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Abstract

Frailty models are widely used to model clustered survival data. Classical ways to fit frailty

models are likelihood based. We propose an alternative approach in which the original problem

of ‘fitting a frailty model’ is reformulated into the problem of ‘fitting a linear mixed model’

using model transformation. Based on a simulation study, we show that the proposed method

provides a good and simple alternative for fitting frailty models for data sets with a sufficiently

large number of clusters and moderate to large sample sizes within covariate level subgroups

in the clusters. We illustrate the proposed method using data from 27 randomized trials in

advanced colorectal cancer.
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1 Introduction

Frailty models are widely used to fit clustered survival data. Classical ways to fit frailty models

are likelihood based. Data from multicenter clinical trials are a typical example of clustered

data; data within the same center all share the same random cluster effect. The shared frailty

model provides an appropriate way to describe the within cluster dependence of outcomes.
∗Correspondance: Goele Massonnet, Hasselt University, Center for Statistics, Agoralaan, Building D, B-3590

Diepenbeek, Belgium; Tel: +32-11-268244; Fax:+32-11-268299; E-mail: goele.massonnet@uhasselt.be.
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Likelihood methods to fit shared frailty models include: EM-algorithm (Klein, 1992), penal-

ized partial likelihood (Therneau and Grambsch, 2000; McGilchrist, 1993), Bayesian analysis

(Ducrocq and Casella, 1996). In recent papers more complex frailty models have been studied.

Within the clinical trials context typical examples are frailty models with a random cluster

effect and a random treatment effect. To fit such frailty models, the likelihood based methods

mentioned above have been adapted to cover this extra complexity in the data: EM algorithm

(Vaida and Xu, 2000; Cortiñas and Burzykowski, 2005), penalized partial likelihood (Ripatti

and Palmgren, 2000), Bayesian approach (Legrand et al., 2005).

In this paper we propose an alternative way to fit frailty models. We start from the following

observation: the integral of the weighted (over time) conditional cumulative loghazard depends

in a linear way on the random effects describing the cluster and/or the treatment effect over

clusters. Using the data within a cluster we can estimate the integral using nonparametric

estimation techniques. Considering the estimated integral as a response we can reformulate

the original problem of ‘fitting a frailty model’ into a standard problem of ‘fitting a linear

mixed-effects model’. We can summarize the idea as follows: based on the original data we

obtain pseudo-data (the estimated integrals) on which we can apply mixed model methodology.

Since most standard statistical packages contain procedures to fit complex linear mixed-effects

models but do often not contain procedures to fit complex frailty models, the proposed model

transformation is a useful practical way to get insight in the heterogeneity in the data. A related

reference dealing with model transformation in the context of proportional hazards, additive

risks and proportional odds models is Grigoletto and Akritas (1999).

In Section 2.2 we give, for right censored clustered survival data, the details on how frailty

models can be transformed into mixed-effects models. The simulation study in Section 3 il-

lustrates that the proposed method provides a good and simple alternative for fitting frailty

models for data sets with a sufficiently large number of clusters and moderate to large sample

sizes within covariate level subgroups in the clusters. In Section 4 we discuss the performance

of the method for a colorectal cancer data set. We finally present some remarks and discuss

possible further extensions in Section 5.
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2 From frailty model to linear mixed-effects model

2.1 Model formulation

Assume we have a total of N patients that come from K different centers, center i having ni

patients (N =
∑K

i=1 ni). Each patient is observed from a time zero to a failure time T 0
ij or to a

potential right censoring time Cij independent of T 0
ij . Let Tij = min(T 0

ij , Cij) be the observed

time and δij be the censoring indicator which is equal to 1 if Tij = T 0
ij and 0 otherwise. For each

patient, we also have the binary variable xij representing the treatment to which the patient

has been randomized with xij = −1 if the patient is in the control group and xij = 1 if the

patient is in the experimental group.

We consider a Cox proportional hazards model including a fixed treatment effect, a random

center effect and a random treatment effect: the conditional hazard for the jth patient in the

ith center is then given by

λij(t) = λ0(t) exp (b0i + (β + b1i)xij) , (1)

where λ0(t) represents the unspecified baseline hazard at time t, β is the fixed overall treatment

effect, b0i is the random center effect (contributing the factor exp(b0i) to the hazard) and

b1i is the random treatment effect providing information on how the treatment effect within

center i deviates from the overall treatment effect captured by the regression coefficient β. The

random effects b0i and b1i are assumed to follow zero-mean normal distributions. The variance-

covariance matrix of the vector of random effects bT = (b01, b11, . . . , b0i, b1i, . . . , b0K , b1K) takes

the form

G =


 σ2

0 σ01

σ01 σ2
1


⊗ IK , (2)

where ⊗ is the Kronecker product. The variance components σ2
0 and σ2

1 can be interpreted as

a measure of center and treatment effect over centers heterogeneity of the hazard; σ01 is the

covariance between the two random effects within a center.

In absence of a random treatment effect model (1) reduces to the shared frailty model

λi(t) = λ0(t) exp(b0i + βxij) = λ0(t)ui exp(βxij), (3)
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where ui = exp(b0i) is termed the frailty for center i. In absence of covariates this model further

simplifies to

λi(t) = λ0(t) exp(b0i) = λ0(t)ui. (4)

In (3) and (4) b0i, i = 1, . . . ,K, is a sample from a zero-mean normal density with variance σ2
0,

describing the heterogeneity between centers.

