to be generalisible to

daily clinical practice.

Calibration and discrimination are often considered as the two main components of valida-
tion (Justice et al., 1999). Discrimination refers to a prognostic index ability to distinguish
patients with different risk. When assessing the discriminatory power of a prognostic in-
dex, one merely considers if the relative ranking of individual risk is in the correct order,
e.g. observed event rates are higher in patients wiih higher scores. For time-to-event out-
comes. a natural and popular way of investigating the discriminatory power of a prognostic
index consists of dividing patients into several risk groups and to look at the graphical
display of observed survival curves in the validation sample for the risk groups. Several
measures of discrimination have been proposed in the literature (Harrell et al., 1996, Graf
et al., 1999; Schemper and Stare, 1996; Schemper and Henderson, 2000; Schemper, 2003).
Calibration pertains to the agreement between predicted outcomes and the observed out-
comes in the validation sample (van Houwelingen, 2000). Investigating calibration of a
new prognostic index thus considers if predicted probabilities are neither too high nor too

low.

Besides these important issues, we propose to study an unexplored aspect of prognos-
tic indices, namely its homogeneity over different centers. As noticed by Justice et al
(1999), although manyv prognostic indices are now developed and validated using data
from multicenter clinical trials, investigators rarely report the variation in results by cen-

ter. However, if the results of a prognostic index cannot be reproduced by different clini-




cians in different centers, its generalisability must be questionned. For a prognostic index
which, for a specific time-to-event endpoint, separates patients into two risk groups (e.g.,
“poor” and "good” prognosis groups), we argue that the heterogeneity of the hazard ratio
of the risk groups defined by this prognostic index among different centers provides use-
ful information on its generalisibility. Even if the hazard ratio between prognosis groups
associated with a particular prognostic index is similar in the construction and validation
set, a large variation in this hazard ratio over centers should be a warning against the
generalisibility of the prognostic index. So rather than considering the overall discrimina-
tory power of a prognostic index we are interested in the generalisability of the prognostic

index over centers and our objective is to develop tools to quantify this heterogeneity.

To investigate this heterogeneity we use a proportional hazards model that includes the

progrostic index as a fixed effect, a random center effect and a random prognostic index
by center interaction. We consider a Bayesian approach to fit such a frailty model with
two random effects; it is based on the maximisation of the marginal posterior distribution

of the variance components, obtained by Laplace approximation. While this approach

has already been presented elsewhere (Legrand et al., 2005), we extend this discussion to

further investigate how to summarize the information available from the marginal pos-

terior distribution. The proposed method is computationally fast and simulations show

that it provides satisfving results when investigating the heterogeneity of a prognostic in-

dex, typically considering unequal balance of patients over treatment groups. These new

simulations therefore complete the ones previously presented in the context of treatment

effect heterogencity in cancer clinical trials (Legrand et al., 2005) considering then equal
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distribution of patients over treatment groups.

Section 2 gives the notation and a precise description of the statistical model. In Section
A e

3, we shortly summarize the estimation techniques and propose methods to further ex-

plore the information available from the marginal posterior distribution. In Section 4, we

illustrate on a real bladder cancer database how investigating heterogeneity in prognostic

index effect over centers brings further information regarding generalisability of the prog-

nostic index. Section 5 presents simulations evaluating the performance of our method.

Results and findings are discussed in Section 6.




2 Statistical model

Assume that we have data from a total of n patients coming from  different centers,
n; patients coming from center ¢ (n = Efg:; n;). For the jth patient in center ¢, we ob-
serve Tj; = min(Yj;, Cy;) where Yj; is the real time-to-event for this patient and Cj; is
a random censoring time independent of Y;;. Additionally, a censoring indicator &;; is
observed, 0;; equals 1 if T35 = Yj; and 0 if 733 = ;. For each patient the binary variable
r;; indicates whether the patient is classified in the good or poor prognosis group based

on the particular prognostic index considered.

Although a wide variety of models are available for the analysis of censored failure time
data, the Cox proportional hazards regression model {Cox, 1972) has emerged as the
most popular one. We will therefore consider an extension of this model to investigate
heterogeneity in the prognostic index risk groups hazard ratio over centers by including,
in addition to the prognostic index (PI) indicator u;;, a random center effect by; and a

random effect for the center by PI indicator interaction by;.

