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Abstract

Autoregressive-moving average (ARMA) models with time-dependent
coefficients and marginally heteroscedastic innovation variance provide a
natural alternative to stationary ARMA models. Several theories have
been developed in the last ten years for parametric estimation in that
context.

In this paper, we focus on autoregressive (AR) models and consider
our AM theory in that case. We provide also an alternative theory for
AR(p) processes which relies on a ¢-mixing property. We compare the
Dahlhaus theory for locally stationary processes and the Bibi and Franq
theory, for cyclically time-dependent models, with our own theory. With
respect to existing theories, there are differences in the basic assumptions
(e.g. on derivability with respect to time or with respect to parameters)
that are better seen on specific cases like the AR(1) process. There are
also differences in terms of asymptotics as shown by an example. Our
opinion is that the field of application can play a role here. The paper is
completed by examples on real series and by simulation results that show
that the asymptotic theory can be used even for short series (less than 50
observations).
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1. Introduction

Autoregressive-moving average (ARMA) models with time-dependent coeffi-
cients and marginally heteroscedastic innovation variance provide a natural al-
ternative to stationary ARMA models. Several theories have been developed in
the last ten years for parametric estimation in that context.

To simplify our presentation, let us consider the case of the AR(1) process

with a time-dependent coefficient QSE"), defined by

wp = q&l(t")wt,l + ey, (1.1)

where the (e;,t € N) is an independent white noise process, consisting of in-
dependent random variables, not necessarily identically distributed, with mean
zero and with standard deviation o\ > 0. The coefficient ¢{™ and o™ de-
pend on time ¢ and on n, the series length. Consider a triangular sequence of
observations w(™ = (w§"),w§"), ...,fw,(zn)) of the process.

The AR(1) model with time-dependent coefficient has been considered by
Wegman (1974), Kwoun and Yajima (1986), Tjgstheim (1984). Hamdoune
(1995) and Dahlhaus (1997) have extended the results to autoregressive processes
of order p. Azrak and Mélard (2006), denoted AM, and Bibi and Franck (2003),
denoted BF, have considered autoregressive-moving average (ARMA) models.
The former accept that coefficients depend not only on ¢, but also on n. Besides,
although their basic assumptions are different, their asymptotics are somewhat
similar but differ considerably from those of Dahlhaus. We will therefore com-
pare these approaches on autoregressive models.

Two approaches can be sketched for asymptotics within nonstationary processes
(see Dahlhaus (1996b)). Approach 1 consists in analysing the behaviour of the
process when n tends to infinity. That assumes some generating mechanism
in the background which remains the same over time. Two examples can be
mentioned: processes with periodically changing coefficients and cointegrated
processes. It is in that context that AM have established asymptotic properties
for parameters estimates in the case where n goes to infinity. Approach 2 for
asymptotics within nonstationary processes, used by Dahlhaus (1997) and many
others, consists in determining how estimates that are obtained for a finite and
mostly also fixed sample size behave. This is the setting for describing in general
the properties of a test under local alternatives (where the parameter space is
rescaled by 1/4/n), or in nonparametric regression.

This is the framework considered in the papers of Dahlhaus himself that
we will briefly summarise below. As a consequence, the assumptions made by
Dahlhaus in the locally stationary theory are quite different from those of AM
and BF, for example because of the different nature of the asymptotics. Indeed,
there is an assumption of local stationarity which imposes continuity with re-
spect to time and even differentiability. But also, n is not simply increased to
infinity. The coefficients, like qﬁgn)are considered as a function of rescaled time
t/n. Therefore, everything happens as if time is rescaled to the interval [0;1].

Suppose ¢£n) = th/n and at(") = 64/ , where by and G, 0 < u < 1, depend
on a finite number of parameters, are differentiable functions of u and such that
|u| < 1 for all u. The model is written as

wgn) = qgt/nwt(f)l + ey, (1.2)



In section 2, we specialise the assumptions of AM to AR(p) processes and
consider the special case of an AR(1) process. This is illustrated in Section 3 by
examples on real series and by simulation results. In Section 4, we provide an
alternative theory for AR(p) processes which relies on a ¢-mixing property. In
Section 5, we compare the Dahlhaus theory for locally stationary processes with
our own theory. This is partly explained thanks to examples. The differences
in the basic assumptions are emphasised. Similarly, in Section 6, a comparison
is presented with the BF (Bibi and Francq, 2003) approach.

2. Autoregressive processes with time-dependent
coefficients

Let us consider the AM theory! in the special case of AR(p) processes. We want
to see if simpler conditions can be derived for the treatment of pure autoregres-
sive processes.

We consider a stochastic process w = (w¢,t € N) defined on a probability
space (2, F, Pg), with values in R, whose distribution depends on a vector § =
(81, ..., Br) of unknown parameters to be estimated, with 8 lying in an open set
B of an Euclidian space R” . The true value of 3 is denoted by ° .

Definition 1

The process (w;,t € N) is called an autoregressive process of order p, with
time-dependent coefficients, if, and only if, it satisfies the equation

P
wr = Z ¢§Z)wt_k + €t, (21)
k=1

where (e;,t € N) are independent random variables with mean 0 and standard
deviation o\ = o(h{™)1/2 where h{" is a deterministic strictly positive func-

tion of time. The initial values w;,t < 1, are supposed to be equal to zero.