2.2 The transformation

With Λij(t) =
∫ t
0 λij(s)ds the cumulative hazard for the jth patient in center i, j = 1, . . . , ni

and i = 1, . . . , K, and Λ0(t) =
∫ t
0 λ0(s)ds, we easily obtain from (1) that

ln Λij(t) = lnΛ0(t) + b0i + (β + b1i)xij . (5)

Let w(.) be a weight function
(
W (t) =

∫ t
0 w(s)ds

)
satisfying w(s) ≥ 0, s ∈ [0,∞) and

∫∞
0 w(s)ds =

1. Integrating both sides in (5) with respect to the weight function we obtain

Ωij =
∫ ∞

0
lnΛij(t)dW (t) = α + b0i + (β + b1i)xij ,

with α =
∫∞
0 lnΛ0(t)dW (t). Since the patients in center i are divided, by the binary covariate

xij , in a control and a treatment group we have that Ωi0 = α + b0i − (β + b1i) (control) and

Ωi1 = α + b0i + (β + b1i) (treated). We also have that, for k = 0, 1,

Ωik =
∫ ∞

0
lnΛik(t)dW (t),

with Λi0(.), respectively Λi1(.), the cumulative hazard function shared by all control, resp.

treated, patients in group i. Following the ideas of Grigoletto and Akritas (1999), pseudo

observations for the Ωik’s can be obtained as

Ω̂ik =
∫ ∞

0
ln Λ̂ik(t)dW (t),

where Λ̂ik(.) is the estimated cumulative hazard based on the observations (Tij , δij) for all

patients in center i with, for k = 0, xij = −1 and, for k = 1, xij = 1. As concrete estimator we

use Λ̂ik(t) = − ln Ŝik(t) with Ŝi0(t) the Kaplan-Meier estimator for the control group (xij = −1):

Ŝi0(t) =
∏

j:Tij≤t,xij=−1

(
r(Tij)− d(Tij)

r(Tij)

)
,
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with r(v) the number still at risk at time v and d(v) the number of events at time v and with

Ŝi1(t) the Kaplan-Meier estimator for the experimental group (xij = 1).

In terms of the pseudo observations we now can propose the model

Ω̂ik = α + b0i + (β + b1i)xik + (Ω̂ik − Ωik) = α + b0i + (β + b1i)xik + eik (6)

with xi0 = −1 and xi1 = 1. As eik = Ω̂ik − Ωik it is clear that the random error terms do not

satisfy the homogeneity assumption (because different subclusters have different sample sizes).

In Section 2.3 we explain how to account for this heterogeneity when mixed models software is

used to fit the model. A further remark is that for the special case (4) we obtain the following

model after transformation:

Ω̂i = α + b0i +
(
Ω̂i − Ωi

)
= α + b0i + ei. (7)

For this one-way random effects model we only have one observation per center. At first glance

this leads to identifiability problems. We, however, do have estimators of the variances of the

error terms so that estimation of the variance components associated with the random center

effect is possible. More details on this is given in Section 2.3.

2.3 The error variance

In this section, we provide estimates for the variances σ2
e,ik of the random error terms in

model (6) and for the variances σ2
e,i of the random error terms in (7) (see the appendix for

the technical details). First, we will consider the general model (6). The patients of center i

are divided in two groups: the control group (k = 0) and the treatment group (k = 1). Note

that nik is the number of patients in group k of center i. Define a uniform weight function W

on the interval (A,B), where A and B are chosen such that the logarithm of the cumulative

hazard can be estimated for t ∈ (A,B) for the control and the treatment group in each center.

The variance of the error term Ω̂ik − Ωik (i = 1, . . . ,K, k = 0, 1) can then be estimated by

σ̂2
e,ik = V̂ar

(
Ω̂ik − Ωik

)

=
1

n2
ik

1
(B −A)2

∫ B

A

1
Λ̂ik(s)

∫ s

A

1
Λ̂ik(t)

∑

j: xij=k

I (0 ≤ tij ≤ t, δij = 1)(
1− 1

nik

∑
j: xij=k I (Tij < tij)

)2 dt ds

+
1

n2
ik

1
(B −A)2

∫ B

A

1
Λ̂ik(s)

∑

j: xij=k

I (0 ≤ tij ≤ s, δij = 1)(
1− 1

nik

∑
j: xij=k I (Tij < tij)

)2

∫ B

s

1
Λ̂ik(t)

dt ds.
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For model (7), we obtain in a similar way the estimated variance of the error term Ω̂i − Ωi

(i = 1, . . . , K):

σ̂2
e,i = V̂ar

(
Ω̂i − Ωi

)

=
1
n2

i

1
(B −A)2

∫ B

A

1
Λ̂i(s)

∫ s

A

1
Λ̂i(t)

ni∑

j=1

I (0 ≤ tij ≤ t, δij = 1)(
1− 1

ni

∑ni
j=1 I (Tij < tij)

)2 dt ds

+
1
n2

i

1
(B −A)2

∫ B

A

1
Λ̂i(s)

ni∑

j=1

I (0 ≤ tij ≤ s, δij = 1)(
1− 1

ni

∑ni
j=1 I (Tij < tij)

)2

∫ B

s

1
Λ̂i(t)

dt ds.

2.4 Fitting the linear mixed-effects model

To fit the transformed models (6) and (7), we use PROC MIXED in SAS. The mixed-effects

model is written as

y = Xβ + Zγ + e, (8)

where y denotes the vector of dependent variable values, β is an unknown vector of fixed effects

with known model matrix X, γ is an unknown vector of random effects with known model

matrix Z, and e is the random error vector. A key assumption is that γ and e are normally

distributed with

E


 γ

e


 =


 0

0




D

 γ

e


 =


 G 0

0 R


 .

The variance-covariance matrix of y is therefore V = ZGZT + R. To estimate the variance-

covariance components in model (8), PROC MIXED implements two likelihood-based methods:

maximum likelihood (ML) and restricted/residual likelihood (REML). We will consider the

REML method. The corresponding log likelihood function is:

lR(G,R) = −1
2

log |V| − 1
2

log |XTV−1X| − 1
2
rTV−1r− n− p

2
log 2π, (9)

where r = y − X(XTV−1X)−1XTV−1y and p is the rank of X. PROC MIXED minimizes

−2 lR(G,R) over all unknown parameters using a ridge-stabilized Newton-Raphson algorithm.

