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Abstract

The exact Fisher information matrix of a Gaussian vector autoregressive-moving average
(VARMA) process has been considered for a time series of length N in relation with the ex-
act maximum likelihood estimation method. In this paper it is shown that the Gaussian exact
Fisher information matrix converges to the asymptotic Fisher information matrix when N goes
to in…nity.
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1 Introduction
The exact Fisher information matrix of a Gaussian vector autoregressive-moving average (VARMA)
process has been considered for a time series of length N in relation with the exact maximum likelihood
estimation method. In this paper it is shown that the Gaussian exact Fisher information matrix
converges to the asymptotic Fisher information matrix when N goes to in…nity.

Several recent papers have discussed either the asymptotic Fisher information matrix (e.g. Godol-
phin and Bane, 2005) or the exact Fisher information matrix (e.g. Terceiro, 2000) but we have seen no
indication of the result mentioned in the previous paragraph. Only Zadrozny (1989, 1992) mentions
the two information matrices, exact and asymptotic, but we could not see a convergence between the
two expressions. On the contrary, the asymptotic Fisher information is de…ned as the limit of the
exact Fisher information.

Consider fyt; t 2 Zg, Z the set of integers, a Gaussian vector autoregressive-moving average (VARMA)
process of order (p; q) in dimension n, which satis…es the vector di¤erence equation

pX

j=0

®j yt¡j =
qX

j=0

¯j "t¡j ; t 2 Z (1)

where f"t; t 2 Zg is the innovation process, a sequence of independent zero mean n-dimensional ran-
dom variables each having positive de…nite covariance matrix §, and where ®j ; ¯j 2 Rn£n are the
parameter matrices, and ®0 ´ ¯0 ´ In.

We use L to denote the backward shift operator on Z, equation, for example L yt = yt¡1, then (1)
can be written as

®(L) yt = ¯(L) "t (2)

where

®(z) =
pX

j=0

®j zj ; ¯(z) =
qX

j=0

¯j zj

are the associated matrix polynomial. We further assume the eigenvalues of the matrix polynomials
®(z) and ¯(z) to be outside the unit circle so the elements of ®¡1(z) and ¯¡1(z) can be written as
power series in z. These eigenvalues are obtained by solving the scalar polynomials det(®(z)) = 0
and det(¯(z)) = 0, where det(X) is the determinant of X. We assume that the matrix polynomials
®(z) and ¯(z) have no common eigenvalues so that non-singularity of Fisher’s information matrix is
guaranteed (e. g. Klein et al., 2005).

Let fyt; t = 1; :::; Ng be a time series generated by the VARMA process (2) and let the set of
parameters # = (#1; ¢ ¢ ¢ ; #`)>, where > denotes transposition and ` = n2(p + q). The following
de…nition of the parameter vector # is introduced: # = vec

©
®1; ®2; :::; ®p; ¯1; ¯2; :::; ¯q

ª
, where vec

X as usual stands for the vector resulting from stacking the columns of a matrix X on top of each
other.

2 State space form and Fisher information matrices
Although it is not strictly needed, the exact Fisher information of a Gaussian process is often intro-
duced using a state space representation (e.g. Hannan and Deitsler, 1988) using a vector of the state
variables xt 2 Rm, t 2 N. Among other possibilities, using a speci…c basis in the state space, the
following state space structure is considered

xt+1 = Áxt + F"t (3)
yt = Hxt + "t; (4)
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where "t 2 Rn is a Gaussian white noise process with E("t) = 0, E
¡
"t">

t
¢

= § > 0, and

Á =

0
BBBB@

®1 In 0n

®2 0n
. . .

...
. . . In

®h 0n ¢ ¢ ¢ 0n

1
CCCCA

; F =

0
BBB@

®1 ¡ ¯1
®2 ¡ ¯2

...
®h ¡ ¯h

1
CCCA ; and H> =

0
BBB@

In
0n
...

