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SUMMARY. Time to infection data are often simultaneously clustered and interval-censored. First,

the time to infection is not known exactly; it is only known to have occurred within a certain interval.

Second, observations often occur in clusters. As a consequence the independence assumption does not

hold. We propose here an extension of the shared gamma frailty model to handle the interval-censoring

and the clustering simultaneously. It is shown that the frailties can be integrated out analytically and

therefore the marginal likelihood can be maximised to obtain parameter estimates. The method is applied

to a longitudinal study with periodic follow-up on dairy cows to investigate the effect of parameters at the

cow level (e.g. parity) and parameters that can change within the cow (e.g. front or rear udder quarter)

on time to infection. Dairy cows were assessed monthly for the presence of a bacterial infection at udder

quarter level, thus generating interval-censored data, and the four udder quarters are obviously clustered

within the cow. Based on simulations we show that ignoring the interval-censored nature of the data can

lead to biased parameter estimates.
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1 Introduction

Infectious disease data can be analysed most efficiently by survival analysis techniques if infection times of

individual units are available. However, ordinary survival analysis techniques often need to be extended

due to the particular data structure. We investigate a data set that has two characteristics that require

extension of the currently available survival analysis techniques if they have to be dealt with simultane-

ously. First, infectious disease data are often hierarchically structured, with observation units grouped

in clusters, so that the event times within a cluster can not be assumed to be independent. Second, the

time to infection is not known exactly; it is only known that the infection happened between the last

negative and first positive test, therefore the infection time is interval-censored (Finkelstein, 1986). The

infectious disease data set considered in this paper, the mastitis data, corresponds to infection times of

individual cow udder quarters with a bacteria (Laevens et al., 1997). Obviously, the four udder quarters

are clustered within a cow (Adkinson et al., 1993) and udder quarters are sampled only monthly, gener-

ating interval-censored data. We want to investigate the effect of covariates that change within cow (e.g.

front and rear udder quarters) and covariates that change between cows (e.g. parity, i.e., the number

of previous calvings). But also the correlation between udder infection times within a cow is of interest

because it is a measure of the infectivity of the agent which causes the disease (Barkema et al., 1997). To

handle the problem of interdependence for right-censored observations different models have been used

among which the frailty model is the standard. For the analysis of independent interval-censored data a

number of inferential techniques have been described in the literature (Radke, 2003; Collet, 1994). But

analysis methods for settings where observations are at the same time correlated and interval-censored

received less attention. Bellamy et al. (2005) proposed a method to fit clustered interval-censored data

assuming a normal distribution for the random effect and integrating out the random effects numerically

using Gaussian Quadrature.

In Section 2 we study an extension of the parametric shared gamma frailty model to interval-censored
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data. We show that a closed form of the marginal likelihood can be obtained by integrating out the

gamma-distributed frailties. In Section 3, we demonstrate the method for our example. In Section 4, the

performance of the method is evaluated based on a simulation study. Conclusions are given in the last

section.

2 The parametric shared gamma frailty model with interval-

censored data

Consider the following proportional hazard frailty model

hij(t) = h0(t)wi exp
(

xt
ijβ
)

, i = 1, . . . , N, j = 1, . . . , ni (1)

with hij(t) the hazard at time t for udder quarter j of cow i, h0(t) the baseline hazard at time t, xij the

vector of covariates for the corresponding udder quarter and β the vector of covariate effects. We further

assume that the frailties w1, . . . , wN are independent realizations from a one parameter gamma density

with mean one and variance θ

fW (wi) =
w

1

θ
−1

i exp(−wi

θ )

θ
1

θ Γ( 1
θ )

. (2)

In (1) the frailty wi acts multiplicatively on the hazard rate and is gamma-distributed. The model

formulation in Bellamy et al. (2005) expresses the frailty term as exp bi with bi the random effect working

additively on the log hazard rate and assumes a normal distribution for the random effect (see Section 3

for a comparison of these two models). In what follows we write θ for the variance of the frailty and σ2

for the variance of the random effect. In the further discussion we assume a Weibull distributed baseline

hazard, i.e., h0(t) = λγtγ−1.
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The udder quarter infection times in the mastitis study are either right-censored or interval-censored.