For model (7), yT =
(
Ω̂1, Ω̂2, . . . , Ω̂K

)
, X = 1K , γT = (b01, b02, . . . , b0K), G = σ2

0IK and

R = diag(σ2
e,1, . . . , σ

2
e,K). As already mentioned, we only have one observation per level in
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model (7). To be able to estimate σ2
0, we first estimate σ2

e,1, . . . , σ
2
e,K as explained in Section 2.3.

In the PARMS statement of PROC MIXED, initial values for the covariance parameters can be

specified. We choose an arbitrary initial value for σ2
0. The initial values for the error variances

are chosen to be σ̂2
e,1, . . . , σ̂

2
e,K . By using the option EQCONS, the initial residual variances

will be held constant during the estimation procedure. Maximization of (9) over σ2
0 gives an

estimate for the heterogeneity σ2
0. The following SAS program fits model (7) to the pseudo

data for 20 clusters:

proc mixed data=pseudodata;

class cluster;

model omegaihat= ;

random cluster;

repeated/group=cluster;

parms /parmsdata=parmsdataset eqcons= 2 to 21;

run;

where parmsdataset is a SAS data set that contains the initial values for σ2
0, σ2

e,1, . . . , σ
2
e,K .

For model (6), yT =
(
Ω̂10, Ω̂11, Ω̂20, Ω̂21, . . . , Ω̂K0, Ω̂K1

)
, X is the model matrix that contains

the xik’s (i = 1, . . . , K and k = 0, 1), γT = bT and G is as defined in (2). Further, R =

diag(σ2
e,10, σ

2
e,11, . . . , σ

2
e,K0, σ

2
e,K1). The error covariance matrix R can be estimated as explained

in Section 2.3. By maximizing (9) over G in PROC MIXED while fixing the error variances as

described above, we obtain estimates for σ2
0, σ2

1 and σ01.

To obtain estimates of β and γ, the mixed model equations are solved (Henderson, 1984). The

solutions can be written as β̂ = (XT V̂−1X)−1XT V̂−1y and γ̂ = ĜZT V̂−1(y −X β̂) .

3 Simulations

We study the performance of the proposed method by using a simulation study. As a simulation

model we consider the setting of a multicenter clinical trial. First, we consider the special case

in (4) where there is only a random center effect. We compare the results obtained by the pro-

posed method with those obtained by the penalized partial likelihood approach (Therneau and

Grambsch, 2000). We use ‘coxph’ in S-Plus 7.0.6 for the penalized partial likelihood inference.

The precision of the parameter estimates is investigated for a varying number of clusters and
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number of observations per cluster, the percentage of censored observations, the size of σ2
0 and

the value of the baseline event rate λ0(t) (which we assume constant in time for simplicity).

We also discuss the robustness of the proposed method against model misspecification. Next,

the general model (1) is considered. For this model, we allow for correlation between b0i and

b1i. Also here we compare the results obtained by the proposed method with those based on

the penalized partial likelihood approach (Ripatti and Palmgren, 2000) using ‘coxme’ in S-Plus

7.0.6 for the likelihood inference. We further study the effect of the size of σ2
0 and σ2

1 on the

precision of the parameter estimates.

3.1 Description of the simulations

We assume a constant sample size per cluster ni = n, for i = 1, . . . , K. For each parameter

setting (K, n, λ0, σ
2
0, σ01, σ

2
1), 500 data sets are generated from model (1), assuming a constant

baseline hazard. Given a particular parameter setting, observations for a particular data set

are generated in the following way. First, K random center effects b01, b02, . . . , b0K and K

random treatment effects b11, b12, . . . , b1K are generated from a normal distribution with mean

0 and variance-covariance matrix G, as in (2). The time to event for each patient is randomly

generated from an exponential distribution with parameter λij(t) = λ0 exp (b0i + (β + b1i)xij),

where xij is generated from a Bernoulli distribution with success probability 0.5. The censoring

time for each patient is randomly generated from a uniform distribution, so that approximately

30% censoring is obtained. For each data set, pseudo-data Ω̂ik are generated through the model

transformation described in Section 2.2 by using a uniform weight function w(.) on the interval

(A,B), chosen so that 0 < Ŝik(t) < 1 for t ∈ (A,B). For each cluster i, the estimated variance

of Ω̂ik−Ωik is computed as explained in Section 2.3. To fit model (6), we use the SAS procedure

PROC MIXED as explained in Section 2.4. For each data set we obtain an estimate for β, σ2
0,

σ2
1 and σ01. We consider how the parameter settings compare the precision of β̂, σ̂2

0, σ̂2
1 and

σ̂01 for the different parameter settings.

For the special case of model (4), the data are generated as explained above with β = 0, σ2
1 = 0

and σ01 = 0. In this case, we consider two censoring settings: moderate censoring (around

30%) and heavy censoring (around 60%).

To study the robustness of the proposed method against model misspecification, the data are

generated assuming that the frailties u1 = exp(b01), . . . , uK = exp(b0K) are gamma distributed
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with mean E(Ui) = e(
1
2
σ2
0) and variance V ar(Ui) = eσ2

0

(
eσ2

0 − 1
)
. This corresponds to random

effects b0i with mean 0 and variance σ2
0. For each data set, pseudo data Ω̂i are generated

as explained above. We fit model (4) assuming, incorrectly, that the random effects b0i are

normally distributed with mean 0 and variance σ2
0.

3.2 The choice of the parameters

3.2.1 Frailty model with a random center effect

For the concrete simulation, we take 20, 50, and 100 centers with 50 or 100 patients per center.