More precisely, the r-dimensional vector [ contains all the parameters to
be estimated, those in ¢£Z),k = 1,...,p, and those in {Ut(")}2 = a2h§"> > 0
hence in h§"> but not the scale factor o which is estimated separately. Because
of the possible dependency of ¢£Z> and h{™ with respect to n, we consider a
triangular sequence (w\™,¢ = 1,...,n) which is solution of (2.1). Let qﬁgz) (B) be
the parametric coefficient with ¢§Z) (B°) = EZ), and similarly A" (8°) = A{"™.
Let €™ () be the residual for a given /3 :

() = wi™ =37 ¢l (Byw ™). (2.2)
k=1

Thanks to the assumption about initial values and by using (2.1) recurrently,

1We have improved the presentation in the light of the BF paper, especially by making it
clear that some coefficients depend on both 8 and 3°.



it is possible to write the pure moving average representation of the process:

t—1
= (8% e, (2.3)

k=0

(see Azrak and Mélard, 2006, for a recurrence formula).

Let F; be the o-field generated by the (ws ) ,8 < t), hence by (es,s < t),
which explains why a superscript (™) is missing, and Fy = {0,9Q} . To simplify
the presentation, we denote Ego(-(3)) = {Es(-(8))}s=po and similarly vargo(-)
and covgo(-) .

We are interested in the Gaussian pseudo-maximum likelihood estimator

B = argmingp- Zn: [log{gt") (B)}2 + (ZE(%((?))Q]‘ (2.4)

Denote a,ﬁ’” (8) the expression between square brackets in (2.4). Note that the

first term of a,ﬁ’” (8) will sometimes be omitted, corresponding to a weighted

least squares method, especially when at( (8) does not depend on the parame-
ters, or even ordinary least squares when a( )(B) does not depend on ¢.
We need expressions for the derivatives of egn)(ﬁ) with respect to § using

(2.2). The first derivative is

aegn) a¢t ("
9B; Z aﬂl —k (25)

1=1,...,r. It will be convenient to write it as a pure moving average

TL
Oe;

351 ——Zwt (8, 8¢} (2:6)

and similarly for the second and third order derivatives

32 . .
aﬁzaﬁj Z¢£1J)k 8, 8%l (2.7)
e, (8)

S =~ X 0. e 29

fori, j,l =1,...,r, where the coefficients 1/)22) (8, 8°), Q/JEZ.)k (B,°) and wgfj)lk (8, 8%
are obtained by the following relations

k o gn) 82 %
tzlc (ﬁ ﬁO) Z ¢auﬂ(ﬁ) t—u,k— u(ﬁO) tz]k ﬂ ﬂo Z (;; 6ﬁ t u,k— u(ﬂo)’
u=1 t Lt

0 0
z]lk(IB /8 Zaﬂ,aﬁ]aﬂ t— uk u(IB)



Under all the assumptions of Theorem 2’ of Azrak and Mélard (2006) see

Appendlx 1, the estimator 3(™ converges in probability to 8° and \/n (ﬂ(" —
Bo) =L N(O V(BY)~IW(B°)V(B°)~1) when n — oo where there exists a matrix
W (B°) whose elements are defined, see (2.4), with 7 denoting transposition, by

<5at(ﬂ) &lt(ﬂ)) .

(2.9)

Example. The AR(1) process

Let us consider an AR(1) process defined by (1.1). We have for the 1/)]5,7:) (8°) in
(2.3)

" (8,8 = H¢> k=1,..,t—1,

where a product for an empty set of indices is set to one. Similarly

dy" 0, n
tzk(ﬂ 60) ¢85(6) t— lk: 1(60 ¢aﬂ H¢()

@ o aon B B) on 020 B) T ) a0
¢tijk(ﬂ’ﬂ )_ aﬁzaﬂ] t lk 1(5 )_ aﬁzaﬂ] g¢t—l(ﬂ )a

and an analogous expression for order 3.

Theorem 2’A

Consider an AR(1) process defined by (1.1) under the assumptions of Theorem
2’ except that Ho ; is replaced by

Hy 1 4. Let us suppose that there exist constants C, ¥, 0 < ¥ < 1, My, Mo,
M3 such that the following inequalities hold :

961" (8)
9Bi }ﬁ=ﬁ°| <M

|{ 96:08; }B=ﬁ°| < M |{8ﬂiaﬁj8ﬂz }B:B°| <M.

then the results of Theorem 2’ of Azrak and Mélard (2006) are still valid.

el (8] < cwk, |

Proof

Let us show the first of the inequalities in Hy 1 since the others are similar.
Consider

o M202 ‘1’2 v—1
Z%kww (240 %WZmM1W-4£@Ln

hence Ny = M?C?*(1 — ¥?)~! and & = ¥ < 1.



Remark

Note that the first inequality of Hy 1 4 is true when |¢t") (8%)] < 1forall t and n
but this is not a necessity. A finite number of those ¢£n) (8%) can be greater than
1 without any problem. With this in mind, Example 3 of Azrak and Mélard
(2006) can be slightly modified in order to allow that the upper bound of the
|¢5§") (8%)]’s be greater than one. This will be illustrated in Section 5. Note also
that the other inequalities of Hy 14 are simple to check.