Cluster i consists of ni = 4 observations (one observation per udder quarter) of which ri are right-censored

and di are interval-censored. We write Rij to denote the right-censored infection time for udder quarter

j of cow i. If the information on the infection time is subject to interval-censoring we denote the lower

and upper bounds of the interval as Lij and Uij . Per cluster we define two sets of indices according to

whether the infection time is right-censored or interval-censored:

Ri = {j ∈ {1, 2, 3, 4} : Tij > Rij}

Di = {j ∈ {1, 2, 3, 4} : Lij < Tij ≤ Uij} ,

with Ri ∩ Di = φ and Ri ∪ Di = {1, 2, 3, 4} and Tij the real but unobservable infection time.

Assuming that the censoring process is not informative for the survival process the conditional data

likelihood contribution for cluster i consists of the product of differences of the conditional survival

functions evaluated at the observed lower and upper time point for the interval-censored quarters and of

the conditional survival function evaluated at the censoring time for the right-censored quarters

Li (β, λ, γ, θ | wi) =
∏

j∈Ri

S(Rij)
∏

j∈Di

{S(Lij) − S(Uij)} , (3)

which results in

Li (β, λ, γ, θ | wi) = exp







−
∑

j∈Ri

λRγ
ijwi exp

(

xt
ijβ
)







×
∏

j∈Di

[

exp
{

−λLγ
ijwi exp

(

xt
ijβ
)}

− exp
{

−λUγ
ijwi exp

(

xt
ijβ
)}]

= exp (−wiCi) ×
∏

j∈Di

{

exp
(

−wiL
∗

ij

)

− exp
(

−wiU
∗

ij

)}

, (4)

with Ci =
∑

j∈Ri
λRγ

ij exp
(

xt
ijβ
)

, L∗

ij = λLγ
ij exp

(

xt
ijβ
)

and U∗

ij = λUγ
ij exp

(

xt
ijβ
)

.

To be able to write down the product in the second factor of (4) in a general way, we define the following

column vector ai of length 2di with di the number of elements in Di
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ai = (caik)
2di

k=1 =
⊗

j∈Di









exp(−wiL
∗

ij)

− exp(−wiU
∗

ij)









.

The first element of this column vector, for example, is exp
(

−wi

∑

j∈Di
L∗

ij

)

.

The last element is ± exp
(

−wi

∑

j∈Di
U∗

ij

)

with a positive sign if the number of U∗

ij ’s in the sum of the ex-

ponent is even and a negative sign if the number is odd. The number of U∗

ij ’s in aik will be denoted as nik.

Expression (4) can then be rewritten as

Li (β, λ, γ, θ | wi) = exp (−wiCi)





2di
∑

k=1

aik



 .

This expression still contains the unobserved frailty term wi. We can however integrate out the frailty

term which is assumed to have the gamma density (2), we then obtain the marginal likelihood

Li (β, λ, γ, θ) =

∫

∞

0

w
(1/θ−1)
i exp (−wi/θ)

θ1/θΓ(1/θ)
exp (−wiCi)





2di
∑

k=1

aik



 dwi

=
1

θ1/θΓ(1/θ)

2di
∑

k=1

∫

∞

0

w
(1/θ−1)
i exp

{

−wi

(

Ci +
1

θ

)}

aikdwi

=
2di
∑

k=1

(−1)
nik

(

Ci + 1
θ + log pik

)1/θ
θ1/θ

, (5)

with pi the column vector:

pi = (cpik)
2di

k=1 =
⊗

j∈Di









exp(L∗

ij)

exp(U∗

ij)









.

5



To obtain the full marginal likelihood we take the product of the N cluster-specific marginal likelihoods

∏N
i=1 Li(β, θ, λ, γ). Maximum likelihood estimates can then be obtained by maximising the full marginal

likelihood using, for instance, the Newton Raphson procedure. As the second partial derivatives can be

obtained for all parameters (see Web Appendix A), an explicit expression for the information matrix is

available, from which an estimate of the asymptotic variance-covariance matrix can be obtained.