The parameter values λ0 and σ2
0 in both settings are chosen in such a way that a different

magnitude of spread in the median time to event from center to center is induced. The median

time to event TM is the solution of exp (−λ0 exp(b0)TM ) = 0.5, with b0 zero-mean normally

distributed, i.e., TM = log 2
λ0 exp(b0) . The magnitude of spread in the median time to event from

center to center was determined by computing the density function of TM (Figure 1). It is easy

to show that the density function fTM
(t) is given by

fTM
(t) =

1
t
√

2πσ2
0

exp


−

(
log

(
log 2
λ0t

))2

2σ2
0


 .

As true values for the event rate, we take λ0 = 0.1 and 0.5. The heterogeneity parameter is

set at σ2
0 = 0.08765 and 0.1577. To obtain these values, we use the relation between σ2

0 and

the frailty variance: V ar(Ui) = θ = eσ2
0

(
eσ2

0 − 1
)
. The values of σ2

0 correspond to a frailty

variance of θ = 0.1, resp. 0.2.

For the settings (σ2
0, λ0) = (0.08765, 0.1) and (0.1577, 0.1), there is much spread in the median

time to event over the centers. For the settings (σ2
0, λ0) = (0.08765, 0.5) and (0.1577, 0.5),

there is little spread in the median time to event over the centers, with a bigger spread for

σ2
0 = 0.1577. To study the robustness of the proposed method, we take σ2

0 = 0.3520 (θ = 0.6)

and λ0 = 0.1. Figure 2 clearly shows our motivation for choosing θ = 0.6. For θ = 0.1 we have

a situation where the gamma and the lognormal density functions are close, whereas for θ = 0.6

these densities are more apart.
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3.2.2 Frailty model with random center and treatment effects

We consider a situation with 50 centers and 200 patients per center. The baseline hazard is

assumed constant and equal to λ0 = 0.3. For the treatment effect, we use β = −0.2. These

parameter values are chosen to have a setting that corresponds to the bladder cancer data

considered in Legrand et al. (2005). In this case study, Legrand et al. investigated heterogeneity

in disease free interval due to center and treatment effect over centers in a large bladder cancer

database including data from seven randomized clinical trials. We simulate data using different

combinations of values of σ2
0 and σ2

1, varying from 0 to 0.08 (σ2
0, σ

2
1 = 0, 0.04 or 0.08). The

covariance parameter σ01 is chosen such that the correlation between b0 and b1 is equal to 0.5.

This value mimics the correlation between the random effects observed in the bladder cancer

data (Legrand et al., 2005).

3.3 Simulation results

3.3.1 Frailty model with a random center effect

Tables 1, 2, 3 and 4 present, for each parameter setting, the relative bias, the mean, the

empirical standard deviation, the median and the interquartile range computed for the 500

estimates of the variance of the random center effect. One can observe that σ2
0 is estimated

well by the proposed method if the cluster size is large enough (i.e., n = ni = 100). Both for

the penalized partial likelihood approach and the proposed method, the absolute relative bias

decreases with the increasing cluster size, and is not substantially influenced by the number of

clusters. In general, the estimates obtained by the proposed approach are on average closer to

the true value σ2
0 if the cluster size is large enough (i.e., n = ni = 100). For a smaller cluster

size (n = ni = 50), the estimates obtained by the penalized partial likelihood are more precise.

In general, the absolute relative bias increases if the amount of censoring increases. However,

if the cluster size is large enough, σ2
0 is estimated well by the proposed method. By increasing

θ from 0.1 to 0.2, the bias decreases for both methods when there is 30% censoring, except for

the penalized partial likelihood when θ = 0.2, λ0 = 0.5 and (K,n) = (20, 50).

Table 5 shows the results obtained by the penalized partial likelihood approach and the proposed

method if the ‘true’ frailties are gamma distributed with variance 0.6. The results illustrate
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that, for both methods, the point estimates of σ2
0 are biased if the model is misspecified. This

lack of robustness is also discussed in the bootstrap context by Massonnet et al. (2006). It

clearly shows the need for lack-of-fit measures for frailty models.

3.3.2 Frailty model with random center and treatment effects

In Table 6 we report, for the setting described in Section 3.2.2, the mean, the empirical standard

deviation, the median and the interquartile range computed over the 500 estimates of the fixed

treatment effect and the variance-covariance components of the random effects. We compare

the results obtained by the proposed method with those obtained by coxme in S-Plus 7.0.6.

The parameter β is in general estimated well by both methods. The bias of the fixed effect

estimates obtained by coxme is in general a bit smaller than for the proposed method. The

empirical variability of estimates of β is similar for both methods. The estimates of σ2
0, σ2

1 and

σ01 for both methods are on average comparable. The estimates produced by coxme have in

general the smallest empirical variability.

4 Case study

As an example we will analyze the data from 27 advanced colorectal cancer trials (Advanced

Colorectal Cancer Meta-Analysis Project, 1992, 1994; Meta-Analysis Group in Cancer, 1996,

1998). This study is described in Burzykowski et al. (2004). In the four meta-analyses, the

comparison was between an experimental treatment and a control treatment. In total there

are 4007 patients, 1871 (46.7 %) in the control group and 2136 (53.3 %) in the experimental

group. The number of patients per trial varies from 15 to 382 patients (the mean (median)

number of patients per trial is 149 (148)). Our analysis is based on the survival time, defined

as the time from randomization to death from any cause. Most patients have died (3591 out of

4007 patients, i.e., 89.6 %). First, we fit model (1) including a fixed treatment effect, a random

trial effect and a random treatment effect. In this model, we also take into account a possible

correlation between the two random effects within a trial. The parameter estimates, obtained

by the proposed method and by the penalized partial likelihood approach (coxme in S-Plus

7.0.6), are presented in Table 7. The point estimates for σ2
1 and σ01 are very small (almost
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zero). For this reason, we fit the shared frailty model (3) including a fixed treatment effect

and a random trial effect. The results are shown in Table 8. The estimates obtained by the

penalized partial likelihood and the transformation method are a bit different. However, the

plot of the density function of the median time to event in the control group over trials (Figure

3) shows that the shape of this density function is the same. A possible explanation for the

difference between the estimates obtained by both methods, is that only 16 out of 27 trials

have sample sizes of both the treatment and the control group larger than 50 patients. From

the simulations, we know that the accuracy of the transformation method is comparable to the

penalized partial likelihood if the cluster sizes are large enough.