For the j** patient in the i'® center we model the hazard as
At 1 3.b) = Mgt} exp (bo; + (3 + b)) (1)

where Ag{t) represents the unspecified baseline hazard at time t, 3 is the fixed effect
coeflicient corresponding to the Pl indicator x;;. The factor exp(by;), with by; the center
effect, represents the deviation of the % center from the overall underlying baseline risk

and its predicted value will therefore be refered to in the following as "the predicted center
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baseline risk”. Similarly, the value of exp(by;) (interaction term) represents the deviation
of the it center from the overall PT effect exp{7}, and we will refer to the predicted value
of exp(/7 + by;) as the "predicted prognostic index effect”.

Parallel with mixed models, we assume in (1) that

AT/ 2
boi ~iiq N(0, 05)
bii ~iag N0, 02
1i “ad YA O01)
with {by; } and {by;} independent.

, ; ) 9 ]
The variance components of the random effects ag , and o can be interpreted as a measure

of the amount of variation in baseline risk and PI effect over centers respectively.




3 DModel fitting

Model {1} has been used to investigate heterogeneity in treatment effect either in the con-
text of multicenter clinical trials (Yamaguchi and Ohashi, 1999; Matsuyama et al., 1998;
Yamaguchi et al., 2002; Glidden and Vittinghoff, 2004; Legrand et al., 2005} or in the
context of individual patient data meta-analyses {Smith et al., 2005), considering in both
cases a random center effect, a fixed treatment effect and a random treatment by center
interaction. This model was then ft based on a penalized partial likelihood approach
(Yamaguchi and Ohashi, 1999; Smith et al., 2005). However one major drawback of this
approach is the long computer-time required to fit this model (Smith et al., 2005). Other
estimation methods have been proposed based on the EM algorithm (Ripatti et al., 2002}

or on the MCMC method (Vaida and Xu, 2000). None of these approaches has been

implemented in a widely available statistical software and the programs made available

by the authors are usually very slow.

In a Bayesian context, the inference on the parameters of interest (}g and 0“12 is based
on the bivariate marginal posterior distribution obtained after integrating out the fixed
and random components from the joint posterior distribution. The marginal posterior
distribution can be approximated by Laplacian integration {Ducrocq and Casella, 1996;

Legrand et al., 2005). This approach can be summarized as follow, Legrand et al. {2005)

provides a more detailed description.

Denoting 87 = (02, a2), the joint posterior density for model (1) is proportional to
g 99:91) p A . proj

T(3.b,01y) x L(3,b|y)xm(b|8) xm(3)x (8. 2)
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where the first factor is the likelihood given the observations, the second factor is the
Joint prior distribution of the random effects and the last two factors, my(3) and wg(#),
are the prior distributions of the fixed effect and of the vector of variance components

07 = (02, 0).

fan

Considering a Cox model leaves the baseline hazard unspecified and based on the jus-
tification provided by Ibrahim et al. ( 2001} and Sinha et al. (2003}, we use for L3 bly)

the partial likelihood
. SR exp (bg; + (7 + by) i)
LBbly)=]I : P
i=1j=1 |, 2 exp(bop + (5 + byp) agy)

Y t 2t

The joint prior distribution of the random effects, assumed to be normal with mean vector

0 and variance vector ¢ (hyperparameter), is given by

G 1 1(bg b
mo(b{8) = ] N N s B N (3)

g 2mogoy oy Of

Considering a flat prior distribution for 2 and 4
mp(#) x1 and mp(3) x 1
the log joint posterior density can be written as

G g
DD, {bo-e F (T Fby)ry —log | Y exp by + (3 byg) agy)
i=1j=1 Fratig
€ 2 2
f 1 &2 w2 -
~Glog (2rog01) — 3 3 (m%fm + —%) : (4}
“i=1\% 01

The marginal posterior density of # is obtained by integrating out the nuisance parameters
7 and b from the joint posterior density
T(0y)= / / 7 (3, b, 0 | y)dadb (5)
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where the integration is over 27 for b and R for #. Laplacian integration (Tierney and

Kadane, 1986) can be used to approximate this integral for a particular value #* of 4:

. ;] o 5'1 i ¢ 2% o
(0" | y) = 2m) ST G 7 (e v, 0%) (6)

. ol o E . . . .
where ¥ = (,3 , b'7) and for a fixed 6%, Wy- is the mode of the Joint posterior for 7 and
b, ie.,

. 5 T Ly g
\Ilg*:(ﬁg*:bg}:) = Argg maxn (¥ |y, 6%) (7)

and

_PPlogm (¥ |y, 6%)]
awowT V-,

Hy —

with (¥ [y, 8%) = 7(3,b.0" | y) (see (2)).