3 Example

The importance of mastitis in dairy cows has been addressed previously and mastitis control is an im-

portant component of dairy herd health programs because udder infections are closely associated with

reduced milk yield and impaired milk quality (Seegers, Fourichon and Beaudeau, 2003). A total of 100

cows were monthly screened at the udder quarter level for bacterial infections from the time of parturition

until the end of the lactation period. Observations can be right censored if no infection has occurred

before the end of the lactation period, which is roughly 300 days but different for every cow, or if the cow

is lost to follow-up during the study, for example due to culling. Due to the periodic follow-up, udder

quarters that experience an event are interval-censored with lower bound the last visit with a negative

test and upper bound the first visit with a positive test.

In the analysis, two types of covariates are considered. Cow level covariates take the same value for every

udder quarter of the cow (e.g. number of calvings or parity). Several studies have shown that prevalence

as well as incidence of intra mammary infections increases with parity (Vecht, Wisselink and Defize, 1989;

Weller, Saran and Zeliger, 1992). Several hypotheses have been suggested to explain these findings, e.g.

teat end condition deteriorates with increasing parity (Neijenhuis et al., 2001). Because the teat end is

a physical barrier that prevents organisms from invading the udder, impaired teat ends makes the udder
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more vulnerable for intra mammary infections. For simplicity in the analysis, parity is dichotomized

into primiparous cows (one calving) and multiparous cows (more than one calving). Udder quarter level

covariates change within the cow (e.g. position of the udder quarter, front or rear). The difference in

teat end condition between front and rear quarters has also been put forward to explain the difference in

infection status (Adkinson et al., 1993; Barkema et al., 1997; Schepers et al., 1997). In total 317 out of

400 udder quarters were infected during the lactation period.

The parameter estimates obtained from the method proposed in the previous section and the naive models

are shown in Table 1. The infection time is given in days, but as too small values for the estimate of the

parameter λ typically lead to convergence problems, we transformed the time to infection from days to

quarters of a year through the formula tQ = 4/365.25 ∗ tD. Therefore the estimate λ̂ in Table 1 refers to

quarters of a year rather than days.

For both covariates the parameter estimate γ̂ is above 1, and the hazard is thus increasing with time.

The hazard ratio of multiparous cows versus primiparous cows is exp(0.3139) = 1.37 with 95% confidence

interval [0.72;1.88]. The hazard ratio of front versus rear udder quarters is exp(0.1798) = 1.20 with 95%

confidence interval [0.94;1.52]. The estimate for θ is 1.8; the corresponding estimate for Kendall’s tau

(Kendall, 1938) is θ̂/(θ̂ + 2) = 0.4736 (Oakes, 1989). Thus, infection times within the cow are highly

correlated.

The proposed method is now compared to the naive method of converting the interval-censored data to

exact event time data by either taking the midpoint or the upper bound of the interval. Although using

the midpoint gives us similar results (parameter estimates of θ, λ and γ are only slightly higher) for both

covariates (see Table 1), imputation of the upper bound has a large effect on the parameter estimates

θ̂, λ̂ and γ̂. Especially the overestimation of γ is eye-catching and leads to a more rapidly increasing

hazard compared to the hazard obtained using imputation of midpoint or using the exact method based

on interval-censored data. This can be seen clearly in Figure 1 in which the estimated hazard functions
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for the three models investigating the difference between front and rear udder quarters are depicted for

a cow with frailty equal to one. The choice of the upper bound as exact event time makes that no events

take place within the first 30 days after calving. Therefore the model based on imputation of the upper

bound leads to a faster increasing hazard function to accommodate for the fact that the hazard rate

should be as low as possible in the first 30 days.

It is also interesting to compare our results with the estimates obtained from the method proposed by

Bellamy et al. (2005). We consider the following model

hij(t) = h0(t) exp (bi) exp
(

xt
ijβ
)

, i = 1, . . . , N, j = 1, . . . , ni (6)

with h0(t) = λγtγ−1 and bi ∼ N
(

0, σ2
)

.