We performed simulations to evaluate the performance of the proposed method in a setting

similar to the setting of the advanced colorectal cancer data set where the heterogeneity due

to treatment effect over centers is larger. To simulate data, values of the baseline hazard λ0(t)

(assumed to be constant over time λ0(t) = λ0), of the treatment effect β and of the variance

component σ2
0 are chosen to resemble the colorectal cancer data set. We also consider the same

number of trials and the same number of patients in the control and the treatment group in

each trial. We use a constant baseline hazard λ0 = 0.84, a treatment effect of β = −0.0533

and σ2
0 = 0.04. The estimate for the cumulative baseline hazard in the conditional model,

estimated by the Breslow estimator given in Duchateau et al. (2002), supports the assumption

of a constant baseline hazard (figure not shown). Further we choose σ2
1 = 0.08 and σ01 = 0.0283

(which means a correlation for b0 and b1 of 0.5 as in the simulations in section 3), so that the

values of σ2
1 and σ01 are different from zero. The censoring time for each patient is generated

from a uniform distribution so that approximately 11% censoring is obtained, as in the colorectal

cancer data. For this parameter setting, 500 data sets are generated from model (1), assuming

a constant baseline hazard. For each simulated data set, model (1) is fitted using the proposed

method and the penalized partial likelihood. In Table 9, we report the mean, the empirical

standard deviation, the median and the interquartile range computed over the 500 estimates

of the treatment effect and the variance components. The bias of the fixed effect estimates

obtained by the proposed method is on average smaller than for the penalized partial likelihood

approach. The empirical variability of the estimates of β is similar for both methods. The

estimates of the variances of the random effects obtained by the proposed method are on

average only slightly different from those obtained by the penalized partial likelihood approach.

The empirical variability of the estimates obtained by coxme is a bit smaller.
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5 Conclusions

In this paper, an alternative approach to fit frailty models is proposed. In this approach the

original problem of ‘fitting a frailty model’ is reformulated into a standard problem of ‘fitting

a linear mixed-effects model’. For this purpose, the integral of the weighted (over time) condi-

tional cumulative loghazard is considered. This integral depends in a linear way on the random

effects describing the cluster and/or the treatment effect over clusters. Using the data within a

cluster, the integral can be estimated using nonparametric estimation techniques. Considering

the estimated integrals as a response, linear mixed-effects model methodology can be applied.

Since most standard statistical packages contain procedures to fit complex linear mixed-effects

models but do often not contain procedures to fit complex frailty models, the proposed model

transformation is a useful practical way to get insight in the heterogeneity in clustered data.

The performance of the proposed method was studied by simulation. The results obtained by

the transformation method were compared with those obtained by an algorithm for the penal-

ized partial likelihood that is available in S-Plus 7.0.6. The results indicate a good performance

of the proposed method for data sets with a sufficiently large number of clusters and moderate

to large sample sizes within covariate level subgroups in the clusters.

The transformation method was illustrated using data from advanced colorectal cancer trials.

The analysis shows that the heterogeneity due to treatment effect over centers and the covari-

ance between both random effects is very small (almost zero). We also performed simulations

to evaluate the performance of the proposed method in a setting similar to the colorectal cancer

data where the heterogeneity due to treatment effect over centers is larger. A general conclu-

sion is that the estimates based on the transformation idea and the estimates obtained from

the penalized partial likelihood approach are similar.

We considered a frailty model with a binary covariate and we therefore could use the Kaplan-

Meier estimator for the survival function. A possible alternative is to use the Nelson-Aalen

estimator to estimate the cumulative hazard in a direct way. It also would be of interest to

extend the transformation idea to frailty models with a continuous covariate. We then need the

Beran estimator to estimate the survival function (Beran, 1981). From the above discussion it

is also clear that the transformation method is useful for censoring schemes that are different

from the right censoring scheme discussed so far. Indeed, the transformation idea can be used

for any censoring scheme for which a nonparametric estimator for the cumulative hazard or the

13



survival function is available (e.g., for interval-censored data, Lindsey and Ryan (1998)). These

topics will be subjects for further research.
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Appendix

To apply the method proposed in Section 2.2 we need estimated values for the error variance.

To obtain estimates we can rely on an asymptotic representation, proposed by Lo and Singh

(1986), decomposing F̂ik(t) − Fik(t) as an average of i.i.d. terms and a lower order remainder

term rik(t), where Fik is the continuous failure time distribution function for subjects in center

i with xij = k.

Let G be the censoring distribution, 1−Hik(s) = (1− Fik(s))(1−G(s)) and

Hu
ik(s) = P (Tij ≤ s, δij = 1|xij = k) =

∫ s
0 (1 − G(y−))dFik(y). It follows from Lo and Singh

(1986) that

F̂ik(t)− Fik(t) =
1

nik

∑

j: xij=k

ξik(Tij , δij , t) + rik(t),

where

ξik(Tij , δij , t) =
I (Tij ≤ t, δij = 1)

1−Hik(Tij)
−

∫ t

0

I (Tij > s)
(1−Hik(s))

2 dHu
ik(s),

for a subject in cluster i with observed information (Tij , δij) and xij = k.