Taking the logarithm on both sides, we can write

logm (0" |y) = constant + log (‘i’g* LY, 6*) —0.51og | Hyge |

= constant + f(6%). (8)

In the two-dimensional space of the two variance components, we use the Simplex al-
gorithm (Nelder and Mead, 1965) with O'g and Oi? as parameters and the approximated
marginal posterior log-density (6) as function to identify the values which maximize this
approximated marginal posterior distribution. Once these values are found, they are used

as estitnates of the variance components 6“3 and 5“% of the two random effects.

The marginal posterior density contains all the information about the parameters of in-
. ;5 % . . . . .
terest, which we denote #7 = (0§.07) = (6p.61) for convenience. Besides the mode, it
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is interesting to get more information on the behavior of this marginal posterior density.
In the Bayesian context, the construction of credible sets is based on the whole marginal

posterior density of the parameters. In this paper, we are therefore particularily inter-

ested in obtaining more information on this density whithout increasing unreasonnably

the computation time.

For a grid of points Org = (0p,, 015). ¥ = L ..., ny, s = 1, ..., ns we can evaluate the value
of the approximated marginal posterior density m(6rs | ¥) according to (6). Considering
a sufficiently large number of points, plotting these values provides, after standardisation,
a graphical display of the marginal posterior density of o7 = {fy,01). Standardisation is

obtained by computing

7{lrs | ¥)
Sy gt w0y | y)e?

p(ﬁ’(}r, 333) =

where € = g 11 ~ g1 = 01 g1 ~ 01,4 Is the distance between two adjacent points, taken

to be equidistant.

The values on this grid also allow us to obtain information on the shape of the marginal
density of each variance component. Such a "univariate” marginal posterior dengity is
probably more informative for clinicians than the bivariate marginal density of both vari-
ance components and allows us to compute credible set for each variance component. To

obtain an approximation for the density of #p, we can plot the points

T :
S B V)

F{bgr | y) = 7‘1;3__}1@ R é.,; o~

2y 2ty T(Ors | Y€
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For #1 we plot #(f14 | v).

However, for databases of the size tvpicallv encountered in cancer clinical trials. obtain-
: Y 3 .

ing the whole marginal posterior density for each variance component using the previous
techniques quickly becomes computationaly demanding. Another possibility to obtain an
approximation of the marginal posterior density for each of the variance components is
to use a Gram-Charlier expansion. Based on the first & moments, a Gram-Charlier ex-
pansion of order k approximates the probability density function of a continuous random

variable X as an orthogonal expansion derived from the normal distribution.

For any random variable X having a continuous distribution with mean p and variance
o2, the density function of the standardised variable 2 = (X — 1) /o can be expanded ag

(Cramer, 1971}
) ) I oy,
f7(2) = coéplz) + -1}!“@’(::) + é?f@”(z) + ... (9)

where ¢(.) represents the standardised normal density and the ¢; are constant coefficients.
Furthermore it can be shown that ¢{7) (2) = (=1)"H,(2)o(z) where Hy(z) is the Hermite
polynomial of degree r. Using this result and properties of Hermite polynomials (see

Appendix), (9) can be rewritten as

Ny ; (5] vy G .
I2() = coMy(2)0(z) —esHa(2)é(z) + 5LH(2)6(=) ~ 2 Hy(2)o(z) + ...

= o(z) + 2(2% = 32)p(z) + ...

ol

with v the skewness of Z.
Considering only the first terms leads to the following approximation of the density func-

13




tion of the standardised variable Z

1, .
fz2(2) = 9(2)(1 + (2% - 32))

Now backtransform to the non-standardised variable X to obtain

= ;fz(z}- (10)

We now use this idea to obtain approximations for the univariate marginal posterior
density of each of the variance components.
Denoting g(fp.01) = ¢(6) = exp(f(6) — f(@)) with f(.) given by (8), we propose to

compute the first three mixed moments of each variance component, given by, say for 0g:

o 00
oy =k [ [ 0g(60. 61)a8dty (1)
Varg, = pog. — 20 =k | [ 62060, 0)d0ndr — {1 )2 12
argy = Moy < e =K f ) 09(00. 01)d0odfy — (g, (12)
$3:00 = Bli1-6yHo:0, + 24154 ‘
Yoy = 0 Y 3/2{} 0 (13)
Varg
0

. o oo 3 s
with 13:0, = k/{] /0 tag(0g, 613d0ydby

where k is the appropriate normalizing constant.

Two-dimensional Gaussian quadrature can be used to compute these integrals. After a
change of variable to integrate over the adequate range of values (=0, 00), the iterative
strategy proposed by Smith et al. (1985) is implemented. After few iterations, this pro-
cedure improves the accuracy of the numerical integration and therefore leads to a, precise
numerical procedure to calculate these moments. Further technical details can be found

14




in Legrand et al. (2005}. Finally, we use these moments to caleulate the skewness needed
in the formula for the Gram-Charlier approximation of the univariate mariginal posterior

density of each variance comporent.