Since a normal distribution is assumed for the random effects bi, the frailties follow a lognormal dis-

tribution and it is no longer possible to obtain a closed form expression for the marginal likelihood by

integrating out the frailties exactly. So Bellamy et al. (2005) used Gaussian Quadrature to integrate

out the frailties and then maximised the marginal likelihood. Compared to Bellamy et al. (2005) we use

the proportional hazards (PH) model representation instead of the accelerated failure time (AFT) model

representation (see Web Appendix B for the program based on the nlmixed procedure of SAS), but after

appropriate parameter transformation, the PH and AFT models lead to exactly the same solution with

σ̂2 = 2.9136, λ̂ = 0.3205, γ̂ = 2.0084 and β̂ = 0.1765 for the model investigating the difference between

front and rear udder quarters.

It is not straightforward to compare the gamma frailty model (1) with model (6) with normally distributed

random effects. The frailties corresponding to the random effects with mean equal to zero in the last

model do not have mean one. In this particular case, the mean is estimated by exp
(

0.5σ̂2
)

= 4.29.

A good practice to compare the two hazard models is to interpret the models in terms of a medically

relevant quantity such as the median time to infection (mi). Both the random effects model and the
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frailty models induce heterogeneity in median time to infection between cows. The density function for

the median time to infection in the frailty model is given by (Duchateau and Janssen, 2005)

fmi
(m) = α

(

log 2

θλ exp
(

xt
ijβ
)

)1/θ
1

Γ (1/θ)
×
(

1

m

)1+ α

θ

exp

(

− log 2

θmαλ exp
(

xt
ijβ
)

)

. (7)

In case of normally distributed random effects the density function for mi is (Legrand et al., 2005)

fmi
(m) =

α

mi

√
2πσ2

exp



− 1

2σ2

(

ln

(

ln 2

miλ exp
(

xt
ijβ
)

))2


 . (8)

The two density functions for the model with the difference between front and rear udder quarters as

covariate are shown in Figure 2. The two density functions look rather similar, but the gamma frailty

model puts more emphasis on the peak, whereas the model with normally distributed random effects puts

more emphasis on the skewness.

4 Simulation study

To evaluate the performance of our proposed model, a simulation study was done. Analogous to the

data example 1000 datasets consisting of 100 clusters with 4 observations per cluster were simulated

with parameter values equal to parameter estimates obtained in the example. The frailties (wi) were

generated from the one-parameter gamma density (2) with E(wi) = 1 and Var(wi) = θ = 1.8. The data

were simulated from the frailty model (1) assuming Weibull distributed event times with λ equal to 0.9,

γ equal to 1.9 and β equal to 0.2. A binary covariate x takes the value 1 for the first two observations in

a cluster and 0 for the other two.

Asynchronous intervals of 30 days are created around the simulated infection time as follows: first for

each cow the number of days she was in lactation before the first visit was simulated from the uniform

distribution with a minimum of 1 and a maximum of 29. Visits are held at fixed time points (0-30-60-
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90-....) but since each cow entered the study at a different moment, namely the first day she was in

lactation, the endpoints of the intervals are adjusted to the number of days in lactation. The end of

the study was set at one year so that udder quarters with simulated infection time longer than one year

become right-censored observations. The upper bound of their interval is used as the censoring time.

For each of the 1000 datasets three models were fitted: the model proposed in Section 2 using the interval-

censored data and the two naive models ignoring the interval-censoring and imputing the midpoint or

upper bound as exact event time.

The mean of the 1000 obtained estimates for the parameters θ, λ, γ and β is compared with their true

values and differences between the three models are investigated. Standard errors are obtained by taking

the inverse of the Hessian matrix at the end of the optimisation procedure. The mean of the estimated

standard errors and the empirical standard error obtained from the 1000 datasets is also calculated.