0n

1
CCCA ; (5)

and h = max(p; q), ®i = 0n; i > p, ¯i = 0n; i > q, and consequently m = hn.
In Klein and Neudecker (2000) an appropriate representation at the vector-matrix level for the

exact Fisher information matrix J (#) is set forth. It is based on the multivariate version of minus
the logarithm of the likelihood of the system described by (3) and (4) and is given by

l(#) = ¡ log L(#) =
NX

t=1

½
n
2

log 2¼ +
1
2

log det Bt +
1
2
ey>
t B¡1

t eyt

¾
.

where ey and Bt are de…ned below. The exact information matrix is then

JN(#) = E @2l(#)
@#@#> ,

to obtain

JN(#) =
NX

t=1

"
1
2

µ
@vecBt

@#>

¶>
(Bt  Bt)

¡1
µ

@vecBt

@#>

¶
+ E

(µ
@eyt

@#>

¶>
B¡1

t

µ
@eyt

@#>

¶)#
. (6)

The operator  represents the Kronecker product of two matrices. The sample innovation eyt and its
covariance matrix Bt = E[eytey>

t ] are obtained through the Kalman …lter equations, see e.g. [1]

bytjt¡1 = Hx̂tjt¡1

eyt = yt ¡ bytjt¡1

x̂t+1jt = (Á ¡ KtH) x̂tjt¡1 + Ktyt

Kt =
¡
ÁPtH>¢ ¡

HPtH>¢¡1

Pt+1 = ÁPtÁ> + Q ¡
¡
ÁPtH>¢ ¡

HPtH>¢¡1
³
HPtÁ>

´
.

Note that Mélard and Klein (1994), Zadrozny and Mittnik (1994), Terceiro (1990, 2000) have
introduced the exact Fisher information matrix for VARMA processes or more general dynamic sys-
tems. They have displayed it at a scalar level, and sometimes used the more e¢cient alternative
Chandrasekhar recurrences instead of Kalman …lter recurrences.

The asymptotic Fisher information matrix is more standard in statistics, econometrics and statis-
tical signal processing, e.g. Whittle (1953), Friedlander (1984). For very general statistical models,
under some regularity conditions, it is proved that the asymptotic covariance matrix of a maximum
likelihood estimator, or any asymptotically equivalent estimator, is the inverse of the asymptotic
Fisher information matrix. For the model de…ned by (1), it is given by

F(#) = E
(µ

@"
@#

¶>
§¡1

µ
@"
@#

¶)
, (7)

where we have omitted subscript t because the expectation does not depend on t. In Klein (2000),
equivalence of (7) with a vector-matrix level version of Whittle (1953) is proven.
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3 Main result
Theorem 1 For a VARMA model under the conditions given in Section 1, given parametrization (5)
inserted in (3) and (4) and using the expressions (6) and (7), we have

lim
N!+1

N¡1JN(#) = F(#):

Proof. In addition to the ARMA and state-space forms, there is, at least in the stationary case,
a direct representation of yt in terms of an in…nite sequence of lagged "t. Indeed, (3) can be written
as

(In ¡ ÁL)xt = F"t¡1: (8)

Clearly, (8) is a vector di¤erence equation. Imposing the stability condition ¸max(Á) < 1, where
¸max(Á) denotes the eigenvalues of the matrix Á of maximum modulus, one solution is given by

xt =
1X

j=1

Áj¡1F"t¡j : (9)

Hence the corresponding yt solution is given by:

yt =
1X

j=1

HÁj¡1F"t¡j + "t: (10)

Under the stability assumption every solution of (I ¡ ÁL)xt = 0 satis…es xt ¡! 0 for t ¡! +1.
Therefore, every solution of (8) converges to (9) for t ¡! +1 which implies, of course that every
solution yt of (3) and (4) converges to (10) for t ¡! +1. The solution (10) is called the steady state
solution. Since, yt converges to the steady state solution given by (10) as t ¡! +1, it follows that
when t ¡! +1 the sample innovation eyt converges to "t which implies also that Bt converges to §.
Indeed from (10) we can easily check that eyt = yt ¡bytjt¡1 = "t. Now, as t ¡! +1, the …rst sum in (6)
multiplied by N¡1 converges to zero since Bt will be independent of # as t ¡! +1. The second term
of (6) multiplied by N¡1 converges to the right hand side of (7) which e¤ectively does not depend on
t. Using Toeplitz Lemma (e.g. Loève, 1977, p. 250) with weights N¡1, that shows that the exact
Fisher information matrix converges to the asymptotic Fisher information matrix when N ¡! +1.
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