3. Monte Carlo simulations and examples

The purpose of this section is to illustrate the procedure described in the pre-
vious section on further simulation results than in AM and then on real time
series.

In AM, Monte-Carlo simulations had been shown for nonstationary AR(1)
and MA(1) models, with a time-dependent coefficient and a time-dependent
innovation variance, for several series lengths between 25 and 400, in order to
show convergence in an empirical way. The purpose was mainly to illustrate the
theoretical results for these models, particularly the derivation of the asymptotic
standard errors, and investigate the sensibility of the innovation distribution on
the conclusions.

Figure 1: Plot of the data for one of the simulated series for n = 400.
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Here, we have considered AR(2) models with time-dependent coefficients in
nearly the same setup as in AM except that the innovation variance is as-
sumed constant but the series are generated using a process with linearly time-
dependent coefficients, not stationary processes. Since we are only interested
in autoregressive models, it doesn’t seem necessary to compare the exact maxi-
mum likelihood and the approximate or conditional maximum likelihood meth-
ods. Although the simulations in AM had not really stressed the method, we



Table 1: Theoretical values of the parameters, averages and standard deviations
of estimates across simulations, and averages across simulations of estimated
standard errors ¢, ¢, , ¢y, and ¢, for the AR(2) model described above, for n
= 400; 999 replications (out of 1000).

Parameter standard average of
true value average deviation standard error
#; =0.0 0.007306  0.050587 0.043869
¢’1' = 0.002551 0.002422  0.000322 0.000333
¢>’2 =-0.2 -0.193960  0.048853 0.043537

¢’21 = 0.003571 0.003421  0.000332 0.000325

will treat a case where the coefficients gzb(l?) and qﬁg?) vary in an extreme way.
The parametrisation used is

o) (8) = i + ——(t = —5=); i = 1,2 (3.1)
The two coefficients ¢\") and ¢$"” vary between —0.5 and 0.5 for the former, and
between —0.9 and 0.5 for the latter. If we consider the roots of the polynomials
1- ¢g?)2‘ - ¢é?)22, that means they are complex till well after the middle of
the series, where their modulus is large (about 8) whereas it is close to 1 at the
beginning and the smallest root is equal to 1 at the end of the series. A plot of
a sample series is shown in in Figure 1 which illustrates that behaviour. Table 1
shows that the estimates are close to the true values of the parameters and that
the asymptotic standard errors are well estimated, since the average of these
estimates agrees more or less with the empirical standard deviation.

The fact that the method is stressed is demonstrated by Figure 2 which
shows, when n = 50, the variations of the two coefficients, respectively (ZSY;) and
¢§§‘> in function of time. It is therefore not surprising if the empirical results are
not as bright as in AM. Note hovever, by comparison of the last two columns of
Table 2, that the asymptotic standard errors are not badly estimated. We will
see in Section 5 an example which is still more extreme.

Figure 2: Variations of ¢\ and ¢{") with respect to time # for n = 50.
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Table 2: Theoretical values of the parameters, averages and standard deviations
of estimates across simulations, and averages across simulations of estimated
standard errors ¢, ¢, , ¢y, and ¢, for the AR(2) model described above, for n
= 50; 934 replications (out of 1000).

Parameter standard average of
true value average deviation standard error
#, =0.0 0.01419  0.14260 0.13620

qﬁ;’ = 0.020408 0.01640  0.00900 0.00957

¢y = —0.2 -0.19510  0.13972 0.12436

qﬁ; = 0.028571 0.02355  0.00852 0.00749

In AM, we have already fitted ARMA models with time-dependent coeffi-
cients and a time-dependent innovation standard deviation to series from the
Box et al. (1994). Here we have taken a dataset of indices, with 1985 as
basis, for the monthly added value of the Belgian industrial production by
the various branches of activity, 26 in all. The data cover the period from
January 1985 to December 1994 but the last year is used to compute ex-
post forecasts and the mean absolute percentage error (MAPE). We have ap-
plied Pasteels and Mélard (2000) procedure to fit autoregressive integrated or
ARI(p, P) models to the series of 108 observations. The model can include
ordinary and/or seasonal differences, transformations and interventions (addi-
tive or on the differenced series) which are not detailed here. We have re-
tained the 20 series out of 26 for which pure autoregressive models were ob-
tained. In the Box-Jenkins tradition, the autoregressive operator is a prod-
uct of the ordinary polynomial of degree p and of the seasonal polynomial
of degree 12P. For example, for an ARI(2,1) model, the operator is written
(1—¢1B—¢2B?)(1—®1B'?) = (1—¢1 B— B> — & B*? + ¢, @, B3 + ¢, ®, B'*).
For using time-dependent ARI, or tdARI, models, we have then added slope
parameters for each of the existing coefficients. This is not possible in multi-
plicative form so we have considered the developed form in the right hand side.
We have often reduced the number of parameters by using, for example, the
polynomial (1 - ¢{7 B — ¢y B2 — 63, B> — ¢{%), B'® + ¢ ¢, B'), where {7,
and QS(") and qﬁgz are like in (3.1) and