Finally, we also determine the coverage, defined as the percentage of the 1000 datasets that contains the

true population parameter within their 95 % confidence interval. The results of the simulation suggest

that the estimates obtained with our proposed model and by imputation of the midpoint are close to

the true population parameters of interest (see Table 2). For the upper bound imputation, however, the

estimate of λ is biased downward and the estimate of γ upward. The coverage is good if the interval-

censored nature of the data is taken into account or if imputation of the midpoint is used. As can be

expected because of the large bias for λ and γ, coverages for these parameters are unacceptable when the

upper bound imputation is used.

Based on these simulations, it might seem that our new technique has no advantage over imputation of

the midpoint. However, this is not always the case. For instance, consider the same simulation setting

as before (λ = 0.9, β = 0.2, θ = 1.8, 30-day intervals) but change the value of the parameter γ to 0.5.

Changing the value of the parameter γ from 1.9 to 0.5 means that the hazard is no longer increasing but

decreasing over time. At the start of the study all udder quarters are at risk and, in case of an increasing
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hazard, few events take place in the beginning and a lot of udder quarters are still at risk towards the

end of the study when more events take place. Therefore a lot of information is available throughout

the study and is used to obtain parameter estimates. For a decreasing hazard (γ < 1) a lot of events

take place in the beginning leaving only few udder quarters at risk near the end of the study. So, when

you ignore the interval-censored nature of the data in this setting there is not enough information left

to obtain adequate parameter estimates. As can be seen in Table 3 the exact method performs well in

estimating all parameters including γ, but the techniques of imputing the midpoint or upper bound both

fail in estimating the parameter γ and imputation also performs worse compared to the exact method in

estimating the other parameters. For the considered simulation studies it is clear that the exact method

outperforms the two methods based on imputation.

5 Conclusions

In this paper we propose a shared gamma frailty model for clustered, interval-censored data. Although

we use a Weibull baseline hazard, the method can easily be extended to other parametric forms of the

baseline hazard. Assuming a gamma distribution for the frailty with mean one and variance θ enables

us to integrate out the frailties analytically and to obtain a closed form expression for the marginal

likelihood, which can then be maximised with some optimisation procedure (R-program is available

from Web Appendix B) to obtain parameter estimates. Furthermore exact expressions for the second

derivatives of the likelihood (see Web Appendix A) and thus estimates for the variances of the parameters

can be obtained by inverting the matrix of second derivatives.

In the example we compare our technique to the technique proposed by Bellamy et al. (2005). They

assume a normal distribution for the random effects. Under this assumption no closed form of the

likelihood can be obtained and frailties are integrated out using Gaussian Quadrature. Some of the

parameters appearing in the two models can be linked (γ and β) and the estimates for these parameters
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are comparable. To link the λ parameter in the proposed model to parameters in the model proposed by

Bellamy et al. (2005) is more difficult. This is due to the specification of the cluster effects in terms of

normally distributed random effects with mean zero, i.e. a lognormal distribution at the frailty level, but

with a mean different from one. It is therefore not straightforward to compare these two hazard functions

and we can expect large differences between them for large values of the variance of the lognormal

and gamma distributions (Therneau and Grambsch, 2000). Indeed the larger the value of the variance

parameter the more different the densities are. The two models can however be meaningfully compared

when the models are translated in terms of the density function of the median infection time. The two

models result in quite comparable density functions.

The first simulation setting show that accurate estimates are obtained using the proposed technique and

imputation of the midpoint. However, in the second simulation setting where the parameter γ is smaller

than one, imputation of the midpoint fails. Using the upper bound as an exact event time leads to

biased estimates especially for λ and γ in both simulation settings. The simulation studies show that our

technique outperforms the imputation techniques.