Also, the grid evaluation can be used to obtain a good approximation of the first mo-
ments of ¢y and @] by considering discretized version of (11)-(13), e.g., for .

p

gy = D Oor7 (0o | y)e (14)
ra=]
Er ey (s | y) |
Y 2 xR g2 2
Vg@ - [‘!’2:6}0 o }[25[} = Z 9[}7‘7?(907' % y){f - ﬁ'Q{) (16)
r=1
- 4~ -3
N 13:6y = Sty Ha.g, + 20
/}_,{90 — 3:6p - Q . g&) 9{} (17)
(Vo )2/
with
e
;'1.3:9(} e Z 987.7?(997. Ly e
r=1

We implemented this approach in The Survival Kit V3.12 (Ducrocq and Solkner, 1994
and 1998), extending the version freely available from the internet? to permit the joint
estimation of the two variance components and to compute the first three moments of the

approximated posterior marginal density of each variance component given by (11)-(13)

with an acceptable increase in computation time.

“http//www.boku.ac.at/nuwi/software/sofskit. htm
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4 Bladder cancer database

Bladder cancer is & common urological malignancy and about 70-80% of all bladder can-
cers are superficial (stage Ta-T1}. We consider a pooled database of seven trials conducted
in this patient population by the Genito-Urinary Group of the European Organisation for
Research and Treatment of Cancer (EORTC trials 30781, 30782, 30791, 30831, 30832,
30845 and 30863) (Kurth et al., 1984; Bouffioux et al., 1992; Oosterlinck et al., 1993;
Bouffioux et al., 1995: Newling et al., 1995; Wities et al., 1998). These trials were de-
signed to investigate the use of prophylactic treatment following transurethral resection
(TUR). All patients randomized had Ta-T1 bladder cancer, approximately half with pri-
mary bladder cancer and half with recurrent disease. A total of 2649 eligible patients were
included in these trials. However our analysis is restricted to the 2501 patients without
missing information for the progunostic index we consider. These patients were recruited

by 63 centers.

Prognostic factors in superficial bladder cancer have been the subject of numerous pub-
lications over the past vears {Sylvester et al., 2006), with the objective of adapting the
treatment acording to the risk of the event of interest. In 1998, Allard et al. {1998) devel-
oped a prognostic index for disease free interval (DFI) based on a cohort of 382 patients
with primary Ta and T1 bladder cancer, of whom 19% of patients received intravesical
chemotherapy or immunotherapy during the follow up. Allard et al. (1998) considered
the following adverse tumors characteristics (ATCs) present at initial resection: tumor
multiplicity, tumor diameter >3 em, stage T1 and histological grade 2 or 3. They pro-

posed then grouping the patients into four risk groups, each category being simply defined

16




by the number of ATCs: no ATC, 1 ATC, 2 ATCs, 3-4 ATCS.

Our data are not fully comparable in terms of baseline characteristics to the data used in
Allard et al. (1998). The Allard prognostic index was originally developed for patients
with primary bladder cancer while our database contains 45.9% of recurrent bladder can-
cer. Furthermore our data also present a much lower proportion of patients with tumeors
larger than 3 cm (17.8% in our data versus 38.7% in the Allard data). Results in terms
of DFI obtained in Allard et al. (1998} and results obtained with the same grouping of
patients in our cohort are presented in Table 1. Figure 1 displays Kaplan-Meier estimates
of DFI per prognosis group, as obtained in our cohort. Despite a clear loss of calibration
{higher percent disease free at 1 and 2 years in most prognostic groups in EORTC data),
the prognostic index developed by Allard et al. (1998) still shows good discrimination

between prognostic groups when applied to our dataset {independent validation sample).

At this stage of our work, we consider only two risk groups, grouping patients with-

out any ATC at initial resection as good prognosis patients and patients with at least

one ATC as poor prognosis patients. This leads to about a 15%-85% distribution of pa-

tients over prognostic groups, assigning patients to one of these two risk groups could

therefore be used to save one sixth of the patients from more aggressive, more toxic and

more expensive treatment. The results in each of these two groups are presented in Tahle

2. The hazard ratio is 2.09 with a 95% confidence interval well above 1. Fitting model
(1) assuming a normal distribution for the center and prognostic index by center random

effects, leads to estimates 63 = (L0953 and &? = 0.01619.