1 n+1
13t ¢1¢12 l(t_

)¢137

with 7 parameters instead of the full form = (1 — ¢\’ B — ¢\ B2 — ¢ B12 —
¢§’;3t313 - ¢§Z?tB14) that would involve 10 parameters in all. The models have
therefore coefficients which are (nearly all) linear functions of time. Table 3
shows the main results. Of course some nonsignificant parameters could have
been omitted in order to reduce SBIC but this was not attempted. Nevertheless,
even if tdARI models are not systematically better, they often produce better
forecasts, and sometimes show a better fit or at least some statistically signifi-
cant slope parameters at the 5 % level. Van Bellegem and von Sachs (2004) had
already shown the usefulness of a time-dependent variance. Of course, an auto-
matic selection procedure like the one exposed in Van Bellegem and Dahlhaus
(2005) is possible.



Table 3: For each branch of the economy, we give the orders (p, P) of the model,
SBIC and MAPE for the raw ARI model and for the tdARI model (results in
bold are better), the values of the statistically significant slopes, where AR
denotes qﬁ;/, and the corresponding t-value for testing a parameter equal to 0.

orders  ARI tdARI

Branch (p,P) SBIC SBIC para- t-
Name MAPE MAPE meter value
Food, beverages (3,0) 655 669 none
ALIBOR 4.0 3.9
Other extraction of minerals (2,0) 904 910 AR2 2.8
AUEXTR 10.5 9.4
Wood-processing, furniture (3,1) 778 792 AR12 23
BOIME 6.4 5.9
Hosiery (2,1) 702 694 AR2 4.7
BONNE 9.1 5.5 AR12 8.9

AR13  -6.5
Commerce (3,1) 553 556 AR12 36
COMME 1.7 2.2
Construction (3,0) 827 830  AR2 28
CONST 8.0 23.6
Petrol derivatives (1,0) 888 891 none
DERPE 5.2 5.2
Petrol distribution (1,1) 941 951 AR12  -5.3
DISPE 10.8 10.7
Metal processing (2,0) 682 681 AR2 -2.1
FABME 6.6 7.2
Manufacture of textiles (2,0) 739 749 none
FILAT 5.5 6.4
Gas production/distribution (3,1) 897 891 AR2 -2.1
GAZ 2.1 1.9 AR3 -4.3
Construction materials (1,1) 809 807 AR13  -3.3
MATCO 4.3 5.7
Non-metallic manufacturing (2,1) 826 830 AR12 35
NONFE 5.5 94 AR13 2.0
Paper/paperboard industry (3,1) 746 757 AR2 -2.1
PAPCA 5.9 5.8
Iron and steel (3,1) 833 837 AR1 3.8
SIDER 5.9 9.2 AR12 3.9
Manufacture of tobacco (3,1) 778 791 AR3 2.9
TABAC 10.9 13.2

AR12 5.4
Aviation (3,1) 746 753 AR12 45
TRAER 8.8 8.8
Maritime transport (2,1) 732 740 AR12 23
TRMAR 3.6 2.6 AR13 3.6
Land transport (0,1) 854 849 ARI12 -26
TRTER 12.1 12.5
Manufacture of clothing (2,0) 757 767 none
VETEM 26.7 26.7




4. Alternative assumptions under a mixing con-
dition

In this section, we shall need that the processes satisfy a mixing condition. In
general, that property is often introduced for strictly stationary processes. The
definition we use, proposed by Ibragimov (1962) and others, is as follows. We
consider a ¢ -mixing condition.

Definition 2

Let (w,t € Z) be a process (not necessarily stationary) of random variables
defined on a probability space (0, F, P). We say that the process is ¢ -mixing,
if there exists a sequence of positive real numbers (p(d),d > 1) , such that
p(d) = 0 as n — oo , where

¢(d)=sup  sup  |P(B/A)—P(B)], (4.1)
t€Z Ae Ft_
BeFzq

F'_ is the o-field spanned by (w,,s < t), and F, is the o-field spanned by
(ws,s > t+d). Then p(d) is called the ¢ -mixing coefficient of the process.
Of course, if the process is strictly stationary, the supremum over ¢ disap-

pears and the definition coincides with the standard definition.

Lemma 1

Let (w;,t € Z) be a process (not necessarily stationary) which satisfies the ¢
-mixing condition. Let a random variable U , measurable with respect to F* __
and a random variable V', measurable with respect to F%; ; if furthermore

1 1
E|UP < oo, E|V|?<o0o, pg>1, and 5+ e 1
then,
|E(UV) — E(U)E(V)| < 2(p(d))/?(E|UP)/P(E|V|7)'/. (4.2)

That lemma extends the result of Ibragimov (1962) to non-stationary processes
using Definition 2 for the ¢ -mixing condition. The proof is identical.

Theorem 3A

Consider a pure autoregressive process under the assumptions of Theorem 2’
except that Ho 7 is replaced by Hor 74:

Hy 74 For 8 = 8%, let the process be ¢-mixing with mixing coefficient ¢(d)
bounded by an exponentialy decreasing function, such that |¢(d)| < %, with
0<p<l

Then the results of Theorem 2’ of AM are still valid.