Supplementary Materials

Web Appendices referenced in Sections 2, 3 and 5 , the data and the programs are available under the

Paper Information Link at the Biometrics website http://www.tibs.org/biometrics.
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Table 1: Parameter estimates and their standard error (SE) for time to infection with parity resp. front

or rear udder quarters as covariate, using the proposed method (Exact), midpoint (MP) and upperbound

(UB) of the interval as exact event times and Gaussian Quadrature (GQ)

θ̂/σ̂2 (SE) λ̂ (SE) γ̂(SE) β̂ (SE)

Proportional hazards model with parity as covariate

Exact 1.7718 (0.3031) 0.8108 (0.2087) 1.9239 (0.1099) 0.3139 (0.3299)

MP 1.7927 (0.3043) 0.8379 (0.2145) 1.9791 (0.1064) 0.3167 (0.3284)

UB 1.8921 (0.3126) 0.5441 (0.1418) 2.4036 (0.1300) 0.2463 (0.3339)

GQ 0.7130 (0.1287) 0.2620 (0.2126) 2.0044 (0.1151) 0.4939 (0.3716)

Proportional hazards model with front-rear udder quarters as covariate

Exact 1.7836 (0.3033) 0.8956 (0.1653) 1.9287 (0.1098) 0.1798 (0.1219)

MP 1.7981 (0.3041) 0.9264 (0.1713) 1.9807 (0.1060) 0.1774 (0.1194)

UB 1.8999 (0.3125) 0.5753 (0.1042) 2.4080 (0.1297) 0.1848 (0.1195)

GQ 0.7224 (0.1303) 0.3205 (0.2017) 2.0084 (0.1151) 0.1765 (0.1229)



Table 2: Average of estimated model parameters and their standard error (SE) from 1000 simulated

datasets using the proposed method (Exact), midpoint (MP) and upperbound (UB) of the interval as

exact event times. True values for the parameters are given by λ = 0.9, β = 0.2, θ = 1.8 and γ = 1.9.

Empirical standard errors and coverage is given on the second and third row resp.

θ̂(SE) λ̂(SE) γ̂(SE) β̂(SE)

empirical SD empirical SD empirical SD empirical SD

coverage coverage coverage coverage

Exact 1.8050 (0.2845) 0.9061 (0.1593) 1.8913 (0.0998) 0.1978 (0.1215)

0.2921 0.1584 0.1029 0.1236

93.7 93.6 94.4 94.7

MP 1.7615 (0.2752) 0.8911 (0.1530) 1.8894 (0.0932) 0.1945 (0.1196)

0.2832 0.1524 0.0947 0.1214

92.4 92.5 94.2 94.6

UB 1.8801 (0.2877) 0.6029 (0.1047) 2.2680 (0.1116) 0.2015 (0.1203)

0.2927 0.1021 0.1120 0.1262

95.7 23.4 6 93.7



Table 3: Average of estimated model parameters and their standard error (SE) from 1000 simulated

datasets using the proposed method (Exact), midpoint (MP) and upperbound (UB) of the interval as

exact event times. True values for the parameters are given by λ = 0.9, β = 0.2 , θ = 1.8 and γ = 0.5.

Empirical standard errors and coverage is given on the second and third row resp.

θ̂(SE) λ̂(SE) γ̂(SE) β̂(SE)

empirical SD empirical SD empirical SD empirical SD

coverage coverage coverage coverage

Exact 1.8419 (0.3456) 0.9165 (0.1714) 0.4923 (0.0401) 0.1989 (0.1454)

0.3585 0.1699 0.0393 0.1454

92.7 94.5 94.2 95.3

MP 2.1413 (0.3721) 0.8781 (0.1689) 0.7353 (0.0431) 0.2123 (0.1436)

0.3974 0.1808 0.0446 0.1559

89.7 90.0 0 93.4

UB 2.1563 (0.3733) 0.7087 (0.1349) 0.8811 (0.0518) 0.2111 (0.1434)

0.3979 0.1395 0.0558 0.1556

89.3 62.1 0 93.5



Figure 1: Hazard functions for time to infection based on parameter estimates of the proposed method

accommodating for interval censoring (Exact), and of the method using imputation with the midpoint

(MP) and upperbound (UB). The left panel refers to the front udder quarters, the right panel to the rear

udder quarters.
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Figure 2: Density functions for median time to infection for front udder quarters with a gamma frailty

(full line), and a normal random effect (dotted line)
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