By using the relationship Λik(t) = − ln (1− Fik(t)) and first order Taylor expansions, we obtain

ln Λ̂ik(t)− lnΛik(t)

∼= 1
Λik(t)

1
(1− Fik (t))

(
F̂ik(t)− Fik(t)

)

∼= 1
Λik(t)

1
Sik(t)

1
nik

∑

j: xij=k

ξik(Tij , δij , t)

14



Integrating both sides with respect to w(.) gives

Ω̂ik − Ωik

=
∫ ∞

0
ln Λ̂ik(t)dW (t)−

∫ ∞

0
lnΛik(t)dW (t)

∼= 1
nik

∑

j: xij=k

∫ ∞

0

ξik(Tij , δij , t)
Λik(t)Sik(t)

dW (t)

=
1

nik

∑

j: xij=k

ηik(Tij , δij),

with ηik(Tij , δij) =
∫∞
0

ξik(Tij ,δij ,t)
Λik(t)Sik(t) dW (t).

Noting that the function ξik(Tij , δij , t) is a conditional version (conditioned on the center i and

the subgroup with xij = k) of the function ξ in Lo and Singh (1986), it follows that for a subject

with observed information (Tij , δij) in the subgroup with xij = k:

E [ξik(Tij , δij , t)] = 0

Cov [ξik(Tij , δij , t), ξik(Tij , δij , s)] = (1− Fik(t))(1− Fik(s))
∫ t∧s

0

dHu
ik(y)

(1−Hik(y))2
.

Assume that subject l in cluster i is in the subgroup with xil = k. The asymptotic variance of

the error terms Ω̂ik − Ωik is given by

σ2
e,ik = Var(Ω̂ik − Ωik)

= Var(
1

nik

∑

j: xij=k

ηik(Tij , δij))

=
1

nik
Var(η(Til, δil))

=
1

nik
E

{∫ ∞

0

ξik(Til, δil, t)
Λik(t)Sik(t)

dW (t)
∫ ∞

0

ξik(Til, δil, s)
Λik(s)Sik(s)

dW (s)
}

=
1

nik

∫ ∞

0

∫ ∞

0

1
Λik(t)Sik(t)Λik(s)Sik(s)

Cov (ξik(Til, δil, t), ξ(Tij , δij , s)) dW (t)dW (s)

=
1

nik

∫ ∞

0

∫ ∞

0

1
Λik(t)Λik(s)

∫ s∧t

0

dHu
ik(y)

(1−Hik(y))2
dW (t)dW (s).

Let w(.) be a uniform weight function on the interval (A,B), where A and B are chosen such

that for each center the logarithm of the cumulative hazard can be estimated well for t ∈ (A,B)
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for the control and the treatment group in each center. Then

σ2
e,ik = Var

(
Ω̂ik − Ωik

)

=
1

nik

1
(B −A)2

∫ B

A

∫ s

A

1
Λik(t)Λik(s)

∫ t

0

dHu
ik(y)

(1−Hik(y−))2
dtds

+
1

nik

1
(B −A)2

∫ B

A

∫ B

s

1
Λik(t)Λik(s)

∫ s

0

dHu
ik(y)

(1−Hik(y−))2
dtds.

To obtain an estimate of the asymptotic error variance, we replace Hik(y−) and Hu
ik(y) by the

following empirical estimators:

Hu
ik(y) =

1
nik

∑

j: xij=k

I (Tij ≤ y, δij = 1)

Hik(y) =
1

nik

∑

j: xij=k

I (Tij < y) .

This gives the following estimated variances of the error terms:

σ̂2
e,ik = V̂ar

(
Ω̂ik − Ωik

)

=
1

n2
ik

1
(B −A)2

∫ B

A

1
Λ̂ik(s)

∫ s

A

1
Λ̂ik(t)

∑

j: xij=k

I (0 ≤ tij ≤ t, δij = 1)(
1− 1

nik

∑
j: xij=k I (Tij < tij)

)2 dt ds

+
1

n2
ik

1
(B −A)2

∫ B

A

1
Λ̂ik(s)

∑

j: xij=k

I (0 ≤ tij ≤ s, δij = 1)(
1− 1

nik

∑
j: xij=k I (Tij < tij)

)2

∫ B

s

1
Λ̂ik(t)

dt ds.
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Figure 1: Density function of the median time to event over centers .
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Figure 2: Density function for the lognormal and the gamma distribution .
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Table 1: Relative bias, mean, empirical standard deviation, median and interquartile range of

estimated values σ̂2
0 over the 500 simulations; true σ2

0 = 0.08765 (θ = 0.1), λ0 = 0.5; first line

for coxph, second line for PROC MIXED; left part 30% censoring, right part 60 % censoring.

(K, n) Rel. Mean Emp. Median IQR Rel. Mean Emp. Median IQR

bias std bias std

(100,100) -0.0314 0.0849 0.0152 0.0850 0.0202 -0.0143 0.0864 0.0169 0.0867 0.0225

-0.0257 0.0854 0.0148 0.0848 0.0207 -0.0177 0.0861 0.0162 0.0860 0.022

(100,50) -0.0382 0.0843 0.0174 0.0841 0.0228 -0.0280 0.0852 0.0198 0.0846 0.025

-0.0975 0.0791 0.0168 0.0780 0.0214 -0.1135 0.0777 0.0197 0.0772 0.0271

(50,100) -0.0097 0.0868 0.0227 0.0847 0.0297 -0.0234 0.0856 0.0223 0.0852 0.0286

0.0029 0.0879 0.0223 0.0865 0.0285 -0.0177 0.0861 0.0225 0.0851 0.0300

(50,50) -0.0188 0.0860 0.0240 0.0838 0.0337 -0.0462 0.0836 0.0277 0.0818 0.0354

-0.0667 0.0818 0.0248 0.0788 0.0328 -0.1204 0.0771 0.0274 0.0756 0.0341

(20,100) -0.0439 0.0838 0.0327 0.0795 0.0463 -0.0747 0.0811 0.0339 0.0775 0.0432

-0.0154 0.0863 0.0347 0.0819 0.0483 -0.0382 0.0843 0.0355 0.0796 0.0443

(20,50) -0.0690 0.0816 0.0343 0.0781 0.0452 -0.0451 0.0837 0.0434 0.0787 0.0555

-0.1010 0.0788 0.0365 0.0745 0.0493 -0.1067 0.0783 0.0436 0.0701 0.0559
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Table 2: Relative bias, mean, empirical standard deviation, median and interquartile range of

estimated values σ̂2
0 over the 500 simulations; true σ2

0 = 0.1577 (θ = 0.2), λ0 = 0.5; first line for

coxph, second line for PROC MIXED; left part 30% censoring, right part 60 % censoring.