10



Proof

Hy/ 7 is used to prove two assumptions, Hy/ 3 and Hy: 5, of Theorem 1’ of AM,

but the former is more demanding. We have to show, see equation (A1.13)

there, that

n—1n—d (n) (n) (n)
('8) (n)— aet (ﬁ) aet—i—d(ﬁ) (n) aeH_d(ﬂ)

— ;;cov 50 ( 5, I C) o5, O, hyP(B) 5, )
(4.3)

We decompose the external sum in two sums, one for d = 1,...,p and one for

d=p+1,..,n—1and we will show that both sums are O(1/n). Using Cauchy-

Schwarz inequality and the fact that the proof of Theorem 2 has shown that

36(n)(ﬂ) ()1 8e(n)(ﬂ) 2
Eﬁo ( taﬁl ht (B) taﬂ]

is bounded, uniformly in ¢, using only Hs 1 — Hor g, the first sum is indeed
O(1/n).

The general term of the second sum can be written 7™ ™" (Bo)h(") Y(g0)H™ 489,

t,i,5,d
where
. ") o . n . dei™ (8
HE, (8% = covae (G DGE) 9.6, (G, (9)) 647 9) = 2412
Given (2.5), U GET; (BHG, (") (8°) € F! and, provided d > p,

= Ggi{“(ﬁo)Gﬁid](ﬁo) € Fge,_,, foralltandalli. Also ™" (82)n{7 " (8°) <
m~2, using Ho 3. By Ho 74 and using Lemma 1 with p = ¢ = 2, Ht(’:] (89) is
bounded by

1/2

1/2
20(d -9 { B (67060 ®) ) {Ban (6120,00620,) "}

That expression is uniformly bounded, with respect to ¢, by application of

4
Cauchy-Schwarz inequality, and using the fact that Ezo (ng) (6)) < m3(N,K'/24
3N5)o*, using Hor 1, Hy 3 and Ho 5, uniformly in n, see (A1.9) of AM. Since
Hyi 74 implies Zd";;ﬂ lo(d — p)|M/? < ZZ;;H l4=P)/2 < oo, hence (4.3) is
O(1/n). Argumentation is similar for checking Hy/ 5 but the expression to con-
sider is

n—1ln—d

e Oe
n2 Z ZCOVBO <Ktn)l(5)a ; (6)7 t:)d](ﬁ) t(‘;_g](ﬂ)> .

d=1 t=1

where

n 3 (n)
Kig) = 4E{et(n)( )} {3h (8 )}.
ot (b (8)2 L OB
The proof continues like in Theorem 2 and 2’ of AM, using a weak law of large
numbers for a mixtingale arrays (Andrews, 1988) and referring to Theorems
1 and 1’ of AM, which make use of a central limit theorem for a martingale
difference array (Hall and Heyde, 1980) modified with a Lyapounov condition.

11



Remark

Pham and Tran (1985) have shown that, under fairly general assumptions, an
ARMA process (with constant coefficients) is S-mixing (or absolutely regular)
and that 3(d) = ®?, with ® < 1. It would be interesting if that result could
be extended to ARMA processes with time-dependent coefficients. The proof
makes use of the stationarity of the process but it can perhaps be generalized
using Green functions. Anyway, we shall see that we need more, i.e. p-mixing
and an additional condition of convergence of exponential decrease of p-mixing
coefficients. In practice, even if the statement of Theorem 3A is more appeal-
ing, checking Hy 74 is more challenging than checking Hs 7. For instance, in
Example 3 of AM, we were able to check Ho 7.

5. A comparison with the theory of locally sta-
tionary processes

We have given in Section 1 some elements of the theory of Dahlhaus. It is based
on a class of locally stationary processes, that means on a sequence of stationary
processes, based on a stochastic integral representation

w = [ eopin Al ag. (5.1)

—T

where £(\) is a process with independent increments and Ag")(/\) fulfils a con-
dition so as to be called a slowly varying function with respect to t.

In the case of autoregressive processes, which are emphasised in this paper,
for example an AR(1) process, that means that the observations around time ¢
are supposed to be generated by a stationary AR(1) process with some coefficient
¢¢. Stationarity implies that —1 < ¢ < 1. Around time ¢, fitting is done using
the process at time ¢. More generally, for AR(p) processes, the autoregressive
coefficients are such that the roots of the autoregressive polynomial are greater
than 1 in modulus. Note that when ARMA processes with time-dependent
coefficients are considered in AM, polynomials in terms of the lag operator have
no special meaning, neither their roots.

The estimation method is based either on a spectral approach or on a Whittle
approximation of the Gaussian likelihood. Dahlhaus (1996a) also sketches an
exact maximum likelihood estimation method like the one used here based on
Mélard (1982) or Azrak and Mélard (1998).

As mentioned above, Dahlhaus approach of doing asymptotics relies on
rescaling time ¢ in u = ¢/n. That doesn’t mean that the process is considered
in continuous time but at least that its coefficients are considered in continuous
time. Asymptotics are done by assuming an increasing number of observations
between 0 and 1. That means that coefficients are considered as a function of
t/n, not separately as a function of ¢ and n. This is nearly the same as was
assumed in (3.1), since t/(n — 1) is close to t/n for large n. Note however that
the Example 1 of AM is not in that class of processes. More generally, processes
where the coefficients are a periodic function of ¢ with period s, for example, are
excluded from the class of processes under consideration. Of course, what was
said about the coefficients is also valid for the innovation standard deviation. If
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the latter is a periodic function of time ¢, with a given period s, the process is
not compatible with time rescaling.