Considering a grid of 200 values for g, (from 0 to 0.20 with equidistant span} and
200 values for 015 (from 0 to 0.200 with equidistant span), we obtain the approximated
marginal posterior density shown in Figure 2. The approximations of the umivariate
marginal density of g and #; obtained either from the grid evaluation or from umivariate
Gram-Charlier approximations based on the first three mixed moments are displayed in
Figure 3. For each variance component the two approximations appear to be very close.
We also computed the values of the first three mixed moments (11)-(13) either based on
the grid evaluation or using Gauss-Hermite quadrature {Table 3). Results are very close
to the values obtained by numerical integration, except for skewness nost probably due
to the fact that the estimates of the heterogeneity parameters are close to the boundary

of the parameter space

A nice way to interpret the values of (7(2} and &% is to evaluate their impact on clini-
cally relevant quantities (Legrand et al.. 2005; Duchateau and Janssen, 2005). Impact of
the value of c%% on the distribution of hazard ratios HR = exp(3 + by;) over centers is
of particular interest in this analysis. Figure 4 shows the density of the prognostic index
hazard ratio H 12 = exp(3 + by;) over centers. Considering the 5" and 95" quantiles of
this density, the prognostic index hazard ratio lies for 95% of the centers between 1.61 and
2.45 when considering the Allard prognostic index. Figure 5 plots exp(bg; ). the predicted

center baseline risk, and exp(d + by;), the predicted prognostic index effect.

Discrimination of the Allard prognostic index, when used to separate patients into poor




and good prognosis remains good with our data. Qur results provide interpretable infor-
mation for clinicians to decide whether this prognostic index provides hazard ratios which

show an acceptable heterogeneity over centers.
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5 Simulations

Simulations in Legrand et al. (2005) showed good performance of our approach when
using a model similar to (1} to investigate heterogeneity in freatment effect in multicenter
clinical trials. The setting for these simulations was similar to the bladder data analysed
above but we assumed an equal balance of the two groups defined by the treatment in-
dicator x;;. In the prognostic index setting, however, patients are typically divided into
unbalanced prognostic groups. In the following simulations, we will further evaluate the
performance of our approach considering various proportions of good” and "poor” prog-

nostic patients.

To simulate data, values of the baseline event rate \y(¢) (assumed to be constant over
time Ag(f) = A) and of the treatment effect, 7, are chosen to resemble the bladder cancer
data set. Considering the same endpoint as in our analysis of the bladder data (DFI),
we use a yearly constant baseline event rate of A = (0.0969 and a prognostic index effect
of 3 = 0.7372. This corresponds to a hazard ratio of 2.09 and a 5 vear DIFI probability
of 61.6% and 36.3% in the good and poor proguosis group. The accrual and follow up
times are also chosen to resemble the bladder cancer data set. We therefore consider an
accrual period of 1065 days (appr. 35 months) and a follow up time of 2440 days {appr.
80 months). Time at risk, rt;j. for a particular patient consists of the time at risk before
the end of the accrual period (assuming a constant entry rate over the accrual period)

plus the follow up time. This leads to a median follow-up of about 8 years.

We consider the same number of centers, 7, and patients per center, n;, i = 1,...,G,




as in our real bladder cancer database, namely 35 centers accruing respectively 21, 23,
23, 24, 26, 30, 30, 34, 35, 35, 35, 35, 39, 42, 42, 43, 44, 52, 52, 55. 56, 61, 62, 63, 66, 73,
85, 86, 92, 104, 117, 120, 155, 183, and 249 patients. In each dataset, a proportion p of
the patients are randomly assigned to be in the "good” prognosis group, with p teken to
be 0.25, 0.50 and 0.75. Different values of the heterogeneity parameters are considered
in these simulations, including the case where no heterogeneity is present for one or both

random eflects.

For each parameter setting, 250 datasets were generated in Splus-2000 from nodel (1).
Given G = 35, n = (ng,...,ng) the size of each center and particular values of the pa-
rameters A, 0‘8’ , 0“% and J, the observations in a dataset are generated in the following way.
First, G random center effects, bgy, ..., boe; and G interaction random effects bi1..... b
are independently generated from a zero-mean normal distribution with variance (7%, Tesp.
O’%. The time-to-event outcome for each patient, et, . 18 randomly generated from an ex-
ponential family distribution with parameter Ai; given by (1) with Ag(#) = A. A patient
for which the time-to-event is longer than the time at risk is censored with censoring time
equal to time at risk so that t;; = min(rt;;, et jhand & =1 (et;j<rt;;) is the censoring

indicator.