(K, n) Rel. Mean Emp. Median IQR Rel. Mean Emp. Median IQR

bias std bias std

(100,100 -0.0120 0.1558 0.0264 0.1558 0.0335 -0.0292 0.1531 0.0253 0.1533 0.0329

-0.0120 0.1558 0.0261 0.1553 0.0348 -0.0323 0.1526 0.0253 0.1520 0.0330

(100,50) -0.0355 0.1521 0.0272 0.1511 0.0368 -0.0406 0.1513 0.0282 0.1501 0.0356

-0.0938 0.1429 0.0263 0.1416 0.0337 -0.1046 0.1412 0.0281 0.1399 0.0377

(50,100) -0.0184 0.1548 0.0348 0.1528 0.0470 -0.0374 0.1518 0.0375 0.1511 0.0490

-0.0101 0.1561 0.0351 0.1537 0.0474 -0.0317 0.1527 0.0382 0.1524 0.0491

(50,50) -0.0146 0.1554 0.0388 0.1526 0.0515 -0.0609 0.1481 0.0400 0.1450 0.0497

-0.0590 0.1484 0.0392 0.1455 0.0518 -0.1141 0.1397 0.0396 0.1365 0.0521

(20,100) -0.0140 0.1555 0.0536 0.1478 0.0705 -0.0615 0.1480 0.0561 0.1441 0.0776

0.0184 0.1606 0.0578 0.1528 0.0788 -0.0247 0.1538 0.0593 0.1503 0.0839

(20,50) -0.0704 0.1466 0.0576 0.1427 0.0735 -0.0653 0.1474 0.0668 0.1384 0.0816

-0.0900 0.1435 0.0610 0.1363 0.0834 -0.0964 0.1425 0.0672 0.1338 0.0850

20



Table 3: Relative bias, mean, empirical standard deviation, median and interquartile range of

estimated values σ̂2
0 over the 500 simulations; true σ2

0 = 0.08765 (θ = 0.1), λ0 = 0.1; first line

for coxph, second line for PROC MIXED; left part 30% censoring, right part 60 % censoring.

(K, n) Rel. Mean Emp. Median IQR Rel. Mean Emp. Median IQR

bias std bias std

(100,100) -0.0222 0.0857 0.0146 0.0850 0.0194 -0.0200 0.0859 0.0170 0.0850 0.0226

-0.0177 0.0861 0.0146 0.0854 0.0204 -0.0234 0.0856 0.0167 0.0844 0.0234

(100,50) -0.0131 0.0865 0.0163 0.0856 0.0215 -0.0188 0.0860 0.0190 0.0859 0.0272

-0.0793 0.0807 0.0164 0.0792 0.0215 -0.1010 0.0788 0.0189 0.0781 0.0263

(50,100) -0.0051 0.0872 0.0204 0.0865 0.0276 -0.0280 0.0852 0.0232 0.0844 0.0322

0.0017 0.0878 0.0210 0.0873 0.0294 -0.0234 0.0856 0.0238 0.0843 0.0321

(50,50) -0.0200 0.0859 0.0245 0.0847 0.0323 -0.0211 0.0858 0.0281 0.0860 0.0386

-0.0793 0.0807 0.0238 0.0807 0.0294 -0.0975 0.0791 0.0286 0.0785 0.0393

(20,100) -0.0416 0.0840 0.0303 0.0824 0.0438 -0.0941 0.0794 0.0339 0.0753 0.0447

-0.0086 0.0869 0.0319 0.0855 0.0461 -0.0645 0.0820 0.0354 0.0782 0.0468

(20,50) -0.0690 0.0816 0.0355 0.0795 0.0490 -0.0747 0.0811 0.0397 0.0775 0.0517

-0.0998 0.0789 0.0373 0.0747 0.0498 -0.1409 0.0753 0.0405 0.0706 0.0536
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Table 4: Relative bias, mean, empirical standard deviation, median and interquartile range of

estimated values σ̂2
0 over the 500 simulations; true σ2

0 = 0.1577 (θ = 0.2), λ0 = 0.1; first line for

coxph, second line for PROC MIXED; left part 30% censoring, right part 60 % censoring.

(K, n) Rel. Mean Emp. Median IQR Rel. Mean Emp. Median IQR

bias std bias std

(100,100) -0.0127 0.1557 0.0265 0.1553 0.0338 -0.0120 0.1558 0.0276 0.1545 0.0343

-0.0127 0.1557 0.0260 0.1553 0.0346 -0.0127 0.1557 0.0272 0.1537 0.0350

(100,50) -0.0082 0.1564 0.0265 0.1547 0.0347 -0.0431 0.1509 0.0290 0.1500 0.0381

-0.0634 0.1477 0.0267 0.1442 0.0379 -0.1053 0.1411 0.0296 0.1405 0.0403

(50,100) -0.0152 0.1553 0.0345 0.1556 0.0461 -0.0520 0.1495 0.0357 0.1429 0.0450

-0.0108 0.1560 0.0354 0.1551 0.0443 -0.0476 0.1502 0.0370 0.1441 0.0475

(50,50) -0.0342 0.1523 0.0390 0.1470 0.0522 -0.0311 0.1528 0.0429 0.1487 0.0557

-0.0755 0.1458 0.0398 0.1422 0.0520 -0.0881 0.1438 0.0436 0.1419 0.0565

(20,100) -0.0317 0.1527 0.0538 0.1476 0.0672 -0.0653 0.1474 0.0571 0.1407 0.0834

0.0038 0.1583 0.0573 0.1514 0.0734 -0.0317 0.1527 0.0599 0.1479 0.0880

(20,50) -0.0330 0.1525 0.0568 0.1445 0.0820 -0.0977 0.1423 0.0635 0.1338 0.0845

-0.0476 0.1502 0.0595 0.1406 0.0841 -0.1344 0.1365 0.0654 0.1287 0.0809

Table 5: Relative bias, mean, empirical standard deviation, median and interquartile range of

estimated values σ̂2
0 over the 500 simulations; ‘True’ gamma frailties, σ2

0 = 0.3520 (θ = 0.6),

λ0 = 0.1; first line for coxph, second line for PROC MIXED; 30 % censoring.