Dependency with respect to u of the model coefficients as well as the inno-
vation standard deviation is assumed to be continuous and even differentiable
in Dahlhaus theory. In comparison, the other theories including AM and BF
accept discrete values of the coefficients with respect to time, without requir-
ing a slow variation. They make instead assumptions of differentiability on
dependency with respect to the parameters.

Another point of discussion is as follows. In order to handle economic and
social data with an annual seasonality, Box et al. (1994) have proposed the
so-called seasonal processes: ARMA processes where the autoregressive and
moving average polynomials are products of polynomials in the lag operator
B and polynomials in B*® for some s > 1, for example s = 12, for monthly
data, or s = 4, for quarterly data. Although series generated by these processes
are not periodic, with suitably initial values, they can show a pseudo-periodic
behaviour with period s. The same objection stated above about cyclically time-
dependent coefficients seems valid for using such processes in the context of time
rescaling. If we consider such ARMA processes with time-dependent coefficients,
for example an AR(12) defined by the equation y; = ¢£n) (8)yt—12 + e, with the
same notations as in Section 1. There are exactly 11 observations between
times ¢ and ¢ — 12 and an increase of the total number of observations would
not affect that. For such processes, Approach 1 of doing asymptotics, described
in Section 1, seems to be the most appropriate, assuming that there is a larger
number of years, not that there is a larger number of months within a year. Of
course Approach 2 of doing asymptotics is perfectly valid in all cases where the
frequency of observation is more or less arbitrary.

Figure 3: Schematic presentation on how to interpret asymptotics in AM and
Dahlhaus theories (see text for details).

Azrak-Melard coefficient Dahlhaus coeficiant

1 n 0 1 I
L] | |

YERNARITH 1 o ik

1 f 0 1I
06 o O L [ ] I

LU ] o

In the following example, we will consider a AR(1) process with a time de-
pendent coefficient but with the innovation standard deviation being a periodic
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function of time. Let us first show a unique artificial series of length 128 gen-
erated by (1.1) with ¢{™ = ¢/ + (t — 2L)¢" with ¢/ = 0.15, ¢ = 0.015 and
the e; are normally and independently distributed with mean 0 and variance
h: where h; is a periodic function of ¢ with period 12, simulating a seasonal
heteroscedasticity for monthly data. Furthermore hg"), which doesn’t depend
on n assumes values h = 0.5 and 1/h = 2, each during six consecutive time
points. The series plotted in Figure 4 clearly shows a nonstationary pattern.
The choice of ¢’ = 0.15 and ¢" = 0.015 is such that the autoregressive coefficient
follows a straight line which goes slightly above 1 at the end of the series (see
Figure 5). The parameters are estimated using the Gaussian maximum likeli-
hood method which provides the following estimates (with the standard errors):
¢ = 0.157 (£0.062), ¢" = 0.0159 (£0.0014), and h = 0.344 (£0.044), which

are compatible with the true values. For n = 128, we provide the fit of ng") and
h:, respectively, in Figure 5 and 6. Figure 7 and 8 give a better insight to the
relationship between the observations, showing broadly a negative autocorrela-
tion during the first half of the series and a positive autocorrelation during the
second half, as well as a small scatter during half of the year and a large scatter
during the other half. Note finally that this example is not compatible with the
theory of locally stationary processes since ¢£n) > 1 for some ¢, and h; being
piecewise constant is not a differentiable function of time. Also the asymptotics
related to that theory will also be difficult to interpret since h; is periodic with
a fixed period.

Figure 4: Artificial series produced using the process defined by (1.4) (see text
for details).
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Figure 5: True value of ¢E") (which goes above 1!) (solid line) and its fit
(discontinous line).
15 ; ; ; .

We have run Monte Carlo simulations using the same setup except that

polynomials of degree 2 were fitted for ¢)£n)
The parametrisation is

o) = + (1= "5 0)e" + (1= 1) (52)

instead of a linear function of time.

and hE") is a periodic function which oscillates between the two values h = 0.5
and 1/h = 2, defined like above. The estimation program is the same as in
AM but extended to cover polynomials of time of degree up to 3 as well as for
AR (or similarly MA) coeflicients as for hﬁ’”. The latter capability is not used
here but well an older implementation for intervention analysis (Mélard, 1981).
Estimation are obtained by maximising the exact Gaussian likelihood.

A number of 1000 series of length 128 were generated using a program written
in Matlab with Gaussian innovations and without warm-up. Note that results
were obtained for 964 series only. They are provided in Table 4. Unfortunately,
some estimates of the standard errors were unreliable so their averages were
useless and replaced by medians. Note that the estimates of the standard errors
are quite close to the empirical standard deviations. The fact that the results are
not as good as the simulation experiments described by AM, at least for series
of 100 observations or more, may be due to the fact that the basic assumptions
are only barely satisfied with ¢§n) going nearly from about —1 to 1. In Table
5, we have fitted the more adequate and simpler model with a linear function
of time instead of a quadratic function of time. Now results were obtained for
994 series and the estimated standard error were always reliable so that their
average accross simulations are displayed.
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Figure 6: True value of h, /2 (solid line) and its fit (discontinous line).