For each parameter setting (G, n, A, crg, a%, 3}, our model is fit using the extended version
of The Survival Kit described above, allowing for the joint estimation of the two variance
components. In Table 4, we report for each parameter p and for each set of "population

parameters” (3, o, 5 N % ):
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- the bias, computed as the average difference between the estimated values and the true
value over the 250 fits,

- the median, computed as the median of the estimated values over the 250 fits,

- the empirical standard deviation computed as the square root of the average squared
difference between the estimated value and the mean estimated values over the 250 fits,
- the median model based standard deviation computed as the median over the 250 fits of
the estimated standard deviation of 3 (obtained using standard Cox regression with the
estimated random effects as an offset) and of the square root of Varg, (resp. Vary,) for

i A - ’ . -
oy (resp. 0%) discussed in Section 3 .

These results indicate that our estimation approach, based on the Laplace approximation,
is sufficiently accurate when applied to settings similar to the one we consider whatever
the proportion of good and poor prognosis patients. Bias is generally small and the me-
dian of the estimated values close to the population parameter. When considering no
heterogeneity over centers (03 == (}}, our approach appears to underestimate the variance
of the random interaction. This is particularily true when considering (o% = (.08) and a

low proportion of patients in the good prognosis group {p = 0.25).

The standard deviation (either empirical or model-based) appears to be influenced only
to a very small extent by the proportion of patients in each prognosis group. Model-
based standard deviations of the variance components should be interpreted, according
to the Bayesian paradigm, as parameters characterizing the joint posterior density and

are therefore influenced by the skewness of the distribution (Spiegelhalter et al., 2004).
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This explains why these values are greater than those obtained for the empirical standard
error. Therefore we advise using the whole marginal posterior density rather than the

model-based standard deviation for the construction of credible sets.

These simulations demonstrate the good performance of the estimation approach and
the ability of our model to adequately identify the source of variation in each of the set-
tings considered. This shows that fitting such a model indeed provides useful information
on the heterogeneity in outcome and in risk groups hazard ratios over centers that can be

used when studying the validation of a prognostic index.




6 Discussion

Most validation techniques focus on the overall reproducibility of the results in a vali-
dation sample. However prognostic indices are practical tools that should be relevant
in different centers with possibly different patient populations. It might indeed be the
case that the prognostic index risk groups hazard ratio is "on average” the same in the
construction and validation set, while important variation exists from center to center,
leading to questionable clinical validity of the model. The main idea we defend in this
paper is that heterogeneity in the prognostic index risk groups hazard ratios over centers
conveys important additional information on the generalisibility of the prognostic index

under validation.

To investigate such heterogeneity, we advocate the use of a Cox proportional hagzards
model including a fixed prognostic index effect, a random center effect and a random
interaction between these two factors. We restricted our attention to prognostic indices
which divide the patient population into two prognostic groups. Extension to prognostic
indices dividing the patient into more than two categories {e.g., "poor”, "intermediate”
and "good” prognosis) could be performed either by considering the variable representing
the prognostic groups as an ordered categorical variable (if we have medical rationale to
believe in proportionality of risk over risk groups}, or by considering K-1 dummy binary

variables to represent the K prognostic groups and introduce them all in the model.

Royston et al. (2004) proposed an ”internal-external cross validation” procedure consider-

ing data from several independent data sets from studies with the same measured factors.
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TL .r idea was to investigate first whether prognostic discrimination was maintained be-
tween the independent studies and second whether the baseline curvival distribution was
heterogeneous across ctudies. Rather than ysing a two-step procedure as proposed by
Royston et al. (2004), our model allows to investigate Loth the variability in the effect
of the prognostic index over centers and a possible variability in patient prognosis in the
different centers. We believe that the information on heterogeneity in baseline risk and
prognostic index risk groups hazard rafio is important as both (as well as their combi-
nation} can jead to a conclusion that the prognostic index is not generalisable from one
center to the other. Indeed, in case of heterogeneity in prognostic index risk groups hazard
ratios over centers, the prognostic index will loose its digcriminatory power in part of the
centers. And in case of heterogeneity in outcome over centers, the outcome of the patients
in the various centers might be so different that it becomes difficult to use the specific
prognostic index to define further treatment of the patients (e.g., if the good prognosis
group in one center has outCcomes similar to the poor Prognosis group in another center).
1t is therefore important to provide tools to investigate wether a prognostic index remains
useful despite the heterogeneity in outcome and in prognostic index effect existing be-

tween centers,

While Royston and Parmar (2004), considering a fixed effect approach, provides a statistic
to test the nuli hypothesis of no heterogeneity in the prognostic index effect over centers.
we propose to quantify this heterogeneity and to interpret it in terms of medically relevant
quantities. The strength of our approach Is to provide to clinicians clear information with

respect to the generalisibility of a particular prognostic ‘ndex over centers. This informa-

| ]
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tion is easily interpretable in the clinical context of a particular prognostic index and can

therefore assist them in determining the usefulness of a particular prognostic index.
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Table 1: Disease free interval by number of Adverse Tumor Characteristics in the Allard

et al. {1998} cohort and in the EORTC cohort

Allard et al. cohort EORTC cohort
N=333 N=2501
N (%) 1 year 2 vear N (%) 1 year 2 year 5 year
DFI  DFI DFI  DFI  DFl