(K, n) Rel. Mean Emp. Median IQR

bias std

(100,100) 0.4102 0.4964 0.0862 0.4913 0.1128

0.3226 0.4656 0.0740 0.4588 0.0945

(50,100) 0.3989 0.4925 0.1190 0.4846 0.1683

0.3142 0.4626 0.1047 0.4563 0.1413

(20,100) 0.3563 0.4774 0.1825 0.4450 0.2240

0.3422 0.4725 0.1714 0.4495 0.2297
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Table 6: Mean, empirical standard deviation, median, interquartile range of the estimated

values over the 500 simulations; 50 centers, 200 patients per center (100 patients in control and

treatment group); λ0 = 0.3, β = −0.2; left part for PROC MIXED, right part for coxme.

True Mean Emp. Median IQR Mean Emp. Median IQR

std. std.

β -0.20 -0.2010 0.0124 -0.2010 0.0170 -0.2001 0.0120 -0.2001 0.0156

σ2
0 0 0.0005 0.0009 0.0000 0.008 0.0017 0.0011 0.0016 0.0017

σ2
1 0 0.0006 0.0009 0.0000 0.0009 0.0075 0.0062 0.0100 0.0128

σ01 0 0.0002 0.0014 0.0002 0.0020 0.0027 0.0024 0.0024 0.0050

β -0.20 -0.1996 0.0423 -0.1983 0.0567 -0.2005 0.0422 -0.1998 0.0545

σ2
0 0 0.0006 0.0011 0.0000 0.0009 0.0007 0.0010 0.0000 0.0010

σ2
1 0.08 0.0801 0.0177 0.0781 0.0244 0.0790 0.0127 0.0800 0.0036

σ01 0 -0.0003 0.0048 -0.0003 0.0061 0.0011 0.0016 0.0008 0.0012

β -0.20 -0.1997 0.0407 -0.2014 0.0540 -0.2001 0.0404 -0.2011 0.0513

σ2
0 0.04 0.0393 0.0102 0.0387 0.0138 0.0394 0.0096 0.0388 0.0132

σ2
1 0.08 0.0788 0.0179 0.0773 0.0240 0.0777 0.0168 0.0766 0.0218

σ01 0.0283 0.0277 0.0102 0.0272 0.0130 0.0276 0.0097 0.0267 0.0123

β -0.20 -0.1993 0.0135 -0.1993 0.0194 -0.1995 0.0123 -0.1996 0.0180

σ2
0 0.08 0.0795 0.0181 0.0792 0.0233 0.0797 0.0124 0.0800 0.0010

σ2
1 0 0.0005 0.0010 0.0000 0.0006 0.0006 0.0009 0.0001 0.0008

σ01 0 0.0000 0.0048 0.0002 0.0066 0.0016 0.0014 0.0017 0.0021

β -0.20 -0.2009 0.0331 -0.1997 0.0446 -0.2006 0.0321 -0.1987 0.0418

σ2
0 0.08 0.0805 0.0182 0.0796 0.0253 0.0799 0.0179 0.0788 0.0248

σ2
1 0.04 0.0399 0.0096 0.0395 0.0133 0.0397 0.0092 0.0387 0.0130

σ01 0.0283 0.0290 0.0105 0.0284 0.0135 0.0287 0.0102 0.0280 0.0126

β -0.20 -0.1986 0.0430 -0.1999 0.0587 -0.1996 0.0433 -0.2018 0.0581

σ2
0 0.08 0.0776 0.0173 0.0760 0.0218 0.0776 0.0169 0.0757 0.0225

σ2
1 0.08 0.0794 0.0174 0.0791 0.0220 0.0790 0.0168 0.0790 0.0230

σ01 0.04 0.0393 0.0142 0.0386 0.0186 0.0394 0.0139 0.0394 0.0174
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Table 7: Results of the analysis of the survival time of the patients included in the colorectal

cancer trials.
Method β σ2

0 σ2
1 σ01

PROC MIXED -0.0458 0.0476 0.0000 -0.0084

coxme -0.0533 0.0301 3.34 ×10−10 1.78 ×10−11

Table 8: Results of the analysis of the survival time of the patients included in the colorectal

cancer trials.
Method β σ2

0

PROC MIXED -0.0558 0.0438

coxph -0.0534 0.0376

Figure 3: Density function of the median time to event over centers for the colorectal cancer

data.
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Table 9: Mean, empirical standard deviation, median, interquartile range of the estimated

values over the 500 simulations; the same design as the colorectal cancer data; λ0 = 0.84; left

part for PROC MIXED, right part for coxme.

True Mean Emp. Median IQR Mean Emp. Median IQR

std. std.

β -0.0533 -0.0537 0.0608 -0.0562 0.0877 -0.0588 0.0607 -0.0613 0.0863

σ2
0 0.04 0.0378 0.0151 0.0357 0.0221 0.0400 0.0146 0.0387 0.0208

σ2
1 0.08 0.0743 0.0269 0.0717 0.0338 0.0775 0.0255 0.0743 0.0332

σ01 0.0283 0.0263 0.0150 0.0256 0.0201 0.0276 0.0147 0.0259 0.0199
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