Table 4: Theoretical values of the parameters, averages and standard deviations
of estimates across simulations, and medians across simulations of estimated
standard errors ¢ (true value: 0.15), ¢ (true value: 0.015), and ¢ (true
value: 0), and h (true value 0.5) for the AR (1) model described above, for n =
128; 864 replications (out of 1000).

Parameter n standard median of
Parameter n average deviation standard error
¢ =0.15 0.23554  0.14611 0.10380

¢ =0.015 0.01282  0.00222 0.00160
" =0.0 -0.00000  0.00005 0.00005
h=05 0.54054  0.07857 0.08157

6. A comparison with the theory of cyclically
time-dependent models

Here we will focus on BF but part of the discussion is also appropriate for older
approaches like Kwoun and Yajima (1986), Tjostheim (1984), and Hamdoune
(1995). BF have developed a general theory of estimation for linear models with
time-dependent coefficients which is particularly aimed at the case of cyclically
time-dependent coefficients. See also Francq and Gautier (2004a, b, ¢) and
Gautier (2005).

The linear models include autoregressive but also moving average or ARMA
models like AM. The coefficients can depend on ¢ in a general way but not on n.
Heteroscedasticity is allowed in a similar way in the sense that the innovation
variance can depend on ¢ (but not on n). The estimation method is a quasi-
generalised least squares method. The basic assumptions are different from
those of AM. A comparison is difficult here but it is interesting to note a less
restrictive assumption of existence of fourth order moments, not eighth order
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like in AM. The examples that are treated are either similar to Example 1 of
AM, or consist on a conditionally heteroscedastic process assume existence of
two regimes based on a sequence of Bernoulli random variables independent
from the innovation process. It is difficult to see what models are excluded but
examples 2 to 5 of AM do not seem to be covered because their coefficients
depend on ¢t and n, not only on ¢. Indeed, in these theories, the coefficients of
the ARMA model are not afforded to depend on the length of the series.

The process considered in Section 4 was not an example for which the theory
of locally stationary process would not apply because of the periodicity in the
innovation strandard deviation. That process is also not an example for which
the BF theory would apply but this time, not because of the periodicity in the
innovation standard deviation, but well because the autoregressive coefficient
is a function of ¢ and n; not only on ¢. The simulations that were shown are

Table 5: Theoretical values of the parameters, averages and standard deviations
of estimates across simulations, and medians across simulations of estimated
standard errors ¢ (true value: 0.15), ¢ (true value: 0.015), and h (true value
0.5) for the AR(1) model described above, for n = 128; 864 replications (out of
1000).

Parameter n standard average of
Parameter n average deviation standard error
¢ =0.15 0.22023  0.12577 0.06683

¢ =0.015 0.01305  0.00202 0.00146
h=0.5 0.54290  0.07847 0.06984
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Figure 8: w§128) as a function of w§1_218) (plusses: high scatter, when h; = 2,

stars: circles: small scatter, when h; = 0.5.
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also a sort of counterexample of the necessity of the assumptions made in that
paper. Nevertheless, it should be remarked that AM do not accept conditional
heteroscedasticity at the present time so that the model considered by BF keeps
a good position in that area.

7. Conclusions

This paper was motivated by suggestions to see if the results in AM simplify
much in the case of autoregressive or even AR(1) processes, and by requests
to compare more deeply the AM approach with others and push it in harder
situations. We have shown that there are not many simplifications, perhaps due
to the intrisically complex nature of ARMA processes with time dependent co-
efficients. Neverthless, we have been able to simplify one of the assumptions for
AR(1) processes. We have taken the opportunity of this study on autoregres-
sive processes with time dependent coefficients in order to develop an alternative
approach based on a mixing condition instead of the strange assumption Hy 7
made in AM. It was a strange assumption perhaps but at least could we check it
in some examples which is not the case for the mixing condition, at the present
time. Note that the mixing approach was the first we tried, before prefering
Hs/ 7. The latter could be extended to MA and ARMA processes, which was
not the case for the mixing condition. Although theoretical results for AR(2)
processes could not be shown in closed form expressions, the simulations indicate
that the method is robust when causality becomes questionable.

We have shown more stressing simulations than in AM and other exam-
ples on economic data that exhibit a nonstationary behaviour. ARIMA models
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could have been possible for these simulations and examples but this paper has
focussed on autoregressive processes.

We have also compared the AM approach to others, more especially Dahlhaus
theory of locally stationary processes and the BF approach aimed at cyclically
time-dependent linear processes. Let us comment on this more deeply.