0ATC | 64 (10.2%) 85.6% 68.5% | 411 (16.4%) 83.2% 75.3% 61.6%
LATC | 97 (20.1%)  66.0% 55.4% | 768 (30.7%) 72.9% 60.4% 45.3%
2 ATCs | 104 (31.2%) 47.6% 31.7% | 761 (30.4%) 61.1% 48.9% 37.6%

3-4 ATCs | 68 (204%) 29.6% 19.1% | 561 (22.4%) 54.8% 41.1% 31.8%
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Table 2: Results by PJ Allard 11 the EORTC bladder cancer data,

Prognosis group

Good prognosis group  Poor prognosis group

I year DFI (95 % CT)
3 vear DFT (95% CI)

i_HR {95%CT) / p-value

411 (16.4%) 2090 (83.6%)
83.2% (79.0-86.6) 63.7% (61.5-65.9)
61.6% (55.6-67.1) 39.9% (36.3-41.4)

2.09 (1.73-2.52) / < 0.0001
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Table 3: Estimation of the first three mixed moments ohtained either from {(a) Gauss-

Hermite quadrature using (11)-(13) or from {b) Grid evaluation using (14)-(17)

(a) Gauss-Hermite quadrature (b} Grid evalutation

. N =
1o V'V o fig VVa Yo

Ay 1 0.0894 0.0497 0.8116 0.0867 0.0415 0.2910

81 10.0534  0.0408 1.1573 0.0520  0.0385 0.9444




Table 4: Simulations. Results for 7 = 0.7372, different values of 0“(23 and o‘% and different

values of p. Bias, median value, empirical standard deviation {emp. std) and median

model based standard deviation (model std).

p=0.25 p = 0.50 p=0.75

B=.7372 oi=0 oi= B=.1312 o6f=0 oi=0 [ 3=.73712 oi=0 o0}=0
Bias 0.0018  0.0021  0.0050 | -0.0032  0.0015  0.0022 0.0021  0.0013  0.0014
Median 0.7376  0.0000  0.0000 0.7687  0.0017  0.0023 0.7420  0.0000  0.0000
Emp std 0.0591  0.0038  0.0001 0.0484  0.0030  0.0048 0.0589  0.0032  0.0037
Model std | 0.0579  0.0079  0.0246 0.0525  0.0073  0.0127 00634  0.0066  0.0080

B= 7372 oi=0 oi=.04]3=7372 o0i=0 oi=.04]|8=7372 oi=0 oi=.04
Bias 0.0047  0.0024 -0.0035 | 0.0094  0.0033 -0.0057 | 0.0077  0.0051 -0.0033
Median 07397 0.0000  0.0358 07401 0.0000  0.0333 0.7430  0.0000  0.0353
Emp std 0.0695  0.0042  0.0272 0.0695  0.0053  0.0191 0.0767  0.0077  0.0181
Model std | 0.0687  0.0092  0.0417 0.0627  0.0108  0.0261 0.0723  0.0149  0.0232