Like in Dahlhaus theory, a different process is considered for each n in the
asymptotics. There are however several differences in the two approaches: (a)
AM can cope with periodic evolutions with a fixed period, either in the coeffi-
cients or in the variance; (b) AM do not assume differentiability with respect
to time but well with respect to the parameters, (¢) to compensate, AM make
other assumptions which are more difficult to check; (d) which may explain why
Dahlhaus theory is more widely applicable: other models than just ARMA mod-
els, other estimation methods than maximum likelihood, even semi-parametric
methods, able to a LAN approach, etc; (¢) AM is purely time-domain oriented
whereas Dahlhaus theory is based on a spectral representation. An example
with an economic inspiration and its associated simulation experiments have
shown that some of these assumptions of AM are less restrictive but there is no
doubt that others are more stringent. In our opinion, the field of applications
can have an influence on the kind of asymptotics. Dahlhaus approach is surely
well adapted with signal measurements in biology and engineering where the
sample span of time is fixed and the sampling interval is more or less arbitrary.
This is not true in economics and management where (a) time series models are
primarily used to forecast a flow variable like sales or production, obtained by
accumulating data over a given period of time, a month or a quarter, so (b)
that the sampling period is fixed, and (c) moreover, some degree of periodicity
is induced by seasonality. Here, it is difficult to assume that more observations
become available during one year without affecting strongly the model. For
that reason, even if the so-called seasonal ARMA processes, which are the rule
for economic data, are formally special cases of locally stationary processes, the
way of doing asymptotics is not really adequate. For the same reason, rescaling
time is not natural when the coefficients are periodic function of time.

Going now to a comparison of AM with the BF approach aimed at cycli-
cally time-dependent linear processes, we see a first fundemental difference in
the fact that a different process is considered for each n in AM, not in BF.
That assumption of dependency on n as well as on t was introduced in order
to be able to do asymptotics in cases that would not have been possible other-
wise (except in adopting Dahlhaus approach, of course) but, at the same time
making it possible to represent a periodic behaviour. When the coefficients are
only dependent on ¢, not on n, the AM and BF approaches come close in the
sense that (a) the estimation methods are close; (b) the assumptions are quite
similar. Nevertheless, BF can easily cope with some kind of conditionally het-
eroscedasticity, make assumptions of existence of lower moments. The example
and simulations shown to distinguish AM from locally stationary processes is
also illuminating the difference between AM and BF.

In some sense, AM can be seen as partly taking some features of both
Dahlhaus and BF approaches. Some features, like periodicity of the innova-
tion variance, can be handled well in BF while others, like slowly time varying
coefficients are in the scope of locally stationary processes. But cyclical be-
haviour of some innovation variance and slowly varying coefficients together (or
the contrary: cyclical behaviour of some coefficients and slowly varying innova-
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tion variance) are not covered by Dahlhaus and BF theories but well by AM.
The example of Section 5 may look artificial but includes all the characteristics
which are not covered well by locally stationary processes and the correspond-
ing asymptotic theory. It includes a time dependent first-order autoregressive
coefficient QSE") which is very realistic for an I(0) economic time series and an
innovation variance o7 which is periodic function of time (this can be explained
by seasonality like a winter/summer effect). To emphasise the difference with

Dahlhaus’ approach, we have assumed that ¢£n) goes slightly outside of the
causality (or stationarity, in Dahlhaus terminology) region for some time and
that o2 is piecewise constant, hence not compatible with differentiability at each
time.

Appendix. Theorem 2’ of Azrak and Mélard (2006)

Consider an autoregressive-moving average process and suppose that the func-
tions ng(") (B), GEZ) (B) and h{"(B) are three times continuously differentiable
with respect to 3, in the open set B containing the true value 3° of 3, that
there exist positive constants ® < 1,Ny, No, N3, N4, N5, K1, Ko, K3, m, M,
my and K, such that V¢ = 1,...,n and uniformly with respect to n:

Hy ZW‘)Z %) < Nyt Zzpfj‘k’“ %) < Ny~ thtj;),j £0) < Na@* ™1,

k=v k=v

Zdjmk ﬁo <N<I)V 1 Z’L/}tljlk ﬂo <N5’

oh{™ () 9°h{™ (8)
Hy {Tﬂi}ﬁﬁo < K, {W ) < Ko,

o*hy" (8) ”
0 A\ <K G l=1,..r
{aﬁiaﬁjaﬁz T '

Hys 0<m<hi™(B) <m;
Hy 4 E(wt(n)4) < M,
Hys (0" (8%) ' E(e}) < K.

Suppose furthermore that

1 ouy)_ (8) (), (8)
Hy g nllﬂngoﬁg 072EB0 th:{hﬁ )(ﬁ)}ilthjl
1 6h(")(ﬁ) (n) _ ahn)(ﬁ)
+ 5 {BT {ht (50)} 2 5761 :‘/ij(ﬂo)v
p=p0 p=p0
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i,j = 1,...,r, where the matrix V(8°) = (V;;(8°))1<ij<r is a strictly definite
positive matrix;

I n 1
Hy H—ZZ > U BN B sk a BV i a (B ia i = O(),
d=1

t=1 k=1

n—1n—d

1
n2
d=

t—d

n 1
D ik (V0T a BB (8%) = O,
k=1

1t=1

Then,

e there exists an estimator Bn such that Bn — B9 in probability;

o nl/2(3, — %) =L N(0,V(8°) ! W(B°)V(8°)~!) where there exists a matrix
W (B°) whose elements are defined by (2.11) with a;(3) being defined by the
contents of the square brackets in (2.4).
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