3=.7372 of=0 o0}=08  8=.7372 oi=0 oi=08  3=.7372 ci=0 of=.08
Bias 0.0150  0.0026 -0.0203 | 00113  0.0034 -0.0123 | 00046  0.0063 -0.0103
Median 0.7491  0.0000  0.0500 0.7520  0.0000  0.0617 0.7410  0.0000  0.067:
Emp std 0.0769  0.0049  0.0301 0.0677  0.0056  0.0206 0.0855  0.0108  0.0256
Model std | 0.0723  0.0007  0.0545 0.0695  0.0123  0.0303 0.0792  0.0182  0.0355
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p=025 p=0.50 p=0.75
B=T372 of=.04 o= 04|4= 797 of=.04 of=04 = 7379 of = .04 o2 = 04
Bias 0.0138 0.0008  -0.0022 | 0.0028 0.0010  -0.0028 | -0.0046  0.0005  0.0026
Median 0.7484 0.0391  0.0310 0.7403 0.0388  0.0342 07319 0.0400  0.0408
Emp std 0.0700 0.0182  0.0336 0.0679 0.0203  0.0247 0.0716 0.0246  0.0274
Model std | 0.0676 0.0229  0.0453 0.0637  0.0238  0.0336 0.0738 0.0282  0.0329
A= T372 of=.08 ol=0 |F=.7372 o= 08 of =0 | §=7372 o2=.08 o2=0
Bias -0.0049  -0.0032  0.0085 0.0016  -0.0030  0.0067 | -0.0039  -0.0065 0.008%
Median 0.7286 0.0727  0.0000 0.7418 0.0752  0.0000 0.7367 0.0710  0.0001
Emp std 0.0543 0.0274  0.0168 0.0550  0.0256  0.0110 | 0.0643 0.0293  0.0137
Model std | 0.0587 0.0342  0.0316 0.0537 00351  0.0235 0.0648 0.0337  0.0251
8= 7372 of=.08 o¥=.04 3= 7370 o8 =.08 of= 04 5= 7372 of = .08 o= .04
Bias 0.0047 0.0012  0.0017 0.0038  -0.004¢  0.0022 | -0.0088  0.0028  0.0013
Median 0.7419 0.0812  0.0417 0.7426 00726  0.0407 | 0.7297 0.0768  0.0352
Emp std 0.0687 0.0295  0.0352 0.0648 0.0301  0.0280 0.0725 0.0359  0.0306
Model std | 0.0689 0.0363  0.0503 0.0652 0.0355  0.0376 0.0732 0.0405  0.0377
B=.7372 o0f=.08 ol=08|8= 7372 05 =.08 o0}=.08]| 3= 737 of=.08 o?=.08
Bias 0.0147 00005 0.00i1 | -0.0008  0.0031  -0.0020 | -0.004% -0.0050  0.0029
Median 0.7514 0.0796  0.0762 0.7370  0.0820  0.0724 0.7302 0.0697  0.0797
Emp std 0.0793 0.0277  0.0451 0.0780 0.0334  0.0408 0.0878 0.0377  0.0457
Model std | 0.0784 0.0363  0.0614 00733 0.0398  0.0496 | 0.0830 0.0433  0.0507




Figure 1. Bladder cancer data. Disease-free interval probability in 2501 patients with
primary or recurrent Ta and T1 bladder cancer (EORTC database) according to the

number of adverse tumour characteristics (ATCs) defined by Allard et al, (1998).
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Figure 2. Joint marginal posterior distribution of 8y (center) and 6; (interaction) obtained

by grid evaluation.
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Figure 3. Marginal posterior density of fg (a) and 81 (b) obtained from univariate Gram-
Charlier approximation based on the first three mixed moments (line) and as obtained

from grid evaluation {dots).
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Figure 4. Bladder cancer data. Density of the prognostic index hazard ratio HR =

exp(3 + by;) over centers.
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Figure 5. Bladder cancer data. Predicted center baseline risks (exp(by;)) and predicted

prognostic index effects (exp{J + by;}or model (1},
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Appendix: Hermite Polynomials

The (probabilists} Hermite polynomials (Cramer, 1971; Kendall and Stuart, 1977) are a
polynomial sequence defined by

1t i
{l' _:52;;2

N 219
Ha(z) = (~1)"e" /2

The first several Hermite polynomials are therefore given by

Hylz) = 1
Hi{z) = =
Ho(z) = z°~1
H3(z) = 2% -3z

x‘i—G;ﬁz%S

I

Hy(x)

These polynomials are orthogonal with respect to the weight function w(z) = e /2,

with

O 3,
/ f[n (ZE)H;’;;(l‘)CﬁxZ; 2d'1-’ = Tlg vV 271‘5-;'1,771

G
The density function fz{z) of any standardised variable Z can be written as (Cramer,

1971)
f2(2) = 3 (-1 1 Hj(2)o(2)
=0 |

To determine the coeflicients ¢; in this expansion in Hermite polynomials, we multiply

this experssion by Hj(2) and integrate from —oc to oo (assuming that the series may be

K




integrated term by term)

/w wlz)fz(z)dz Z / Hi{z)H ! (2)d(z)dz

Using the orthogonality relation, it follows that
o = (0" [T Hy(2)fz(2)dz

From the explicit formulation of the Hermite polynomials, and denoting by f, o2 and 7

the mean, variance and skewness of Z, we have (note that p = 0, o2 = i}
g = ]Dc flzydz =1
o= / fizyde = —pu =10
o = [ (-1fE)dz=0"~1=0
cy o= ——/ —32)flz)dz =~

44




